Status of Marine Resources in Bacalar Chico Marine Reserve 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indirect Effects of Overfishing on Caribbean Reefs: Sponges Overgrow Reef-Building Corals
Indirect eVects of overfishing on Caribbean reefs: sponges overgrow reef-building corals Tse-Lynn Loh1,∗, Steven E. McMurray1, Timothy P. Henkel2, Jan Vicente3 and Joseph R. Pawlik1 1 Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA 2 Department of Biology, Valdosta State University, Valdosta, GA, USA 3 Institute of Marine and Environmental Technology, University of Maryland Center for Environ- mental Science, Baltimore, MD, USA ∗ Current aYliation: Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA ABSTRACT Consumer-mediated indirect eVects at the community level are diYcult to demonstrate empirically. Here, we show an explicit indirect eVect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge preda- tors. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. -
Highlights Report with Live Links
CENSUS OF MARINE LIFE MAKING OCEAN LIFE COUNT www.coml.org Census of Marine Life Projects Information System: OBIS Nearshore: NaGISA Coral Reefs: CReefs Regional Ecosystems: GoMA Continental Shelves: POST Continental Margins: COMARGE Abyssal Plains: CeDAMar Mid-Ocean Ridges: MAR-ECO Seamounts: CenSeam Vents and Seeps: ChEss Arctic Ocean: ArcOD Antarctic Ocean: CAML Top Predators: TOPP Zooplankton: CMarZ Microbes: ICoMM Oceans Past: HMAP Oceans Future: FMAP National and Regional Implementation Committees Australia Canada Caribbean China Europe Japan Indian Ocean Indonesia South Korea South America Sub-Saharan Africa United States Like an underwater spaceship, a jellyfish,Aequorea macrodactyla, travels through the warm, clear waters of the Celebes Sea in the Western Pacific Ocean. The jellyfish was but one of thousands of specimens photographed during a three-week Census expedition to explore this highly diverse area. Photo: Larry Madin, Woods Hole Oceanographic Institution. A Truly Global Endeavor The Census of Marine Life is a global network of researchers in more than 80 nations engaged in a ten-year scientific initiative to assess and ex- plain the diversity, distribution, and abundance of marine life in the oceans. The world’s first com- prehensive Census of Marine Life—past, present, and future—will be released in 2010. The Census gratefully acknowledges the financial support of numerous governments and organiza- tions from around the world. Moreover, many of the highlights in this report were only realized through the generous collaborative spirit and un- precedented cooperation of Census researchers and their international colleagues. A complete list of Census sponsors, funding partners, collaborat- ing institutions, and participating individuals is available at www.coml.org. -
Of the US Caribbean to Address Required Provisions of the Magnu
Comprehensive Amendment to the Fishery Management Plans (FMPs) of the U.S. Caribbean to Address Required Provisions of the Magnuson-Stevens Fishery Conservation and Management Act: • Amendment 2 to the FMP for the Spiny Lobster Fishery of Puerto Rico and the U.S. Virgin Islands • Amendment 1 to FMP for the Queen Conch Resources of Puerto Rico and the U.S. Virgin Islands • Amendment 3 to the FMP for the Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands • Amendment 2 to the FMP for the Corals and Reef Associated Invertebrates of Puerto Rico and the U.S. Virgin Islands Including Supplemental Environmental Impact Statement, Regulatory Impact Review, and Regulatory Flexibility Act Analysis 24 May 2005 Caribbean Fishery Management Council 268 Munoz Rivera Avenue, Suite 1108 San Juan, Puerto Rico 00918-2577 (787) 766-5926 (Phone); (787) 766-6239 (Fax) http://www.caribbeanfmc.com National Marine Fisheries Service Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701 (727) 824-5305 (Phone); (727) 824-5308 (Fax) http://sero.nmfs.noaa.gov Table of Contents Tables and Figures in Appendix A ............................................... vi Abbreviations and acronyms ................................................... viii Supplemental Environmental Impact Statement (SEIS) Cover Sheet ..................... ix Comments and Responses to DSEIS. x 1 Summary ..............................................................1 1.1 Description of alternatives ...........................................1 1.2 Environmental consequences -
Defenses of Caribbean Sponges Against Predatory Reef Fish. I
MARINE ECOLOGY PROGRESS SERIES Vol. 127: 183-194.1995 Published November 2 Mar Ecol Prog Ser Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency Joseph R. Pawlikl,*,Brian Chanasl, Robert J. ~oonen',William ~enical~ 'Biological Sciences and Center for Marine Science Research. University of North Carolina at Wilmington, Wilmington, North Carolina 28403-3297, USA 2~niversityof California, San Diego, Scripps Institution of Oceanography, La Jolla. California 92093-0236. USA ABSTRACT: Laboratory feeding assays employing the common Canbbean wrasse Thalassoma bifas- ciatum were undertaken to determine the palatability of food pellets containing natural concentrations of crude organic extracts of 71 species of Caribbean demosponges from reef, mangrove, and grassbed habitats. The majority of sponge species (69%) yielded deterrent extracts, but there was considerable inter- and intraspecific vanability in deterrency. Most of the sponges of the aspiculate orders Verongida and Dictyoceratida yielded highly deterrent extracts, as did all the species in the orders Homoscle- rophorida and Axinellida. Palatable extracts were common among species in the orders Hadromerida, Poecilosclerida and Haplosclerida. Intraspecific variability was evident, suggesting that, for some spe- cies, some individuals (or portions thereof) may be chemically undefended. Reef sponges generally yielded more deterrent extracts than sponges from mangrove or grassbed habitats, but 4 of the 10 most common sponges on reefs yielded palatable extracts -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299. -
Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included. -
Phenotypic Variability in the Caribbean Orange Icing Sponge Mycale Laevis (Demospongiae: Poecilosclerida)
Hydrobiologia DOI 10.1007/s10750-011-0806-1 SPONGE RESEARCH DEVELOPMENTS Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae: Poecilosclerida) Tse-Lynn Loh • Susanna Lo´pez-Legentil • Bongkeun Song • Joseph R. Pawlik Received: 22 February 2011 / Accepted: 18 June 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Sponge species may present several mor- Aegogropila is polyphyletic and the subgenus Mycale photypes, but sponges that are morphologically similar is paraphyletic. All 4 morphotypes formed a mono- can be separate species. We investigated morpholog- phyletic group within Mycale, and no genetic differ- ical variation in Mycale laevis, a common Caribbean ences were observed among them. Spicule lengths did reef sponge. Four morphotypes of M. laevis have been not differ among the 4 morphotypes, but the dominant observed (1) orange, semi-cryptic, (2) orange, massive, megasclere in samples collected from Florida and the (3) white, semi-cryptic, and (4) white, massive. Bahamas was the strongyle, while those from Panama Samples of M. laevis were collected from Key Largo, had subtylostyles. Our data suggest that the 4 morpho- Florida, the Bahamas Islands, and Bocas del Toro, types constitute a single species, but further studies Panama. Fragments of the 18S and 28S rRNA would be necessary to determine whether skeletal ribosomal genes were sequenced and subjected to variability is due to phentotypic or genotypic plasticity. phylogentic analyses together with sequences obtained for 11 other Mycale species and additional sequences Keywords Porifera 18S rRNA 28S rRNA retrieved from GenBank. Phylogenetic analyses con- Ribosomal DNA CaribbeanÁ MorphotypeÁ Á Á Á Á firmed that the genus Mycale is monophyletic within Genotype the Order Poecilosclerida, although the subgenus Introduction Ecological studies conducted in areas of high biodi- versity may sacrifice precision in lower-level taxon Guest editors: M. -
(Arenochalina), Biemna and Clathria
marine drugs Review Chemistry and Biological Activities of the Marine Sponges of the Genera Mycale (Arenochalina), Biemna and Clathria Amr El-Demerdash 1,2,* ID , Mohamed A. Tammam 3,4, Atanas G. Atanasov 5,6 ID , John N. A. Hooper 7 ID , Ali Al-Mourabit 8 and Anake Kijjoa 9,* ID 1 Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, UMR 7245 CNRS/MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France 2 Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 3 Department of Pharmacognosy and Chemistry of Natural products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece; [email protected] 4 Department of Biochemistry, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt 5 Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria; [email protected] 6 Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland 7 Queensland Museum, Biodiversity & Geosciences Program, P.O. Box 3300, South Brisbane BC, Queensland 4101, Australia; [email protected] 8 ICSN—Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France; [email protected] 9 ICBAS—Instituto de Ciências Biomédicas Abel Salazar & CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal * -
AMNH Digital Library
lime • Fish tha 10/04 V / / / X Come Fly $3.95 USA $4.95 CANADA 1 0> WITH Me! 246846 4 M*"-^- ^'.'.'L-^ -m We're not just breaking new ground W I ! I I ^J U I V W III W I \^ W Toyota's eight U.S. manufacturing plants are setting the standards for building quality into every vehicle we produce. Today, eight Toyota models are manufactured in the U.S. and last year alone we built more than a million vehicles here.* Since we first began doing business in America, Toyota has been committed to reinvesting into the local economy. Through manufacturing, sales and marketing, research and design facilities, as well as our purchasing from local suppliers, we're creating jobs and opportunities in communities across America. And with new plants under construction in San Antonio, Texas and Jackson, Tennessee, we'll continue to break new ground every day. "Toyota components and vehicles are made using many U.S. sourced parts. ^§'2004 toyota.com/usa TOYOTA ALAPAGOS CXpGiriGIICG IVIdttGirSa And so does commitment. I first visited Galapagos with my fattier in 1967, when he opened up the possibility of exploring the islands by ship. I still remember that voyage moment by moment. I was struck above all with the wildlife's total lack of fear as my daughter (below) discovered too in her first encounter with marine iguanas. Galapagos is a very special place and I believe that if you, the traveler, have a great experience there, your passion will play a big role in securing the future well-being of these islands. -
Sponges on Coral Reefs: a Community Shaped by Competitive Cooperation
