Chi-Square Test Is Statistically Significant: Now What?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 8 Example
Chapter 8 Example Frequency Table Time spent travelling to school – to the nearest 5 minutes (Sample of Y7s) Time Frequency Per cent Valid per cent Cumulative per cent 5.00 4 7.4 7.4 7.4 10.00 10 18.5 18.5 25.9 15.00 20 37.0 37.0 63.0 Valid 20.00 15 27.8 27.8 90.7 25.00 3 5.6 5.6 96.3 35.00 2 3.7 3.7 100.0 Total 54 100.0 100.0 Using Pie Charts Pie chart showing relationship of something to a whole Children's Food Preferences Other 28% Chips 72% Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Pie chart showing relationship of something to other categories Children's Food Preferences Fruit Ice Cream 2% 2% Biscuits 3% Pasta 11% Pizza 10% Chips 72% Using Bar Charts and Histograms Bar chart Mode of Travel to School (Y7s) 14 12 10 8 6 mode of travel 4 2 0 walk car bus cycle other Ö © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. (2011) Successful Dissertations. London: Continuum. Histogram Number of students 50 40 30 20 10 0 0204060 80 100 Score on final exam (maximum possible = 100) Median and Mean The median and mean of these two sets of numbers is clearly 50, but the spread can be seen to differ markedly 48 49 50 51 52 30 40 50 60 70 © Mark O’Hara, Caron Carter, Pam Dewis, Janet Kay and Jonathan Wainwright 2011 O’Hara, M., Carter, C., Dewis, P., Kay, J., and Wainwright, J. -
Learn About ANCOVA in SPSS with Data from the Eurobarometer (63.1, Jan–Feb 2005)
Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) © 2015 SAGE Publications, Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd. All Rights Reserved. 1 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) Student Guide Introduction This dataset example introduces ANCOVA (Analysis of Covariance). This method allows researchers to compare the means of a single variable for more than two subsets of the data to evaluate whether the means for each subset are statistically significantly different from each other or not, while adjusting for one or more covariates. This technique builds on one-way ANOVA but allows the researcher to make statistical adjustments using additional covariates in order to obtain more efficient and/or unbiased estimates of groups’ differences. This example describes ANCOVA, discusses the assumptions underlying it, and shows how to compute and interpret it. We illustrate this using a subset of data from the 2005 Eurobarometer: Europeans, Science and Technology (EB63.1). Specifically, we test whether attitudes to science and faith are different in different countries, after adjusting for differing levels of scientific knowledge between these countries. This is useful if we want to understand the extent of persistent differences in attitudes to science across countries, regardless of differing levels of information available to citizens. This page provides links to this sample dataset and a guide to producing an ANCOVA using statistical software. What Is ANCOVA? ANCOVA is a method for testing whether or not the means of a given variable are Page 2 of 14 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd. -
Measures of Association for Contingency Tables
Newsom Psy 525/625 Categorical Data Analysis, Spring 2021 1 Measures of Association for Contingency Tables The Pearson chi-squared statistic and related significance tests provide only part of the story of contingency table results. Much more can be gleaned from contingency tables than just whether the results are different from what would be expected due to chance (Kline, 2013). For many data sets, the sample size will be large enough that even small departures from expected frequencies will be significant. And, for other data sets, we may have low power to detect significance. We therefore need to know more about the strength of the magnitude of the difference between the groups or the strength of the relationship between the two variables. Phi The most common measure of magnitude of effect for two binary variables is the phi coefficient. Phi can take on values between -1.0 and 1.0, with 0.0 representing complete independence and -1.0 or 1.0 representing a perfect association. In probability distribution terms, the joint probabilities for the cells will be equal to the product of their respective marginal probabilities, Pn( ij ) = Pn( i++) Pn( j ) , only if the two variables are independent. The formula for phi is often given in terms of a shortcut notation for the frequencies in the four cells, called the fourfold table. Azen and Walker Notation Fourfold table notation n11 n12 A B n21 n22 C D The equation for computing phi is a fairly simple function of the cell frequencies, with a cross- 1 multiplication and subtraction of the two sets of diagonal cells in the numerator. -
