Cloud Dynamics Using Fall Velocity and Nucleation Geometry of Clouds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Modeling of Contrail and Contrail Cirrus Climate Impact
GLOBAL MODELING OF THE CONTRAIL AND CONTRAIL CIRRUS CLIMATE IMPACT BY ULRIKE BU RKHARDT , BERND KÄRCHER , AND ULRICH SCH U MANN et al. 2010). For the given ambient Modeling the physical processes governing the life cycle of conditions, their direct radia- contrail cirrus clouds will substantially narrow the uncer- tive effect is mainly determined tainty associated with the aviation climate impact. by coverage and optical depth. The microphysical properties of contrail cirrus likely differ from substantial part of the aviation climate impact those of most natural cirrus, at least during the initial may be due to aviation-induced cloudiness (AIC; stages of the contrail cirrus life cycle (Heymsfield A Brasseur and Gupta 2010), which is arguably et al. 2010). Contrails form and persist in air that is the most important but least understood component ice saturated, whereas natural cirrus usually requires in aviation climate impact assessments. The AIC in- high ice supersaturation to form (Jensen et al. 2001). cludes contrail cirrus and changes in cirrus properties This difference implies that in a substantial fraction or occurrence arising from aircraft soot emissions of the upper troposphere contrail cirrus can persist in (soot cirrus). Linear contrails are line-shaped ice supersaturated air that is cloud free, thus increasing clouds that form behind cruising aircraft in clear air high cloud coverage. Contrails and contrail cirrus and within cirrus clouds. Linear contrails transform existing above, below, or within clouds change the into irregularly shaped ice clouds (contrail cirrus) and column optical depth and radiative fluxes. They may may form cloud clusters in favorable meteorological also indirectly affect radiation by changing the mois- conditions, occasionally covering large horizontal ture budget of the upper troposphere, and therefore areas extending up to 100,000 km2 (Duda et al. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Observation of Polar Stratospheric Clouds Down to the Mediterranean Coast
Atmos. Chem. Phys., 7, 5275–5281, 2007 www.atmos-chem-phys.net/7/5275/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Observation of Polar Stratospheric Clouds down to the Mediterranean coast P. Keckhut1, Ch. David1, M. Marchand1, S. Bekki1, J. Jumelet1, A. Hauchecorne1, and M. Hopfner¨ 2 1Service d’Aeronomie,´ Institut Pierre Simon Laplace, B.P. 3, 91371, Verrieres-le-Buisson,` France 2Forschungszentrum Karlsruhe, Institut fur¨ Meteorologie und Klimaforschung, Karlsruhe, Germany Received: 8 March 2007 – Published in Atmos. Chem. Phys. Discuss.: 15 May 2007 Revised: 5 October 2007 – Accepted: 6 October 2007 – Published: 12 October 2007 Abstract. A Polar Stratospheric Cloud (PSC) was detected spheric temperatures are expected to cool down due to ozone for the first time in January 2006 over Southern Europe af- depletion, but also to the increase in the concentrations of ter 25 years of systematic lidar observations. This cloud greenhouse gases. Such findings are already reported and was observed while the polar vortex was highly distorted simulated (Ramaswamy et al., 2001), although trends are less during the initial phase of a major stratospheric warming. clear at high latitudes due to a larger natural variability and Very cold stratospheric temperatures (<190 K) centred over potential dynamical feedback. Nearly twenty years after the the Northern-Western Europe were reported, extending down signing of the Montreal Protocol, the timing and extent of the to the South of France -
Cloud-Spotting Game Sheet
Spot ‘Em Car Games Clouds and Weather Mark down each type of cloud you spot, and see how long it takes you to get them all! 1. Cirrus (2) 2. Altocumulus (2) 3. Cirrocumulus (1) 4. Cirrostratus (3) 5. Cumulus (1) 6. Cirrus fibratus (2) 7. Altostratus (3) 8. Nimbostratus (2) 9. Stratocumulus (1) 10. Stratus (3) 11. Lenticular cloud (10) 12. Funnel cloud (10) 13. Rainbow (5) 14. Airplane contrail (2) 15. Crepuscular rays (10) www.HowToRaiseAHappyGenius.com Printed by Pictish Beast Publications Spot ‘Em Car Games Clouds and Weather More information about how to identify the weather phenomena that are part of this car game 1. Cirrus: Cirrus clouds look like strands of white cotton wool that have been pulled apart and spread across the sky. 2. Altocumulus: Altocumulus clouds form a layer at mid-altitudes that covers much of the sky, and this layer is usually made up of patterns of regularly spaced and shaped patches with bands of blue sky between them. 3. Cirrocumulus: Cirrocumulus clouds are similar to altocumulus, but they are found higher up in the sky and are made up of smaller patches of cloud. 4. Cirrostratus: Cirrostratus clouds form a continuous sheet of cloud high up in the sky that are thin enough for the sun to be able to shine through, creating a halo effect. 5. Cumulus: Cumulus clouds are distinctive fluffy looking clouds that are clearly separated from other clouds in the sky. They are what you would draw if asked to draw a picture of a cloud. 6. Cirrus fibratus: Cirrus fibratus are a type of Cirrus cloud that form very distinctive long, fluffy lines across the sky. -
