Hurricane Allen's Impact on Jamaican Coral Reefs Author(S): J

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Allen's Impact on Jamaican Coral Reefs Author(S): J Hurricane Allen's Impact on Jamaican Coral Reefs Author(s): J. D. Woodley, E. A. Chornesky, P. A. Clifford, J. B. C. Jackson, L. S. Kaufman, N. Knowlton, J. C. Lang, M. P. Pearson, J. W. Porter, M. C. Rooney, K. W. Rylaarsdam, V. J. Tunnicliffe, C. M. Wahle, J. L. Wulff, A. S. G. Curtis, M. D. Dallmeyer, B. P. Jupp, M. A. R. Koehl, J. Neigel and E. M. Sides Reviewed work(s): Source: Science, New Series, Vol. 214, No. 4522 (Nov. 13, 1981), pp. 749-755 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1686954 . Accessed: 20/09/2012 16:01 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org 13 November 1981, Volume 214, Number 4522 -SCIENCE createda naturalexperiment of Goreau's thesis (7) that structuraland taxonomic differences between reefs on Jamaica's north and south coasts were due to dif- ferences in hurricanefrequency. In the Hurricane Allen's Impact oIIn last half-century,while Port Royal on the south coast experienced 11 'hurricanes, Jamaican Coral ReelfS Discovery Bay on the north has seen only four; the last severe hurricanewas in 1917 (12). J. D. E. A. P. A. Woodley, Chornesky, Cliffo^rd ' 'On 6 August 1980, Hurricane Allen, J. B. C. Jackson, L. S. Kaufman, N. Knowlton, J. C. LaLng the strongest storm recorded in the Ca- ribbean,passed close to the north coast M. P. Pearson, J. W. M. C. Rooney, K. W. Rylaarsdz Porter, of Jamaica (Fig. 1), severely damaging V. J. Tunnicliffe, C. M. Wahle, J. L. Wulff, A. S. G. Curtis its reefs (13). Winds reached 285 kilome- ters hour at the center and M. D. Dallmeyer, B. P. Jupp, M. A. R. Koehl, J. Neil el per (14), approximately 110 km/hr in Discovery E. M. Sidles Bay, where waves over 12 meters (15) were seen breaking(Fig. 2) in water 15 m deep on the East Fore Reef (Fig. 1, location E). These waves, and the dis- The relative importance of environ- of unusual value for the following rea- lodged materialthat they carried, devas- mentalprocesses that affect the distribu- sons. First, Jamaican c,oral reefs are tated the shallow reefs in Discovery Bay tion of organismsvaries with the intensi- amongthe best known int the world as a (Figs. 3 and 4). Dense stands of Acro- ty and frequency of the processes (1). result, in particular,of thie studies of T. pora palmata colonies (1 to 3 m high), Exposureto wave energy exerts an influ- F. Goreau, his associatles, and subse- which had dominatedthe reef between 0 and a depth of 5 m, were leveled. The breaker zone and reef flat were trans- Summary.Coral reefs of northJamaica, normallysheltered, were severely dam- formed from constructionalreefs into a aged by HurricaneAllen, the strongest Caribbeanhurricane of this cetntury. Immedi- gently sloping rubble rampart, which ate studies were made at DiscoveryBay, where reef populationswere alreadyknown emergedhere and there as islands where in some detail. Data are presented to show how damage variedwith tt he positionand none had been before. Physical distur- orientationof the substratumand withthe shape, size, and mechanic;al propertiesof bance extended even to a depth of 50 m, exposed organisms. Data collected over succeeding weeks showedi strikingdiffer- where some platelike colonies of Agari- ences in the abilityof organisms to heal and survive. cia spp. were damaged,and the sediment normallycovering their bases was tem- porarily washed away. Everywhere ence on communitycomposition of reef quent researchersat the Discovery Bay damagewas inflictednot only by violent- corals, and thus on coral reef structure MarineLaboratory of thee University of ly movingwater (16) but also-bythe solid (2), both directly and through its influ- the West Indies (11). Second, many