Tectonic Subsidence of the Cretaceous Western Interior Basin, United States

Total Page:16

File Type:pdf, Size:1020Kb

Tectonic Subsidence of the Cretaceous Western Interior Basin, United States Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1995 Tectonic Subsidence of the Cretaceous Western Interior Basin, United States. Ming Pang Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pang, Ming, "Tectonic Subsidence of the Cretaceous Western Interior Basin, United States." (1995). LSU Historical Dissertations and Theses. 5926. https://digitalcommons.lsu.edu/gradschool_disstheses/5926 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell information Company 300 North Zeeb Road Ann Arbor. Ml 48106-1346 USA 313/761-4700 800:521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TECTONIC SUBSIDENCE OF THE CRETACEOUS WESTERN INTERIOR BASIN, UNITED STATES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Ming Pang B.S., Chengdu College of Geology, 1982 M.S., China University of Geosciences, 1985 May 1995 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9530493 UMI Microform 9530493 Copyright 1995/ by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17/ United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I would like to express my sincere thanks to members of my dissertation committee, Dr. Roy Dokka, Dr. Joseph Hazel, Dr. Richard Kesel, Dr. Juan Lorenzo, Dr. C. M. Molenaar, Dr. Jeffrey Nunn, and Dr. Andrew Schedl, and especially my advisor, Dr. Dag Nummedal for their interest, encouragement, and constructive criticism. Dr. Dag Nummedal's guidance was most instrumental to the completion of this dissertation. Many of the ideas presented in this dissertation came about as the result of discussions and arguments with him. Because of his careful reviewing and editing, the structure and clarity of the manuscript has been greatly improved. Discussions with Dr. Andrew Schedl on many aspects of foreland basins were very helpful in early stages of this dissertation. Dr. Joseph Hazel taught me the essence of biostratigraphy and generously provided me his own research results. Dr. Jeffrey Nunn's knowledge of sedimentary basin mechanisms led to many significant improvements in the approach taken in this study. Discussions with Dr. Roy Dokka on many occasions were very constructive to the analysis of the subsidence data. His insights on the tectonics of foreland basins resulted in improvements in this dissertation. "K" Molenaar helped me in many ways throughout my work. Much of the subsurface data used in this dissertation was obtained with his help and guidance at the USGS at Denver. More important, his expertise and knowledge of the Cretaceous stratigraphy proved most valuable to the compilation of the stratigraphic data base of my work. Discussions with fellow students at LSU have also been constructive to this dissertation. In particular, I recognize with appreciation Drs. Greg Riley, Mark Pasley, Mr. Xiaogong Xie, and Mr. Mingji Chu for their interest and support of my work. I would like to thank all those extremely helpful people at the Office of the Department of Geology and Geophysics, especially Liz Keller and Thea Burchell. I wish to thank Drs. R. Johnson, K. Franczyk, T. Fouch, and T. Dyman of the USGS at Denver, each of whom contributed to my dissertation by making available their ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. own research results on the Cretaceous stratigraphy of the Western Interior basin. The American Association of Petroleum Geologists is thanked for a grant-in-aid. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS Acknowledgments .................................................................................................................ii List of tables ......................................................................................................................... vi List of figures .......................................................................................................................vii A bstract................................................................................................................................ xi Chapter 1. Introduction ........................................................................................................................1 A statement of work .................................................................................................... 1 The Cretaceous Western Interior basin, a tectonic overview ............................... 4 Objectives.................................................................................................................. 7 Dissertation structure ...................................................................................................8 2. The tectonic framework of the Cretaceous Western Interior basin, U.S.A 10 Introduction .............................................................................................................. 10 Precambrian basins and provinces ............................................................................11 Archean Provinces ............................................................................................11 Proterozoic basins ......................................................................................... 14 Late Proterozoic rifting ....................................................................................15 Basement faults .................................................................................................19 Paleozoic orogenies ................................................................................................... 21 The early Paleozoic passive margin ............................................................... 21 The Antler orogeny .........................................................................................21 The ancestral rocky Mountain deformation ................................................... 23 Transformation into an active margin ............................................................ 25 The Sevier orogeny ....................................................................................................25 Style of deformation .................................................................................... 25 Times of movement ......................................................................................... 27 Magnitude of thrust loads ............................................................................ 37 Basement controls on the Sevier thrusting ........................................................... 38 The overlap province and buttressing .............................................................38 Inferred buttresses and their consequences ....................................................40 3. Stratigraphy of the Upper Cretaceous rocks, the U.S. Western Interior basin ...........44 Introduction ................................................................................................................ 44 Depositional setting ...................................................................................................46 The molluscan biostratigraphic time scale .............................................................