The Secrets of the Best Rainbows on Earth Steven Businger
Article The Secrets of the Best Rainbows on Earth Steven Businger ABSTRACT: This paper makes a case for why Hawaii is the rainbow capital of the world. It begins by briefly touching on the cultural and historical significance of rainbows in Hawaii. Next it provides an overview of the science behind the rainbow phenomenon, which provides context for exploring the meteorology that helps explain the prevalence of Hawaiian rainbows. Last, the paper discusses the art and science of chasing rainbows. KEYWORDS: Tropics; Atmospheric circulation; Dispersion; Orographic effects; Optical phenomena; Machine learning https://doi.org/10.1175/BAMS-D-20-0101.1 Corresponding author: Dr. Steven Businger, [email protected] In final form 15 October 2020 ©2021 American Meteorological Society For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy. AFFILIATION: Businger—University of Hawai'i at Mānoa, Honolulu, Hawaii AMERICAN METEOROLOGICAL SOCIETY FEBRUARY 2021 E1 ainbows are some of the most spectacular R optical phenomena in the natural world, and Hawaii is blessed with an amazing abundance of them. Rainbows in Hawaii are at once so common and yet so stunning that they appear in Hawaiian chants and legends, on license plates, and in the names of Hawaiian sports teams and local businesses (Fig. 1). Visitors and locals alike frequently leave their cars by the side of the road in order to photograph these brilliant bands of light. Fig. 1. Collage of Hawaii rainbow references. The cultural importance of rainbows is reflected in the Hawaiian language, which has many words and phrases to describe the variety of manifestations in Hawaii, a few of which are provided in Table 1. -
Ice Polar Stratospheric Clouds Detected from Assimilation of Atmospheric Infrared Sounder Data
Ice Polar Stratospheric Clouds Detected from Assimilation of Atmospheric Infrared Sounder Data Ivanka Stajner,1,2 Craig Benson,3,2 Hui-Chun Liu,1,2 Steven Pawson,2 Nicole Brubaker,1,2 Lang-Ping Chang,1,2 Lars Peter Riishojgaard3,2, and Ricardo Todling1,2 1 Science Applications International Corporation, Beltsville, Maryland 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland 3 Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland 1 A novel technique is presented for the detection and 45 about ice PSCs (Meerkoetter 1992; Hervig et al. 2001). 2 mapping of ice polar stratospheric clouds (PSCs), 46 Maps of ice PSCs were retrieved from differences in 3 using brightness temperatures from the Atmospheric 47 radiances in two channels and also allowed distinction 4 Infrared Sounder (AIRS) “moisture” channel near 48 between ice PSCs and cirrus. In contrast, even the 5 6.79 μm. It is based on observed-minus-forecast 49 strongest nitric-acid-trihydrate PSCs cannot be 6 residuals (O-Fs) computed when using AIRS 50 retrieved from AVHRR because their signal falls below 7 radiances in the Goddard Earth Observing System 51 AVHRR measurement uncertainty (Hervig et al. 2001). 8 version 5 (GEOS-5) data assimilation system. 52 Tropospheric ice clouds can be retrieved from the 9 Brightness temperatures are computed from six-hour 53 Atmospheric Infrared Sounder (AIRS) data. 10 GEOS-5 forecasts using a radiation transfer module 54 Comparisons of AIRS spectra with a radiative transfer 11 under clear-sky conditions, meaning they will be too 55 model in the window region 10-12.5 μm show 12 high when ice PSCs are present. -
AC 00-57 Hazardous Mountain Winds
AC 00-57 Hazardous Mountain Winds And Their Visual Indicators U.S. DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Communications, Navigation, and Surveillance Systems Washington, D.C. FOREWORD This advisory circular (A C) contains Comments regarding this publication information on hazardous mountain winds should be directed to the Department of and their effects on flight operations near Transportation, Federal Aviation mountainous regions. The primary Administration, Flight Standards purpose of thls AC is to assist pilots Service, Technical Programs Division, involved in aviation operations to 800 Independence Avenue, S.W. diagnose the potential for severe wind Washington, DC 20591. events in the vicinity of mountainous areas and to provide information on pre-flight planning techniques and in-flight evaluation strategies for avoiding destructive turbulence and loss of aircraft