Statistical Analysis in JASP
Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. .......................................................................... -
2 X 2 Contingency Chi-Square
Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 2 X 2 Contingency Chi-square The 2 X 2 contingency chi-square is used for the comparison of two groups with a dichotomous dependent variable. We might compare males and females on a yes/no response scale, for instance. The contingency chi-square is based on the same principles as the simple chi-square analysis in which we examine the expected vs. the observed frequencies. The computation is quite similar, except that the estimate of the expected frequency is a little harder to determine. Let’s use the Quinnipiac University poll data to examine the extent to which independents (non-party affiliated voters) support Biden and Trump.1 Here are the frequencies: Trump Biden Party affiliated 338 363 701 Independent 125 156 281 463 519 982 To answer the question whether Biden or Trump have a higher proportion of independent voters, we are making a comparison of the proportion of Biden supporters who are independents, 156/519 = .30, or 30.0%, to the proportion of Trump supporters who are independents, 125/463 = .27, or 27.0%. So, the table appears to suggest that Biden's supporters are more likely to be independents then Trump's supporters. Notice that this is a comparison of the conditional proportions, which correspond to column percentages in cross-tabulation 2 output. First, we need to compute the expected frequencies for each cell. R1 is the frequency for row 1, C1 is the frequency for row 2, and N is the total sample size. -
The Modification of the Phi-Coefficient Reducing Its Dependence on The
c Metho ds of Psychological Research Online 1997, Vol.2, No.1 1998 Pabst Science Publishers Internet: http://www.pabst-publishers.de/mpr/ The Mo di cation of the Phi-co ecient Reducing its Dep endence on the Marginal Distributions Peter V. Zysno Abstract The Phi-co ecient is a well known measure of correlation for dichotomous variables. It is worthy of remark, that the extreme values 1 only o ccur in the case of consistent resp onses and symmetric marginal frequencies. Con- sequently low correlations may be due to either inconsistent data, unequal resp onse frequencies or b oth. In order to overcome this somewhat confusing situation various alternative prop osals were made, which generally, remained rather unsatisfactory. Here, rst of all a system has b een develop ed in order to evaluate these measures. Only one of the well-known co ecients satis es the underlying demands. According to the criteria, the Phi-co ecientisac- companied by a formally similar mo di cation, which is indep endent of the marginal frequency distributions. Based on actual data b oth of them can b e easily computed. If the original data are not available { as usual in publica- tions { but the intercorrelations and resp onse frequencies of the variables are, then the grades of asso ciation for assymmetric distributions can b e calculated subsequently. Keywords: Phi-co ecient, indep endent marginal distributions, dichotomous variables 1 Intro duction In the b eginning of this century the Phi-co ecientYule 1912 was develop ed as a correlational measure for dichotomous variables. Its essential features can b e quickly outlined. -
Basic ES Computations, P. 1 BASIC EFFECT SIZE GUIDE with SPSS
