Why All Column Stores Are Not the Same Twelve Low-Level Features That Offer High Value to Analysts Table of Contents Page Compression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Analysis Expressions (DAX) in Powerpivot for Excel 2010
Data Analysis Expressions (DAX) In PowerPivot for Excel 2010 A. Table of Contents B. Executive Summary ............................................................................................................................... 3 C. Background ........................................................................................................................................... 4 1. PowerPivot ...............................................................................................................................................4 2. PowerPivot for Excel ................................................................................................................................5 3. Samples – Contoso Database ...................................................................................................................8 D. Data Analysis Expressions (DAX) – The Basics ...................................................................................... 9 1. DAX Goals .................................................................................................................................................9 2. DAX Calculations - Calculated Columns and Measures ...........................................................................9 3. DAX Syntax ............................................................................................................................................ 13 4. DAX uses PowerPivot data types ......................................................................................................... -
Finding Fraud in Large and Diverse Data Sets
Business white paper Finding fraud in large and diverse data sets Applying real-time, next-generation analytics to fraud detection and prevention using the HP Vertica Analytics Platform Developments in data mining In the effort to identify and deter fraud, conventional wisdom still applies: Follow the money. That simple adage notwithstanding, the task of tracking fraud and its perpetrators continues to vex both private and public organizations. Clearly, advancements in information technology have made it possible to capture transaction data at the most granular level. For instance, in the retail trade alone, transmissions of up to 500 megabytes daily between individual point-of-sale sites and their data centers are typical.2 Logically, such detail should result in greater transparency and greater capacity to fight fraud. Yet, the sheer volume of data that organizations now maintain, pulled from so many sources and stored across a range of locations has made the same organizations more vulnerable.3 More points of entry amount to more opportunities for fraud. In its annual Global Fraud Report, The Economist found that 50% of all businesses surveyed acknowledged they were vulnerable to fraud; 35% of North American companies specifically cited IT complexity for increasing their exposure to risk. Accordingly, the application of data mining as a security measure A solution for real-time fraud detection has become increasingly germane to modern fraud detection. Historically, data mining as a means of identifying trends from raw Fraud saps hundreds of billions of dollars each year from the statistics can be traced back to the 1700s with the introduction of bottom line of industries such as banking, insurance, retail, Bayes’ theorem. -
(BI) Using MS Excel Powerpivot
2018 ASCUE Proceedings Developing an Introductory Class in Business Intelligence (BI) Using MS Excel Powerpivot Dr. Sam Hijazi Trevor Curtis Texas Lutheran University 1000 West Court Street Seguin, Texas 78130 [email protected] Abstract Asking questions about your data is a constant application of all business organizations. To facilitate decision making and improve business performance, a business intelligence application must be an in- tegral part of everyday management practices. Microsoft Excel added PowerPivot and PowerPivot offi- cially to facilitate this process with minimum cost, knowing that many business people are already fa- miliar with MS Excel. This paper will design an introductory class to business intelligence (BI) using Excel PowerPivot. If an educator decides to adopt this paper for teaching an introductory BI class, students should have previ- ous familiarity with Excel’s functions and formulas. This paper will focus on four significant phases all students need to complete in a three-credit class. First, students must understand the process of achiev- ing small database normalization and how to bring these tables to Excel or develop them directly within Excel PowerPivot. This paper will walk the reader through these steps to complete the task of creating the normalization, along with the linking and bringing the tables and their relationships to excel. Sec- ond, an introduction to Data Analysis Expression (DAX) will be discussed. Introduction It is not that difficult to realize the increase in the amount of data we have generated in the recent memory of our existence as a human race. To realize that more than 90% of the world’s data has been amassed in the past two years alone (Vidas M.) is to realize the need to manage such volume. -
The Vertica Analytic Database: C-Store 7 Years Later
The Vertica Analytic Database: C-Store 7 Years Later Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan Nga Tran, Ben Vandiver, Lyric Doshi, Chuck Bear Vertica Systems, An HP Company Cambridge, MA {alamb, mfuller, rvaradarajan, ntran, bvandiver, ldoshi, cbear} @vertica.com ABSTRACT that they were designed for transactional workloads on late- This paper describes the system architecture of the Ver- model computer hardware 40 years ago. Vertica is designed tica Analytic Database (Vertica), a commercialization of the for analytic workloads on modern hardware and its success design of the C-Store research prototype. Vertica demon- proves the commercial and technical viability of large scale strates a modern commercial RDBMS system that presents distributed databases which offer fully ACID transactions a classical relational interface while at the same time achiev- yet efficiently process petabytes of structured data. ing the high performance expected from modern “web scale” This main contributions of this paper are: analytic systems by making appropriate architectural choices. 1. An overview of the architecture of the Vertica Analytic Vertica is also an instructive lesson in how academic systems Database, focusing on deviations from C-Store. research can be directly commercialized into a successful product. 2. Implementation and deployment lessons that led to those differences. 1. INTRODUCTION 3. Observations on real-world experiences that can in- The Vertica Analytic Database (Vertica) is a distributed1, form future research directions for large scale analytic massively parallel RDBMS system that commercializes the systems. ideas of the C-Store[21] project. It is one of the few new commercial relational database systems that is widely used We hope that this paper contributes a perspective on com- in business critical systems. -