Recommended publications
  • Group Living Frequently Asked Questions
    Group Living Project – Common Questions General questions about the project: Page 1 Household Regulations: Page 3 Residential Care: Page 6 Advisory Committee: Page 9 Next Steps: Page 10 What is this project about and how long has it been going on? For the last two and a half years, Denver city planners have been working with residents, policy experts, advocates and service providers for vulnerable populations and other community members to update the Denver Zoning Code’s regulations on residential uses. These regulations govern everything from conventional households to group homes, shelters and assisted living facilities. Why do residential use rules need to be updated? Current rules create obstacles for residents who need flexible housing options and for providers who offer much-needed services to vulnerable populations. Current rules also perpetuate inequity by making it harder for certain communities to live in residential neighborhoods and near jobs, transit or other services they need. The project and the proposed changes aim to increase flexibility and housing options for residents, to streamline permitting processes for providers while fostering good relationships with neighbors, and to make it easier for those experiencing homelessness, trying to get sober or who have other special needs to live and access services with dignity. Why can’t we move more slowly with these changes? This project has been in progress for more than two years. The issues addressed have become even more urgent in the wake of the ongoing pandemic, job losses that are leading to a wave of evictions, the forthcoming loss of Denver’s existing community corrections resources, and our country’s long-overdue awakening to issues of equity.
    [Show full text]
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition.
    [Show full text]
  • Bulletin of the Geological Society of America Vol. 71, Pp
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 71, PP. 363-398. 34 FIGS. APRIL 1960 DIASTROPHISM AND MOUNTAIN BUILDING BY MAELAND P. BILLINGS (Address as Retiring President of The Geological Society of America) ABSTRACT For many years the terms orogeny and mountain building have been used so loosely that they no longer convey definite meanings. Because of this lack of precision, hypothe- ses of diastrophism are often based on false premises. Folding and thrusting, often referred to as tectogenesis or orogeny, is best displayed by stratified rocks. Some geologists believe that folds and thrusts are due to vertical movements accompanied by lateral spreading, that the strata are stretched an amount commensurate with the intensity of the folding, and that the opposite sides of the sedi- mentary packet do not move toward each other. Most geologists, however, agree that during folding and thrusting the strata are shortened and that the two opposite sides of the sedimentary packet move toward each other by an amount commensurate with the intensity of the folding. But it is not clear to what extent the entire crust in the deformed belt is shortened. In one extreme view, the two opposite ends of the deformed belt do not move toward each other, and the folds and thrusts result from gravity sliding. At the other extreme, the entire crust is believed to be shortened to the same extent as the sedi- mentary strata. An excellent example of broad vertical movements (epeirogenesis) that has never been sufficiently emphasized is in eastern North America, involving the Appalachians, Coastal Plain, and Continental Shelf.
    [Show full text]
  • Polyphase Laramide Tectonism and Sedimentation in the San Juan Basin, New Mexico Steven M
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 Polyphase Laramide tectonism and sedimentation in the San Juan Basin, New Mexico Steven M. Cather, 2003, pp. 119-132 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Evaluation of the Depositional Environment of the Eagle Ford
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU.
    [Show full text]
  • THE JOURNAL of GEOLOGY March 1990
    VOLUME 98 NUMBER 2 THE JOURNAL OF GEOLOGY March 1990 QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH APPLICATIONS TO EARLY MESOZOIC RIFTS OF EASTERN NORTH AMERICA' ROY W. SCHLISCHE AND PAUL E. OLSEN Department of Geological Sciences and Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT In many half-graben, strata progressively onlap the hanging wall block of the basins, indicating that both the basins and their depositional surface areas were growing in size through time. Based on these con- straints, we have constructed a quantitative model for the stratigraphic evolution of extensional basins with the simplifying assumptions of constant volume input of sediments and water per unit time, as well as a uniform subsidence rate and a fixed outlet level. The model predicts (1) a transition from fluvial to lacustrine deposition, (2) systematically decreasing accumulation rates in lacustrine strata, and (3) a rapid increase in lake depth after the onset of lacustrine deposition, followed by a systematic decrease. When parameterized for the early Mesozoic basins of eastern North America, the model's predictions match trends observed in late Triassic-age rocks. Significant deviations from the model's predictions occur in Early Jurassic-age strata, in which markedly higher accumulation rates and greater lake depths point to an increased extension rate that led to increased asymmetry in these half-graben. The model makes it possible to extract from the sedimentary record those events in the history of an extensional basin that are due solely to the filling of a basin growing in size through time and those that are due to changes in tectonics, climate, or sediment and water budgets.