control. Additionally, pilots and others who must deal with weather phenomena in aviation operations also will benefit from the information contained in this AC. Pilots can review the photographs and section summaries to learn about and recognize common indicators of wind motion in the atmosphere. The photographs show physical processes and provide visual clues. The summaries cover the technical and "wonder" aspects of why certain things occur what caused it? How does it affect pre-flight and in-flight decisions? The physical aspects are covered more in-depth through the text. v Acknowledgments Thomas Q. Carney Purdue University, Department of Aviation Technology and Consultant in Aviation Operations and Applied Meteorology A. J. Bedard, Jr. National Oceanic and Atmospheric Administration Environmental Technology Laboratory John M. Brown National Oceanic and Atmospheric Administration Forecast Systems Laboratory John McGinley National Oceanic and Atmospheric Administration Forecast Systems Laboratory Tenny Lindholm National Center for Atmospheric Research Research Applications Program Michael J. -
Contrails, Contrail Cirrus, and Ship Tracks
214 Proceedings of the TAC-Conference, June 26 to 29, 2006, Oxford, UK Contrails, contrail cirrus, and ship tracks K. Gierens* DLR-Institut für Physik der Atmosphäre Oberpfaffenhofen, Germany Keywords: Aerosol effects on clouds and climate ABSTRACT: The following text is an enlarged version of the conference tutorial lecture on con- trails, contrail cirrus, and ship tracks. I start with a general introduction into aerosol effects on clouds. Contrail formation and persistence, aviation’s share to cirrus trends and ship tracks are treated then. 1 INTRODUCTION The overarching theme above the notions “contrails”, “contrail cirrus”, and “ship tracks” is the ef- fects of anthropogenic aerosol on clouds and on climate via the cloud’s influence on the flow of ra- diation energy in the atmosphere. Aerosol effects are categorised in the following way: - Direct effect: Aerosol particles scatter and absorb solar and terrestrial radiation, that is, they in- terfere directly with the radiative energy flow through the atmosphere (e.g. Haywood and Boucher, 2000). - Semidirect effect: Soot particles are very effective absorbers of radiation. When they absorb ra- diation the ambient air is locally heated. When this happens close to or within clouds, the local heating leads to buoyancy forces, hence overturning motions are induced, altering cloud evolu- tion and potentially lifetimes (e.g. Hansen et al., 1997; Ackerman et al., 2000). - Indirect effects: The most important role of aerosol particles in the atmosphere is their role as condensation and ice nuclei, that is, their role in cloud formation. The addition of aerosol parti- cles to the natural aerosol background changes the formation conditions of clouds, which leads to changes in cloud occurrence frequencies, cloud properties (microphysical, structural, and op- tical), and cloud lifetimes (e.g. -
Talking Points for “Satellite Interpretation of Orographic Clouds / Effects”
Talking points for “Satellite Interpretation of Orographic clouds / effects” 1. Title page 2. Objectives 3. Topics 4. Gap wind event over New Mexico. Strong winds affect Albuquerque and introduce moist airmass which may impact convective forecast the next day. 5. Topography of New Mexico. In easterly flow, winds may be funneled through Tijeras gap east of Albuquerque and produce locally strong winds in the city. 6. Surface observations (METARs) from 00:00 – 12:00 UTC (3 hour increments) 12 June 1999. At 00:00 UTC we observe a warm and dry air mass and southwest flow over most of central New Mexico (including Albuquerque). As time goes on, the easterly flow advects westward. Eventually, the easterly flow makes it to Albuquerque where the dewpoint goes from the 20’s to the low 50’s. The gap wind effects are very localized, at the Albuquerque airport winds gusted up to 30 mph, while on the west side of town at Double Eagle airport winds were southeast at 10 mph. 7. Fog Product 02:46 – 10:30 UTC 12 June 1999. This loop shows the origin of the easterly flow which helped produce the gap winds in Albuquerque. Deep convection on the plains of eastern New Mexico produced strong outflow that moved westward. Since this loop is at night, we can utilize the fog product to identify the outflow boundaries readily. The fog product is good at distinguishing low-level outflow boundaries at night. The outflow pushes westward towards Albuquerque, as it reaches the Tijeras gap the gap wind event begins. The fog product can be used in this way (at night) to determine when the conditions favorable for gap winds will begin. -
Classification of Clouds Clouds Are Usually Classified According to Their Height and Appearance