of objects that it dislodged: rolling corals ence on biological interactions. Reefs these people were at the laboratorydur- (Fig. 4, A and C), suspended fragments differ in their exposure to both routine ing or soon after the storm, and they (Fig. 4B), and scouring sand (Fig. 4D). wave energy and hurricanes(3, 4), but, collected data comparableto those taken The types and magnitudes of damage because hurricanesoccur irregularlyand previously on routine paltterns and pro- varied with reef location, depth, and comparativelyrarely, it is hardto assess cesses. Third, these facttors, combined topography and differed between taxa their relative importance. While hurri- with the -severity of Huirricane Allen, according to their location, form, and canes can cause violent disturbanceto coral reefs with extreme short- (5) and The authorswere residentor visitinginvestigators present at the DiscoveryBay MarineLaboratory during or soon after the hurricane.Their institutionalaffiliations were at the time as follows: J. D. Woodley, long-term(3, 4, 6-9) effects, very little is DiscoveryBay MarineLaboratory, Discovery Bay, Jamaica;M. C. Rooney and E. M. Sides, Departmentof known of their immediate Zoology, and B. P. Jupp,Department of Botany, Universityof the West Indies, Kingston7, Jamaica;E. A. consequences Chornesky,Division of BiologicalSciences, and J. C. Lang, MarineScience Institute,University of Texas, for previously investigated populations Austin78712; P. A. Clifford,Hampshire College, Amherst,Massachusetts 01002; J. B. C. Jackson, K. W. Rylaarsdam,and C. M. Wahle, Departmentof Earth and PlanetarySciences, Johns Hopkins University, (10). In this article, we present data on Baltimore,Maryland 21218; L. S. Kaufman,Biology Department,University of Massachusetts,Boston the types and magnitudes of damage 02125;N. Knowltonand J. L. Wulff, Departmentof Biology, Yale University, New Haven, Connecticut 06520;M. P. Pearson,Department of Zoology, and A. S..G. Curtis,Department of Cell'Biology,University done by Hurricane Allen to the well- of Glasgow,Glasgow G12 8QQ, Scotland;J. W. Porter,M. D. Dallmeyer,and J. E. Neigel, Departmentof studied coral reefs of north Jamaica. Zoology,University of Georgia,Athens 30602; V.-J. Tunnicliffe,Institute of OceanSciences, Sidney, British Columbia,V8L 4B2, Canada;M. A. R. Koehl, Departmentof Zoology, Universityof California,Berkeley We believe that these observationsare 94720. SCIENCE,VOL. 214, 13 NOVEMBER1981 0036-8075/81/1113-0749$01.00/0Copyright ? 1981AAAS 749 construction. We consider first the ef- cane track (Fig. 1), suffered most heavily and injury of arborescent gorgonians (18) fects of spatial factors and then describe (17). West of this region, at Discovery were greater among exposed, shallow the immediate impact on common organ- Bay (Fig. 1), damage was more severe on colonies at Gorgo City (Fig. 1, location isms and their subsequent responses the exposed East Fore Reef than on the B) than among those in the protected over the following 7 months. West Fore Reef (Fig. 1, location C), West Back Reef (Fig. 1, location G), where breaking waves were only half as where no significant increase in injury high (15), and damage was much less was seen (Table 1, rows 1 and 2; X2 Spatial Patterns of Damage severe in back reef areas sheltered by the values for the increase in death and reef crest. For example, wholesale tum- injury at Gorgo City are 149 and 33). Damage was patchy on several scales, bling and shattering of head corals oc- At any single locality, dissipation of varying regionally around Jamaica, lo- curred locally at depths of 14 m on the wave impact depended on aspects of the cally between reefs and reef zones, and East Fore Reef (Fig. 4A); similar devas- local reef profile, including depth, slope, within zones. Not all patchiness