References and Further Reading

Total Page:16

File Type:pdf, Size:1020Kb

References and Further Reading 110_Valk_References 13.04.2005 12:37 Uhr Seite 905 References and Further Reading 1 Myelin and White Matter Dambska M,Laure-Kaminowska M.Myelination as a parameter of normal and retarded brain maturation. Brain Dev 1990; Asotra K, Macklin WB. Protein kinase C activity modulates 12: 214–220 myelin gene expression in enriched oligodendrocytes. Davison AN, Dobbing J. Myelination as a vulnerable period in J Neurosci Res 1993; 34: 571–588 brain development. Br Med Bull 1966; 20: 40–44 Baumann N, Pham-Dinh D. Biology of oligodendrocyte and Deshmukh DS,Vorbrodt AW,Lee PK,Bear WD,Kuizon S.Studies myelin in the mammalian central nervous system. Physiol on the submicrosomal fractions of bovine oligodendroglia: Rev 2001; 81: 871–927 lipid composition and glycolipid biosynthesis. Neurochem Benjamins JA, Iwata R, Hazlett J. Kinetics of entry of proteins Res 1988; 13: 571–582 into the myelin membrane. J Neurochem 1978; 31: 1077– De Vries GH, Norton WT. The fatty acid composition of sphin- 1085 golipids from bovine CNS axons and myelin. J Neurochem Benveniste EN, Merrill JE. Stimulation of oligodendroglial pro- 1974; 22: 251–257 liferation and maturation by interleukin-2. Nature 1986; Dietrich RB, Bradley WG, Zaragoza IV, Otto RJ, Taira RK, Wilson 321: 610–613 GH, Kangerloo H. MR evaluation of early myelination pat- Berlet HH,Volk B.Studies of human myelin proteins during old terns in normal and developmentally delayed infants.AJNR age. Mech Ageing Dev 1980; 14: 211–222 Am J Neuroradiol 1988; 9: 69–76 Berndt JA, Kim JG, Hudson LD. Identification of cis-regulatory Dobbing J.Vulnerable periods in developing brain.In: Davison elements in the myelin proteolipid protein (PLP) gene. AN, Dobbing J, eds. Applied neurochemistry. Oxford: Black- J Biol Chem 1992; 267: 14730–14737 well, 1968: 287–316 Boiron F,Spivack WD, Deshmukh DS, Gould RM. Basis for phos- Dobbing J, Sands J. Quantitative growth and development of pholipid incorporation into peripheral nerve myelin.J Neu- human brain. Arch Dis Child 1973; 48: 757–767 rochem 1993; 60: 320–329 Duhamel-Clerin E, Villarroya H, Mehtali M, Lapie P, Besnard F, Bologa L. Oligodendrocytes, key cells in myelination and tar- Gumpel M, Lachapelle F. Cellular expression of an HMGCR get in demyelinating diseases.J Neurosci Res 1985;14:1–20 promoter-cat fusion gene in transgenic mouse brain: evi- Bongarzone ER, Howard SG, Schonmann SG, Schonmann V, dence for a developmental regulation in oligodendrocytes. Campagnoni AT. Identification of the dopamine D3 recep- Glia 1994; 11: 35–46 tor in oligodendrocyte precursors: potential role in regula- Dziewulska D, Jamrozik Z, Podlecka A, Rafalowska J. Do astro- tion differentiation and myelin formation. J Neurosci 1998; cytes participate in rat spinal cord myelination? Folia 18: 5344–5353 Neuropathol 1999; 37: 81–86 Brody BA,Kinney HC,Kloman AS,Gilles FH.Sequence of central Farrer RG, Benjamins JA. Entry of newly synthesized ganglio- nervous system myelination in human infancy. I. An autop- sides into myelin. J Neurochem 1992; 58: 1477–1484 sy study of myelination.J Neuropathol Exp Neurol 1987;46: Fishman MA, Agrawal HC, Alexander A, Golterman J, Marten- 283–301 son RE, Mitchell RF.Biochemical maturation of human cen- Brown MC, Moreno MB, Bongarzone ER, Cohen PD, Soto EF, tral nervous system myelin.J Neurochem 1975;24:689–694 Pasquini JM. Vesicular transport of myelin proteolipid and Flechsig P. Developmental (myelogenetic) localisation of the cerebroside sulfates to the myelin membrane. J Neurosci cerebral cortex in the human subject.Lancet 1901;II:1027– Res 1993; 35: 402–408 1029 Burger D, Steck AJ, Bernard CCA, Kerlero de Rosbo N. Human Flechsig P. Anatomie des menschlichen