    [Show full text]
  • Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier
    Chapter 15 Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier Formation and Adjacent Units, Southwestern Wyoming Province, Volume Title Page Wyoming, Colorado, and Utah By Mark A. Kirschbaum and Laura N.R. Roberts Chapter 15 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ………………………………………………………………………………………
    [Show full text]
  • KENNETH CARPENTER, Ph.D. Director and Curator Of
    KENNETH CARPENTER, Ph.D. Director and Curator of Paleontology Prehistoric Museum Utah State University - College of Eastern Utah 155 East Main Street Price, Utah 84501 Education May, 1996. Ph.D., Geology University of Colorado, Boulder, CO. Dissertation “Sharon Springs Member, Pierre Shale (Lower Campanian) depositional environment and origin of it' s Vertebrate fauna, with a review of North American plesiosaurs” 251 p. May, 1980. B.S. in Geology, University of Colorado, Boulder, CO. Aug-Dec. 1977 Apprenticeship, Smithsonian Inst., Washington DC Professional Museum Experience 1975 – 1980: University of Colorado Museum, Boulder, CO. 1983 – 1984: Mississippi Museum of Natural History, Jackson, MS. 1984 – 1986: Academy of Natural Sciences of Philadelphia, Philadelphia. 1986: Carnegie Museum of Natural History, Pittsburgh, PA. 1986: Oklahoma Museum of Natural History, Norman, OK. 1987 – 1989: Museum of the Rockies, Bozeman, MT. 1989 – 1996: Chief Preparator, Denver Museum of Nature and Science, Denver, CO. 1996 – 2010: Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2006 – 2007; 2008-2009: Acting Department Head, Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2010 – present: Director, Prehistoric Museum, Price, UT 2010 – present: Associate Vice Chancellor, Utah State University Professional Services: 1991 – 1998: Science Advisor, Garden Park Paleontological Society 1994: Senior Organizer, Symposium "The Upper Jurassic Morrison Formation: An Interdisciplinary Study" 1996: Scientific Consultant Walking With Dinosaurs , BBC, England 2000: Scientific Consultant Ballad of Big Al , BBC, England 2000 – 2003: Associate Editor, Journal of Vertebrate Paleontology 2001 – 2003: Associate Editor, Earth Sciences History journal 2003 – present: Scientific Advisor, HAN Project 21 Dinosaur Expos, Tokyo, Japan.
    [Show full text]
  • Late Cretaceous and Tertiary Burial History, Central Texas 143
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org L C T B H, C T Peter R. Rose 718 Yaupon Valley Rd., Austin, Texas 78746, U.S.A. ABSTRACT In Central Texas, the Balcones Fault Zone separates the Gulf Coastal Plain from the elevated Central Texas Platform, comprising the Hill Country, Llano Uplift, and Edwards Plateau provinces to the west and north. The youngest geologic for- mations common to both regions are of Albian and Cenomanian age, the thick, widespread Edwards Limestone, and the thin overlying Georgetown, Del Rio, Buda, and Eagle Ford–Boquillas formations. Younger Cretaceous and Tertiary formations that overlie the Edwards and associated formations on and beneath the Gulf Coastal Plain have no known counterparts to the west and north of the Balcones Fault Zone, owing mostly to subaerial erosion following Oligocene and Miocene uplift during Balcones faulting, and secondarily to updip stratigraphic thinning and pinchouts during the Late Cretaceous and Tertiary. This study attempts to reconstruct the burial history of the Central Texas Platform (once entirely covered by carbonates of the thick Edwards Group and thin Buda Limestone), based mostly on indirect geological evidence: (1) Regional geologic maps showing structure, isopachs and lithofacies; (2) Regional stratigraphic analysis of the Edwards Limestone and associated formations demonstrating that the Central Texas Platform was a topographic high surrounded by gentle clinoform slopes into peripheral depositional areas; (3) Analysis and projection
    [Show full text]
  • Ludvigson Et Al-Current Research.Indd
    New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation, Ludvigson et al. i New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation in Kansas–Nebraska–Iowa from a Decade of Sponsored Research Activity Greg A. Ludvigson, Kansas Geological Survey, The University of Kansas, Lawrence, KS Brian J. Witzke, Iowa Geological Survey, Iowa Department of Natural Resources, Iowa City, IA R. M. Joeckel, Nebraska Conservation and Survey Division, School of Natural Resources, The University of Nebraska-Lincoln, Lincoln, NE Robert L. Ravn, The IRF Group, Anchorage, AK Preston Lee Phillips, Department of Geology and Geography, University of North Carolina at Pembroke, Pembroke, NC Luis A. González, Department of Geology, The University of Kansas, Lawrence, KS Robert L. Brenner, Department of Geoscience, The University of Iowa, Iowa City, IA Abstract The Cretaceous Dakota Formation in the areas of Kansas, Nebraska, and Iowa contains a rich and well-preserved microfl ora of fossil palynomorphs. A comprehensive listing of these taxa is presented in this publication as part of a continuing effort to develop a refi ned biostratigraphic scheme for mid-Cretaceous terrestrial deposits in North America. The Dakota Formation in this region contains four distinctive Albian–Cenomanian palynostratigraphic zones that are used to partition the unit into successive depositional cycles, and each zone records deposition in fl uvial-estuarine environments. The late Albian Kiowa–Skull Creek depositional cycle at the base of the Dakota Formation is recognized throughout the study area, and is also recognized in other parts of the Cretaceous North American Western Interior basin. The overlying newly recognized latest Albian “Muddy–Mowry Cycle” is formally defi ned for the fi rst time in this paper and correlates with depositional cycles recognized by other workers in other parts of the Western Interior basin.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]