can be tation did not occur below a depth of 7 m and shelf width. Shallow fore-reef areas easily explained, but a number of pat- on the West Fore Reef or at any depth were generally more severely damaged terns emerge. The northeast coast of within Discovery Bay. Similarly, in- than deep ones. We see this most direct- Jamaica, which was closest to the hurri- creases over routine frequencies of death ly by comparing the same species on the same reefs at different depths. For exam- ple, head corals were more frequently toppled in sand channels in 10 m of water than in 14 m (Table 1, compare rows 5 and 6; x2 for numbers toppled and not toppled after Hurricane Allen = 4.75, P < .05). Similarly, densities of the ur- chin Diadema antillarum were reduced more in shallow areas (Table 1, rows 13 to 17). Similar decrease in damage with increasing depth is evident for all corals combined (Table 1, compare rows 8 and 9). Sloping or level reef surfaces were more severely affected than vertical ones. At West Rio Bueno (Fig. 1, loca- tion A), where the reef is vertical below a depth of 8 m, little mortality was seen in marked quadrats of largely foliaceous corals at depths of 10, 15, and 20 m (Table 1, rows 10 to 12), in contrast to the toppling of the more massive head corals observed at comparable depths on the sloping West Fore Reef (Table 1, rows 5 to 7). A broad terrace dissipated more wave energy than a narrow one. In the southwest corner of the broad East Fore Reef (Fig. 1, location F) more A. palmata colonies remained erect at a depth of 3 m than on the narrow West Fore Reef where they were leveled.
Recommended publications
  • The Reef Corridor of the Southwest Gulf of Mexico: Challenges for Its Management and Conservation
    Ocean & Coastal Management 86 (2013) 22e32 Contents lists available at ScienceDirect Ocean & Coastal Management journal homepage: www.elsevier.com/locate/ocecoaman The Reef Corridor of the Southwest Gulf of Mexico: Challenges for its management and conservation Leonardo Ortiz-Lozano a,*, Horacio Pérez-España b,c, Alejandro Granados-Barba a, Carlos González-Gándara d, Ana Gutiérrez-Velázquez e, Javier Martos d a Análisis y Síntesis de Zonas Costeras, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Av. Hidalgo #617, Col. Río Jamapa 94290, Boca del Río, Veracruz, Mexico b Arrecifes Coralinos, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Av. Hidalgo #617, Col. Río Jamapa 94290, Boca del Río, Veracruz, Mexico c Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen, Av. Laguna de Términos s/n, Col. Renovación 2da sección, CP 24155, Ciudad del Carmen, Campeche, Mexico d Laboratorio de Arrecifes Coralinos, Facultad de Ciencias Biológicas y Agropecuarias, Zona Poza Rica Tuxpan, Universidad Veracruzana, Carr. Tuxpan.- Tampico km 7.5, Col. Universitaria, CP 92860, Tuxpan, Veracruz, Mexico e Posgrado. Instituto de Ecología, A.C., Departamento de Ecología y Comportamiento Animal, Apartado Postal 63, Xalapa 91000, Veracruz, Mexico article info abstract Article history: Flow of species and spatial continuity of biological processes between geographically separated areas Available online may be achieved using management tools known as Ecological Corridors (EC). In this paper we propose an EC composed of three highly threatened coral reef systems in the Southwest Gulf of Mexico: Sistema Arrecifal Lobos Tuxpan, Sistema Arrecifal Veracruzano and Arrecifes de los Tuxtlas. The proposed EC is supported by the concept of Marine Protected Areas Networks, which highlights the biogeographical and habitat heterogeneity representations as the main criteria to the establishment of this kind of networks.
    [Show full text]
  • Regional Studies in Marine Science Reef Condition and Protection Of
    Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented.