CLOUDS Clouds are condensed droplets of water and ice crystals. The nuclei of those droplets are dust particles. Near the surface these drops form fog and in the free atmosphere, they form clouds. Clouds have been defined as visible aggregation of minute water droplets and / or ice particles in the air, usually above the general ground level. Air contains moisture and this is extremely important to the formation of clouds. Clouds are formed around microscopic particles such as dust, smoke, salt crystals & other materials that are present in the atmosphere. These materials are called Cloud Condensation Nucleus (CCN). Without these, no cloud formation will take place. There are certain special types, known as ice nucleus, on which droplets freeze or ice crystals form directly from water vapour. Generally condensation nuclei are present in plenty in air. But there is scarcity of special ice forming nuclei. Generally clouds are made up of billion of these tiny water droplets or ice crystals or combination of both. When a current of air rises upwards due to increased temperature it goes up, expands and gets cooled. If the cooling continues till the saturation point is reached, the water vapour condenses and forms clouds. The condensation takes place on a nucleus of dust particles. The water particles individually are very small and suspended in the air. Only when the droplets coalesce to from a drop of sufficient weight, to overcome the resistance of air, they fall as rain. Clouds are considered essential and accurate tools for weather forecasting. Classification of clouds Clouds are usually classified according to their height and appearance. -
Types of Clouds
Types of Clouds What’s the Weather? Cirrus, Cirrocumulus and Cirrostratus (high 5000-16,000 m) . thin and often wispy . composed of ice crystals that originate from the freezing of supercooled water droplets. Generally occur in fair weather and point in the direction of air movement at their elevation. Cirrus . They are made of ice crystals and have long, thin, wispy streamers. Cirrus clouds are usually white and predict fair weather. cirrus cirrus cirrus cirrus cirrus cirrus Cirrocumulus . They are small rounded puffs that usually appear in long rows. Cirrocumulus are usually white, but sometimes appear gray. Cirrocumulus are usually seen in the winter time and mean that there will be fair, but cold weather. Cirrostratus . Sheetlike thin clouds that usually cover the entire sky. Cirrostratus clouds usually come 12-24 hours before a rain or snow storm. Altocumulus and Altostratus (middle 2,000 to 7, 000 m) . Middle clouds are made of ice crystals and water droplets. The base of a middle cloud above the surface can be anywhere from 2000-8000m in the tropics to 2000-4000m in the polar regions. An Altocumulus . They are grayish-white with one part of the cloud darker than the other. Usually form in groups. If you see altocumulus clouds on a warm sticky morning, then expect thunderstorms by late afternoon. Altostratus . An altostratus cloud usually covers the whole sky. The cloud looks gray or blue-gray. Usually forms ahead of storms that have a lot of rain or snow. Sometimes, rain will fall from an altostratus cloud. If the rain hits the ground, then the cloud is called a nimbostratus cloud. -
Metar Abbreviations Metar/Taf List of Abbreviations and Acronyms
METAR ABBREVIATIONS http://www.alaska.faa.gov/fai/afss/metar%20taf/metcont.htm METAR/TAF LIST OF ABBREVIATIONS AND ACRONYMS $ maintenance check indicator - light intensity indicator that visual range data follows; separator between + heavy intensity / temperature and dew point data. ACFT ACC altocumulus castellanus aircraft mishap MSHP ACSL altocumulus standing lenticular cloud AO1 automated station without precipitation discriminator AO2 automated station with precipitation discriminator ALP airport location point APCH approach APRNT apparent APRX approximately ATCT airport traffic control tower AUTO fully automated report B began BC patches BKN broken BL blowing BR mist C center (with reference to runway designation) CA cloud-air lightning CB cumulonimbus cloud CBMAM cumulonimbus mammatus cloud CC cloud-cloud lightning CCSL cirrocumulus standing lenticular cloud cd candela CG cloud-ground lightning CHI cloud-height indicator CHINO sky condition at secondary location not available CIG ceiling CLR clear CONS continuous COR correction to a previously disseminated observation DOC Department of Commerce DOD Department of Defense DOT Department of Transportation DR low drifting DS duststorm DSIPTG dissipating DSNT distant DU widespread dust DVR dispatch visual range DZ drizzle E east, ended, estimated ceiling (SAO) FAA Federal Aviation Administration FC funnel cloud FEW few clouds FG fog FIBI filed but impracticable to transmit FIRST first observation after a break in coverage at manual station Federal Meteorological Handbook No.1, Surface