Basic ES Computations, p. 1 BASIC EFFECT SIZE GUIDE WITH SPSS AND SAS SYNTAX Gregory J. Meyer, Robert E. McGrath, and Robert Rosenthal Last updated January 13, 2003 Pending: 1. Formulas for repeated measures/paired samples. (d = r / sqrt(1-r^2) 2. Explanation of 'set aside' lambda weights of 0 when computing focused contrasts. 3. Applications to multifactor designs. SECTION I: COMPUTING EFFECT SIZES FROM RAW DATA. I-A. The Pearson Correlation as the Effect Size I-A-1: Calculating Pearson's r From a Design With a Dimensional Variable and a Dichotomous Variable (i.e., a t-Test Design). I-A-2: Calculating Pearson's r From a Design With Two Dichotomous Variables (i.e., a 2 x 2 Chi-Square Design). I-A-3: Calculating Pearson's r From a Design With a Dimensional Variable and an Ordered, Multi-Category Variable (i.e., a Oneway ANOVA Design). I-A-4: Calculating Pearson's r From a Design With One Variable That Has 3 or More Ordered Categories and One Variable That Has 2 or More Ordered Categories (i.e., an Omnibus Chi-Square Design with df > 1). I-B. Cohen's d as the Effect Size I-B-1: Calculating Cohen's d From a Design With a Dimensional Variable and a Dichotomous Variable (i.e., a t-Test Design). SECTION II: COMPUTING EFFECT SIZES FROM THE OUTPUT OF STATISTICAL TESTS AND TRANSLATING ONE EFFECT SIZE TO ANOTHER. II-A. The Pearson Correlation as the Effect Size II-A-1: Pearson's r From t-Test Output Comparing Means Across Two Groups. -
Supporting Information Supporting Information Corrected September 30, 2013 Fredrickson Et Al
Supporting Information Supporting Information Corrected September 30, 2013 Fredrickson et al. 10.1073/pnas.1305419110 SI Methods Analysis of Differential Gene Expression. Quantile-normalized gene Participants and Study Procedure. A total of 84 healthy adults were expression values derived from Illumina GenomeStudio software recruited from the Durham and Orange County regions of North were transformed to log2 for general linear model analyses to Carolina by community-posted flyers and e-mail advertisements produce a point estimate of the magnitude of association be- followed by telephone screening to assess eligibility criteria, in- tween each of the 34,592 assayed gene transcripts and (contin- cluding age 35 to 64 y, written and spoken English, and absence of uous z-score) measures of hedonic and eudaimonic well-being chronic illness or disability. Following written informed consent, (each adjusted for the other) after control for potential con- participants completed online assessments of hedonic and eudai- founders known to affect PBMC gene expression profiles (i.e., monic well-being [short flourishing scale, e.g., in the past week, how age, sex, race/ethnicity, BMI, alcohol consumption, smoking, often did you feel... happy? (hedonic), satisfied? (hedonic), that minor illness symptoms, and leukocyte subset distributions). Sex, your life has a sense of direction or meaning to it? (eudaimonic), race/ethnicity (white vs. nonwhite), alcohol consumption, and that you have experiences that challenge you to grow and become smoking were represented -
Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: the Phi Coefficient
DOCUMENT RESUME ED 330 706 TM 016 274 AUTHOR Edwards, Lynne K.; Meyers, Sarah A. TITLE Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: The Phi Coefficient. SPONS AGENCY Minnesota Supercomputer Inst. PUB DATE Apr 91 NOTE 18p.; Paper presented at the Annual Meeting of the American Educational Research Association (Chicago, IL, April 3-7, 1991). PUB TYPE Reports - Evaluative/Feasibility (142) -- Speeches/Conference Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRI2TORS *Computer Simulation; *Correlation; Educational Research; *Equations (Mathematics); Estimation (Mathematics); *Mathematical Models; Psychological Studies; *Robustness (Statistics) IDENTIFIERS *Apprv.amation (Statistics); Nonnull Hypothesis; *Phi Coefficient; Product Moment Correlation Coefficient ABSTRACT Correlation coefficients are frequently reported in educational and psychological research. The robustnessproperties and optimality among practical approximations when phi does not equal0 with moderate sample sizes are not well documented. Threemajor approximations and their variations are examined: (1) a normal approximation of Fisher's 2, N(sub 1)(R. A. Fisher, 1915); (2)a student's t based approximation, t(sub 1)(H. C. Kraemer, 1973; A. Samiuddin, 1970), which replaces for each sample size thepopulation phi with phi*, the median of the distribution ofr (the product moment correlation); (3) a normal approximation, N(sub6) (H.C. Kraemer, 1980) that incorporates the kurtosis of the Xdistribution; and (4) five variations--t(sub2), t(sub 1)', N(sub 3), N(sub4),and N(sub4)'--on the aforementioned approximations. N(sub 1)was fcund to be most appropriate, although N(sub 6) always producedthe shortest confidence intervals for a non-null hypothesis. All eight approximations resulted in positively biased rejection ratesfor large absolute values of phi; however, for some conditionswith low values of phi with heteroscedasticity andnon-zero kurtosis, they resulted in the negatively biased empirical rejectionrates. -