Boll. Mus. Ist. Biol. Univ. Genova, 68: 85-148, 2003 (2004) 85 SPONGES ON CORAL REEFS: A COMMUNITY SHAPED BY COMPETITIVE COOPERATION KLAUS RÜTZLER Department of Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, USA E-mail: [email protected] ABSTRACT Conservationists and resource managers throughout the world continue to overlook the important role of sponges in reef ecology. This neglect persists for three primary reasons: sponges remain an enigmatic group, because they are difficult to identify and to maintain under laboratory conditions; the few scientists working with the group are highly specialized and have not yet produced authoritative, well-illustrated field manuals for large geographic areas; even studies at particular sites have yet to reach comprehensive levels. Sponges are complex benthic sessile invertebrates that are intimately associated with other animals and numerous plants and microbes. They are specialized filter feeders, require solid substrate to flourish, and have varying growth forms (encrusting to branching erect), which allow single specimens to make multiple contacts with their substrate. Coral reefs and associated communities offer an abundance of suitable substrates, ranging from coral rock to mangrove stilt roots. Owing to their high diversity, large biomass, complex physiology and chemistry, and long evolutionary history, sponges (and their endo-symbionts) play a key role in a host of ecological processes: space competition, habitat provision, predation, chemical defense, primary production, nutrient cycling, nitrification, food chains, bioerosion, mineralization, and cementation. Although certain sponges appear to benefit from the rapid deterioration of coral reefs currently under way in numerous locations as a result of habitat destruction, pollution, water warming, and overexploitation, sponge communities too will die off as soon as their substrates disappear under the forces of bioerosion and water dynamics. -
Sponges, Genus Mycale (Poecilosclerida: Demospongiae: Porifera), from a Caribbean Mangrove and Comments on Subgeneric Classification
23 December 1998 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 111(4):737-773. 1998. Sponges, genus Mycale (Poecilosclerida: Demospongiae: Porifera), from a Caribbean mangrove and comments on subgeneric classification Eduardo Hajdu and Klaus Riitzler (EH) Institute of Systematics and Population Biology, University of Amsterdam, P.O. Box 94766 1090-GT, Amsterdam, The Netherlands; Present address: Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, sin 20940-040, Rio de Janeiro, RJ; and Centro de Biologia Matinha, Universidade de Sao Paulo, Sao Sebastiao, Sp' Brazil; (KR) Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. Abstract.-Eight species of Mycale Gray (Mycalidae, Poecilosclerida, De mospongiae) are described from marine mangroves on the barrier reef of Be lize, Central American Caribbean. Two are new: Mycale (Aegogropila?) car migropila and M. (Ae.) citrina. Other species found are M. (Ae.) amdti, M. (Arenochalina) laxissima, M. (Carmia) magnirhaphidijera, M. (C.) microsig matosa, M. (Mycale) laevis and M. (Paresperella) sp. A key to the 17 recog nized Caribbean species of Mycale is provided. Ectosomal skeletal patterns currently used as diagnostic characters for subgenera of Mycale may be inad equate for phylogenetic analysis, but reliable alternative congruent traits have not yet been identified to replace these. More than 150 species of Mycale Gray have strengthened the need for a better as have been described worldwide (Doumenc sessment of the genus' biodiversity, for a & Levi 1987), with representatives in most stable system of classification, and for bet marine habitats. They are common in both ter descriptions to differentiate between al polar and tropical seas, and have been re lopatric sibling species. -
Friend Or Foe? No Evidence That Association with the Sponge Mycale Laevis Provides a Benefit to Corals of the Genus Montastraea
Vol. 465: 111–117, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 28 doi: 10.3354/meps09904 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Friend or foe? No evidence that association with the sponge Mycale laevis provides a benefit to corals of the genus Montastraea Tse-Lynn Loh, Joseph R. Pawlik* Center for Marine Science and Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28409, USA ABSTRACT: Competition for space is intense among sessile benthic organisms on coral reefs. Despite this, the commonly observed interaction between the sponge Mycale laevis and sclerac- tinian corals has been considered a mutualism in which the sponge gains substratum for growth on the undersides of coral colonies, and corals receive protection from boring sponges as well as increased food supply from the exhalant water of surrounding sponge oscules. In previous studies, we demonstrated that M. laevis is chemically undefended from predators and gains a refuge from sponge-eating fishes by growing among the branches and plates of hard corals. In this study, we investigated the putative benefits of the sponge to the coral host in the presence and absence of spongivores. Specifically, we examined whether the sponge reduced infestation of the coral skele- ton by boring sponges, whether corals associated with sponges had higher reproductive output reflecting enhanced food availability and whether the boundary between the 2 species was stable over time. Regardless of the presence of spongivores, association with M. laevis neither affected the frequency of colonization of Montastraea annularis by boring sponges, nor increased repro- ductive output of Montastraea franksi.