    [Show full text]
  • Indirect Effects of Overfishing on Caribbean Reefs: Sponges Overgrow Reef-Building Corals
    Indirect eVects of overfishing on Caribbean reefs: sponges overgrow reef-building corals Tse-Lynn Loh1,∗, Steven E. McMurray1, Timothy P. Henkel2, Jan Vicente3 and Joseph R. Pawlik1 1 Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA 2 Department of Biology, Valdosta State University, Valdosta, GA, USA 3 Institute of Marine and Environmental Technology, University of Maryland Center for Environ- mental Science, Baltimore, MD, USA ∗ Current aYliation: Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA ABSTRACT Consumer-mediated indirect eVects at the community level are diYcult to demonstrate empirically. Here, we show an explicit indirect eVect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge preda- tors. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • The Reproduction of the Red Sea Coral Stylophora Pistillata
    MARINE ECOLOGY PROGRESS SERIES Vol. 1, 133-144, 1979 - Published September 30 Mar. Ecol. Prog. Ser. The Reproduction of the Red Sea Coral Stylophora pistillata. I. Gonads and Planulae B. Rinkevich and Y.Loya Department of Zoology. The George S. Wise Center for Life Sciences, Tel Aviv University. Tel Aviv. Israel ABSTRACT: The reproduction of Stylophora pistillata, one of the most abundant coral species in the Gulf of Eilat, Red Sea, was studied over more than two years. Gonads were regularly examined using histological sections and the planula-larvae were collected in situ with plankton nets. S. pistillata is an hermaphroditic species. Ovaries and testes are situated in the same polyp, scattered between and beneath the septa and attached to them by stalks. Egg development starts in July preceding the spermaria, which start to develop only in October. A description is given on the male and female gonads, their structure and developmental processes. During oogenesis most of the oocytes are absorbed and usually only one oocyte remains in each gonad. S. pistillata broods its eggs to the planula stage. Planulae are shed after sunset and during the night. After spawning, the planula swims actively and changes its shape frequently. A mature planula larva of S. pistillata has 6 pairs of complete mesenteries (Halcampoides stage). However, a wide variability in developmental stages exists in newly shed planulae. The oral pole of the planula shows green fluorescence. Unique organs ('filaments' and 'nodules') are found on the surface of the planula;
    [Show full text]
  • The Effect of Gravity on Coral Morphology
    Received 30 July 2001 Accepted 23 November 2001 Published online 18 March 2002 The effect of gravity on coral morphology Efrat Meroz, Itzchak Brickner, Yossi Loya, Adi Peretzman-Shemer and Micha Ilan* Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel Coral morphological variability re¯ ects either genetic differences or environmentally induced phenotypic plasticity. We present two coral species that sense gravity and accordingly alter their morphology, as characterized by their slenderness (height to diameter) ratio (SR). We experimentally altered the direction (and intensity) of the gravitational resultant force acting along or perpendicular to the main body axis of coral polyps. We also manipulated light direction, in order to uncouple gravity and light effects on coral development. In the experiments, vertically growing polyps had signi® cantly higher SR than their horizon- tal siblings even when grown in a centrifuge (experiencing different resultant gravitational forces in proxi- mal and distal positions). Lowest SR was in horizontal side-illuminated polyps, and highest in vertical top-illuminated polyps. Adult colonies in situ showed the same pattern. Gravitational intensity also affected polyp growth form. However, polyp volume, dry skeleton weight and density in the various centrifuge positions, and in aquaria experiments, did not differ signi® cantly. This re¯ ects the coral’s ability to sense altered gravity direction and intensity, and to react by changing the development pattern of their body morphology, but not the amount of skeleton deposited. Keywords: developmental plasticity; light; pattern formation; phenotypic plasticity; slenderness ratio; Stylophora pistillata 1. INTRODUCTION arrangement, causing general shape change by a new pat- tern formation (Tabony & Job 1992; Moore et al.