Database Software Market: Billy Fitzsimmons +1 312 364 5112
Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions -
Vertica Advanced Analytics Platform
Data Sheet Vertica Advanced Analytics Platform Vertica Advanced Analytics Platform The Vertica Advanced Analytics Platform is consciously designed with speed, scalability, simplicity, and openness at its core and architected to handle analytical workloads via a distributed compressed columnar architecture. Vertica Advanced Analytics Platform provides blazingly fast speed (queries run 10–50X faster), exabyte scale (store 10–30X more data per server), openness, and simplicity (use any business intelligence [BI]/ETL tools, Hadoop, etc.)—at a much lower cost than traditional data warehouse solutions and a better time to market than unproven open source solutions. Handling Today’s Massive What Are the Key Technology Quick View Requirements of a Big Data Data Volumes At the core of the Vertica Advanced Analytics In modern data infrastructures, data comes Analytics Platform? Platform is a column-oriented, relational database from everywhere: business systems like CRM So, just what should you look for in a data ana- built specifically to handle today’s analytic workloads. and ERP, IoT sensors, tweets and other social lytics solution to address today and tomorrow’s Unlike commercial and open-source row stores, media data, Web logs and data streams, gas data challenges? Consider the following: which were designed long ago to support small data, the Vertica Advanced Analytics Platform provides and electrical grids, and mobile networks to Analyze huge data volumes in a unified customers with: name a few. With all this data generated from so manner: You are likely looking to analyze many places, companies are turning to dispa- data at unlimited scale combined with the • Complete and advanced SQL-based analytical functions to provide powerful SQL analytics rate, lower-cost storage locations to store and need to store your data in the right place manage these volumes, adding complexity and at the right time. -
Ms Sql Server Alter Table Modify Column
Ms Sql Server Alter Table Modify Column Grinningly unlimited, Wit cross-examine inaptitude and posts aesces. Unfeigning Jule erode good. Is Jody cozy when Gordan unbarricade obsequiously? Table alter column, tables and modifies a modified column to add a column even less space. The entity_type can be Object, given or XML Schema Collection. You can use the ALTER statement to create a primary key. Altering a delay from Null to Not Null in SQL Server Chartio. Opening consent management ebook and. Modifies a table definition by altering, adding, or dropping columns and constraints. RESTRICT returns a warning about existing foreign key references and does not recall the. In ms sql? ALTER to ALTER COLUMN failed because part or more. See a table alter table using page free cloud data tables with simple but block users are modifying an. SQL Server 2016 introduces an interesting T-SQL enhancement to improve. Search in all products. Use kitchen table select add another key with cascade delete for debate than if column. Columns can be altered in place using alter column statement. SQL and the resulting required changes to make via the Mapper. DROP TABLE Employees; This query will remove the whole table Employees from the database. Specifies the retention and policy for lock table. The default is OFF. It can be an integer, character string, monetary, date and time, and so on. The keyword COLUMN is required. The table is moved to the new location. If there an any violation between the constraint and the total action, your action is aborted. Log in ms sql server alter table to allow null in other sql server, table statement that can drop is. -
Query Execution in Column-Oriented Database Systems by Daniel J
Query Execution in Column-Oriented Database Systems by Daniel J. Abadi [email protected] M.Phil. Computer Speech, Text, and Internet Technology, Cambridge University, Cambridge, England (2003) & B.S. Computer Science and Neuroscience, Brandeis University, Waltham, MA, USA (2002) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 c Massachusetts Institute of Technology 2008. All rights reserved. Author......................................................................................... Department of Electrical Engineering and Computer Science February 1st 2008 Certifiedby..................................................................................... Samuel Madden Associate Professor of Computer Science and Electrical Engineering Thesis Supervisor Acceptedby.................................................................................... Terry P. Orlando Chairman, Department Committee on Graduate Students 2 Query Execution in Column-Oriented Database Systems by Daniel J. Abadi [email protected] Submitted to the Department of Electrical Engineering and Computer Science on February 1st 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Engineering Abstract There are two obvious ways to map a two-dimension relational database table onto a one-dimensional storage in- terface: -
Quick-Start Guide
Quick-Start Guide Table of Contents Reference Manual..................................................................................................................................................... 1 GUI Features Overview............................................................................................................................................ 2 Buttons.................................................................................................................................................................. 2 Tables..................................................................................................................................................................... 2 Data Model................................................................................................................................................................. 4 SQL Statements................................................................................................................................................... 5 Changed Data....................................................................................................................................................... 5 Sessions................................................................................................................................................................. 5 Transactions.......................................................................................................................................................... 6 Walktrough -
Column-Stores Vs. Row-Stores: How Different Are They Really?