Testing Statistical Assumptions in Research Dedicated to My Wife Haripriya Children Prachi-Ashish and Priyam, –J.P.Verma
Testing Statistical Assumptions in Research Dedicated to My wife Haripriya children Prachi-Ashish and Priyam, –J.P.Verma My wife, sweet children, parents, all my family and colleagues. – Abdel-Salam G. Abdel-Salam Testing Statistical Assumptions in Research J. P. Verma Lakshmibai National Institute of Physical Education Gwalior, India Abdel-Salam G. Abdel-Salam Qatar University Doha, Qatar This edition first published 2019 © 2019 John Wiley & Sons, Inc. IBM, the IBM logo, ibm.com, and SPSS are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “IBM Copyright and trademark information” at www.ibm.com/legal/ copytrade.shtml All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law.Advice on how to obtain permision to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of J. P. Verma and Abdel-Salam G. Abdel-Salam to be identified as the authors of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. -
On the Fallacy of the Effect Size Based on Correlation and Misconception of Contingency Tables
Revisiting Statistics and Evidence-Based Medicine: On the Fallacy of the Effect Size Based on Correlation and Misconception of Contingency Tables Sergey Roussakow, MD, PhD (0000-0002-2548-895X) 85 Great Portland Street London, W1W 7LT, United Kingdome [email protected] +44 20 3885 0302 Affiliation: Galenic Researches International LLP 85 Great Portland Street London, W1W 7LT, United Kingdome Word count: 3,190. ABSTRACT Evidence-based medicine (EBM) is in crisis, in part due to bad methods, which are understood as misuse of statistics that is considered correct in itself. This article exposes two related common misconceptions in statistics, the effect size (ES) based on correlation (CBES) and a misconception of contingency tables (MCT). CBES is a fallacy based on misunderstanding of correlation and ES and confusion with 2 × 2 tables, which makes no distinction between gross crosstabs (GCTs) and contingency tables (CTs). This leads to misapplication of Pearson’s Phi, designed for CTs, to GCTs and confusion of the resulting gross Pearson Phi, or mean-square effect half-size, with the implied Pearson mean square contingency coefficient. Generalizing this binary fallacy to continuous data and the correlation in general (Pearson’s r) resulted in flawed equations directly expressing ES in terms of the correlation coefficient, which is impossible without including covariance, so these equations and the whole CBES concept are fundamentally wrong. MCT is a series of related misconceptions due to confusion with 2 × 2 tables and misapplication of related statistics. The misconceptions are threatening because most of the findings from contingency tables, including CBES-based meta-analyses, can be misleading. -
Type I and Type III Sums of Squares Supplement to Section 8.3
Type I and Type III Sums of Squares Supplement to Section 8.3 Brian Habing – University of South Carolina Last Updated: February 4, 2003 PROC REG, PROC GLM, and PROC INSIGHT all calculate three types of F tests: • The omnibus test: The omnibus test is the test that is found in the ANOVA table. Its F statistic is found by dividing the Sum of Squares for the Model (the SSR in the case of regression) by the SSE. It is called the Test for the Model by the text and is discussed on pages 355-356. • The Type III Tests: The Type III tests are the ones that the text calls the Tests for Individual Coefficients and describes on page 357. The p-values and F statistics for these tests are found in the box labeled Type III Sum of Squares on the output. • The Type I Tests: The Type I tests are also called the Sequential Tests. They are discussed briefly on page 372-374. The following code uses PROC GLM to analyze the data in Table 8.2 (pg. 346-347) and to produce the output discussed on pages 353-358. Notice that even though there are 59 observations in the data set, seven of them have missing values so there are only 52 observations used for the multiple regression. DATA fw08x02; INPUT Obs age bed bath size lot price; CARDS; 1 21 3 3.0 0.951 64.904 30.000 2 21 3 2.0 1.036 217.800 39.900 3 7 1 1.0 0.676 54.450 46.500 <snip rest of data as found on the book’s companion web-site> 58 1 3 2.0 2.510 .