    [Show full text]
  • Population Recovery and Differential Heat Shock Protein Expression for the Corals Agaricia Agaricites and A. Tenuifolia in Belize
    MARINE ECOLOGY PROGRESS SERIES Vol. 283: 151–160, 2004 Published November 30 Mar Ecol Prog Ser Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize Martha L. Robbart1, 3, Paulette Peckol1,*, Stylianos P. Scordilis1, H. Allen Curran2, Jocelyn Brown-Saracino1 1Department of Biological Sciences, and 2Department of Geology, Smith College, Northampton, Massachusetts 01063, USA 3PBS&J Environmental Services, 2001 Northwest 107th Avenue, Miami, Florida 33172, USA ABSTRACT: Over recent decades, coral reefs worldwide have experienced severe sea-surface temperature (SST) anomalies. Associated with an El Niño-Southern Oscillation (ENSO) event of 1997–1998, nearly 100% mortality of the space-dominant coral Agaricia tenuifolia was reported at several shelf lagoonal sites of the Belize barrier reef system; a less abundant congener, A. agaricites, had lower mortality rates. We assessed A. agaricites and A. tenuifolia populations at coral reef ridges in the south-central sector of the Belize shelf lagoon and forereef sites to document recovery follow- ing the 1998 ENSO event and subsequent passage of Hurricane Mitch. To investigate the difference in heat stress tolerance between the 2 species, heat shock protein (HSP) expression was examined in the laboratory under ambient (28°C) and elevated (+6°C) temperatures. Populations of A. agaricites and A. tenuifolia surveyed at forereef sites in 1999 showed after effects from the 2 disturbances (par- tial colony mortality was ~23 and 30% for A. agaricites and A. tenuifolia,respectively), but partial mortality declined by 2001. At reef ridge sites, A. tenuifolia exhibited 75 to 95% partial colony mor- tality in 1999 compared to 18% in the less abundant A.
    [Show full text]
  • Of the US Caribbean to Address Required Provisions of the Magnu
    Comprehensive Amendment to the Fishery Management Plans (FMPs) of the U.S. Caribbean to Address Required Provisions of the Magnuson-Stevens Fishery Conservation and Management Act: • Amendment 2 to the FMP for the Spiny Lobster Fishery of Puerto Rico and the U.S. Virgin Islands • Amendment 1 to FMP for the Queen Conch Resources of Puerto Rico and the U.S. Virgin Islands • Amendment 3 to the FMP for the Reef Fish Fishery of Puerto Rico and the U.S. Virgin Islands • Amendment 2 to the FMP for the Corals and Reef Associated Invertebrates of Puerto Rico and the U.S. Virgin Islands Including Supplemental Environmental Impact Statement, Regulatory Impact Review, and Regulatory Flexibility Act Analysis 24 May 2005 Caribbean Fishery Management Council 268 Munoz Rivera Avenue, Suite 1108 San Juan, Puerto Rico 00918-2577 (787) 766-5926 (Phone); (787) 766-6239 (Fax) http://www.caribbeanfmc.com National Marine Fisheries Service Southeast Regional Office 263 13th Avenue South St. Petersburg, Florida 33701 (727) 824-5305 (Phone); (727) 824-5308 (Fax) http://sero.nmfs.noaa.gov Table of Contents Tables and Figures in Appendix A ............................................... vi Abbreviations and acronyms ................................................... viii Supplemental Environmental Impact Statement (SEIS) Cover Sheet ..................... ix Comments and Responses to DSEIS. x 1 Summary ..............................................................1 1.1 Description of alternatives ...........................................1 1.2 Environmental consequences
    [Show full text]
  • Defenses of Caribbean Sponges Against Predatory Reef Fish. I
    MARINE ECOLOGY PROGRESS SERIES Vol. 127: 183-194.1995 Published November 2 Mar Ecol Prog Ser Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency Joseph R. Pawlikl,*,Brian Chanasl, Robert J. ~oonen',William ~enical~ 'Biological Sciences and Center for Marine Science Research. University of North Carolina at Wilmington, Wilmington, North Carolina 28403-3297, USA 2~niversityof California, San Diego, Scripps Institution of Oceanography, La Jolla. California 92093-0236. USA ABSTRACT: Laboratory feeding assays employing the common Canbbean wrasse Thalassoma bifas- ciatum were undertaken to determine the palatability of food pellets containing natural concentrations of crude organic extracts of 71 species of Caribbean demosponges from reef, mangrove, and grassbed habitats. The majority of sponge species (69%) yielded deterrent extracts, but there was considerable inter- and intraspecific vanability in deterrency. Most of the sponges of the aspiculate orders Verongida and Dictyoceratida yielded highly deterrent extracts, as did all the species in the orders Homoscle- rophorida and Axinellida. Palatable extracts were common among species in the orders Hadromerida, Poecilosclerida and Haplosclerida. Intraspecific variability was evident, suggesting that, for some spe- cies, some individuals (or portions thereof) may be chemically undefended. Reef sponges generally yielded more deterrent extracts than sponges from mangrove or grassbed habitats, but 4 of the 10 most common sponges on reefs yielded palatable extracts
    [Show full text]
  • Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
    Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included.