Column-Stores vs. Row-Stores: How Different Are They Really? Daniel J. Abadi Samuel R. Madden Nabil Hachem Yale University MIT AvantGarde Consulting, LLC New Haven, CT, USA Cambridge, MA, USA Shrewsbury, MA, USA [email protected] [email protected] [email protected] ABSTRACT General Terms There has been a significant amount of excitement and recent work Experimentation, Performance, Measurement on column-oriented database systems (“column-stores”). These database systems have been shown to perform more than an or- Keywords der of magnitude better than traditional row-oriented database sys- tems (“row-stores”) on analytical workloads such as those found in C-Store, column-store, column-oriented DBMS, invisible join, com- data warehouses, decision support, and business intelligence appli- pression, tuple reconstruction, tuple materialization. cations. The elevator pitch behind this performance difference is straightforward: column-stores are more I/O efficient for read-only 1. INTRODUCTION queries since they only have to read from disk (or from memory) Recent years have seen the introduction of a number of column- those attributes accessed by a query. oriented database systems, including MonetDB [9, 10] and C-Store [22]. This simplistic view leads to the assumption that one can ob- The authors of these systems claim that their approach offers order- tain the performance benefits of a column-store using a row-store: of-magnitude gains on certain workloads, particularly on read-intensive either by vertically partitioning the schema, or by indexing every analytical processing workloads, such as those encountered in data column so that columns can be accessed independently. In this pa- warehouses. -
Gartner Magic Quadrant for Data Management Solutions for Analytics
16/09/2019 Gartner Reprint Licensed for Distribution Magic Quadrant for Data Management Solutions for Analytics Published 21 January 2019 - ID G00353775 - 74 min read By Analysts Adam Ronthal, Roxane Edjlali, Rick Greenwald Disruption slows as cloud and nonrelational technology take their place beside traditional approaches, the leaders extend their lead, and distributed data approaches solidify their place as a best practice for DMSA. We help data and analytics leaders evaluate DMSAs in an increasingly split market. Market Definition/Description Gartner defines a data management solution for analytics (DMSA) as a complete software system that supports and manages data in one or many file management systems, most commonly a database or multiple databases. These management systems include specific optimization strategies designed for supporting analytical processing — including, but not limited to, relational processing, nonrelational processing (such as graph processing), and machine learning or programming languages such as Python or R. Data is not necessarily stored in a relational structure, and can use multiple data models — relational, XML, JavaScript Object Notation (JSON), key-value, graph, geospatial and others. Our definition also states that: ■ A DMSA is a system for storing, accessing, processing and delivering data intended for one or more of the four primary use cases Gartner identifies that support analytics (see Note 1). ■ A DMSA is not a specific class or type of technology; it is a use case. ■ A DMSA may consist of many different technologies in combination. However, any offering or combination of offerings must, at its core, exhibit the capability of providing access to the data under management by open-access tools. -
Presto: the Definitive Guide
Presto The Definitive Guide SQL at Any Scale, on Any Storage, in Any Environment Compliments of Matt Fuller, Manfred Moser & Martin Traverso Virtual Book Tour Starburst presents Presto: The Definitive Guide Register Now! Starburst is hosting a virtual book tour series where attendees will: Meet the authors: • Meet the authors from the comfort of your own home Matt Fuller • Meet the Presto creators and participate in an Ask Me Anything (AMA) session with the book Manfred Moser authors + Presto creators • Meet special guest speakers from Martin your favorite podcasts who will Traverso moderate the AMA Register here to save your spot. Praise for Presto: The Definitive Guide This book provides a great introduction to Presto and teaches you everything you need to know to start your successful usage of Presto. —Dain Sundstrom and David Phillips, Creators of the Presto Projects and Founders of the Presto Software Foundation Presto plays a key role in enabling analysis at Pinterest. This book covers the Presto essentials, from use cases through how to run Presto at massive scale. —Ashish Kumar Singh, Tech Lead, Bigdata Query Processing Platform, Pinterest Presto has set the bar in both community-building and technical excellence for lightning- fast analytical processing on stored data in modern cloud architectures. This book is a must-read for companies looking to modernize their analytics stack. —Jay Kreps, Cocreator of Apache Kafka, Cofounder and CEO of Confluent Presto has saved us all—both in academia and industry—countless hours of work, allowing us all to avoid having to write code to manage distributed query processing.