    [Show full text]
  • Phenotypic Variability in the Caribbean Orange Icing Sponge Mycale Laevis (Demospongiae: Poecilosclerida)
    Hydrobiologia DOI 10.1007/s10750-011-0806-1 SPONGE RESEARCH DEVELOPMENTS Phenotypic variability in the Caribbean Orange Icing sponge Mycale laevis (Demospongiae: Poecilosclerida) Tse-Lynn Loh • Susanna Lo´pez-Legentil • Bongkeun Song • Joseph R. Pawlik Received: 22 February 2011 / Accepted: 18 June 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Sponge species may present several mor- Aegogropila is polyphyletic and the subgenus Mycale photypes, but sponges that are morphologically similar is paraphyletic. All 4 morphotypes formed a mono- can be separate species. We investigated morpholog- phyletic group within Mycale, and no genetic differ- ical variation in Mycale laevis, a common Caribbean ences were observed among them. Spicule lengths did reef sponge. Four morphotypes of M. laevis have been not differ among the 4 morphotypes, but the dominant observed (1) orange, semi-cryptic, (2) orange, massive, megasclere in samples collected from Florida and the (3) white, semi-cryptic, and (4) white, massive. Bahamas was the strongyle, while those from Panama Samples of M. laevis were collected from Key Largo, had subtylostyles. Our data suggest that the 4 morpho- Florida, the Bahamas Islands, and Bocas del Toro, types constitute a single species, but further studies Panama. Fragments of the 18S and 28S rRNA would be necessary to determine whether skeletal ribosomal genes were sequenced and subjected to variability is due to phentotypic or genotypic plasticity. phylogentic analyses together with sequences obtained for 11 other Mycale species and additional sequences Keywords Porifera 18S rRNA 28S rRNA retrieved from GenBank. Phylogenetic analyses con- Ribosomal DNA CaribbeanÁ MorphotypeÁ Á Á Á Á firmed that the genus Mycale is monophyletic within Genotype the Order Poecilosclerida, although the subgenus Introduction Ecological studies conducted in areas of high biodi- versity may sacrifice precision in lower-level taxon Guest editors: M.
    [Show full text]
  • (Arenochalina), Biemna and Clathria
    marine drugs Review Chemistry and Biological Activities of the Marine Sponges of the Genera Mycale (Arenochalina), Biemna and Clathria Amr El-Demerdash 1,2,* ID , Mohamed A. Tammam 3,4, Atanas G. Atanasov 5,6 ID , John N. A. Hooper 7 ID , Ali Al-Mourabit 8 and Anake Kijjoa 9,* ID 1 Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, UMR 7245 CNRS/MNHN, CP 54, 57 Rue Cuvier, 75005 Paris, France 2 Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt 3 Department of Pharmacognosy and Chemistry of Natural products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece; [email protected] 4 Department of Biochemistry, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt 5 Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria; [email protected] 6 Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland 7 Queensland Museum, Biodiversity & Geosciences Program, P.O. Box 3300, South Brisbane BC, Queensland 4101, Australia; [email protected] 8 ICSN—Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France; [email protected] 9 ICBAS—Instituto de Ciências Biomédicas Abel Salazar & CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal *
    [Show full text]