Gehirns und Rücken- myelin/oligodendrocyte glycoprotein: a new member of marks. Leipzig: Georg Thieme, 1920, 7–119 the L2/HNK-1 family. J Neurochem 1993; 61: 1822–1827 Fors L,Hood L,Saavedra RA.Sequence similarities of myelin ba- Butt AM, Berry M. Oligodendrocytes and the control of myeli- sic protein promoters from mouse and shark: implications nation in vivo:new insights from the rat anterior medullary for the control of gene expression in myelinating cells. velum. J Neurosci Res 2000; 59: 477–488 J Neurochem 1993; 60: 513–521 Campagnoni AT. Molecular biology of myelin proteins from Futerman AH, Stieger B, Hubbard AL, Pagano RE. Sphin- the central nervous system. J Neurochem 1988; 51: 1–14 gomyelin synthesis in rat liver occurs predominantly at the Campagnoni AT, Verdi JM, Verity AN, Amur-Umarjee S. Post- cis and medial cisternae of the Golgi apparatus.J Biol Chem transcriptional events in the expression of myelin protein 1990; 265: 8650–8657 genes. Ann NY Acad Sci 1990; 605: 270–279 Gilles FH. Myelination in the neonatal brain. Hum Pathol 1976; Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulin-like 7: 244–248 growth factor I increases brain growth and central nervous Gilles FH, Shankle W, Dooling EC. Myelinated tracts: growth system myelination in transgenic mice. Neuron 1993; 10: patterns.In:Gilles FH,Leviton A,Dooling EC.The developing 729–740 human brain. Boston:Wright, 1983, 117–192 Compston A,Zajicek J,Sussman J,Webb A,Hall G,Muir D,Shaw Goddard DR, Berry M, Butt AM. In vivo actions of fibroblasts C,Wood A,Scolding N.Glial lineages and myelination in the growth factor-2 and insuline-like growth factor-I on oligo- central nervous system. J Anat 1997; 190: 161–200 dendrocyte development and myelination in the central nervous system. J Neurosci Res 1999; 57: 74–85 110_Valk_References 13.04.2005 12:37 Uhr Seite 906 906 References and Further Reading Goodrum JF,Earnhardt T, Goines N, Bouldin TW. Fate of myelin Matthieu JM.An introduction to the molecular basis of inherit- lipids during degeneration and regeneration of peripheral ed myelin diseases. J Inherit Metab Dis 1993; 16: 724–732 nerve: an autoradiographic study. J Neurosci 1994; 14: Matthieu JM, Comte V, Tosic M, Honegger P. Myelin gene ex- 357–367 pression during demyelination and remyelination in ag- Gould RM,Spivack W,Cataneo R,Holshek J,Konat G.Lipids and gregating brain cell cultures. J Neuroimmunol 1992; 40: myelination. In: Crescenzi S, ed. A multidisciplinary ap- 231–234 proach to myelin diseases.New York: Plenum,1987: 87–102 McLaurin J, Ackerley CA, Moscarello MA. Localization of basic Gould RM, Freund CM, Palmer F,Feinstein DL. Messenger RNAs proteins in human myelin.J Neurosci Res 1993;35:618–628 located in myelin sheath assembly sites. J Neurochem Menkes JH. The leukodystrophies. N Engl J Med 1990; 322: 2000; 75: 1834–1844 54–55 Gupta SK, Pringle J, Poduslo JF, Mezei C. Induction of myelin Meyer-Franke A, Shen S, Barres BA. Astrocytes induce oligo- genes during peripheral nerve remyelination requires a dendrocyte processes to align with and adhere to axons. continuous signal from the ingrowing axon. J Neurosci Res Mol Cell Neurosci 1999; 14: 385–397 1993; 34: 14–23 Mickel HS,Gilles FH.Changes in glial cells during human telen- Hasegawa M,Houdou S,Mito T,Takashima S,Asanuma K,Ohno cephalic myelinogenesis. Brain 1970; 93: 337–346 T. Development of myelination in the human fetal and in- Mikol DD, Rongnoparut P,Allwardt BA, Marton LS, Stefansson fant cerebrum: a myelin basic protein immunohistochemi- K.The oligodendrocyte-myelin glycoprotein of mouse: pri- cal study. Brain Dev 1992; 14: 1–6 mary structure and gene structure. Genomics 1993; 17: Jacoby CG,Yuh WTC,Afifi AK,Bell WE,Schelper RL,Sato Y.Accel- 604–610 erated myelination in early Sturge-Weber syndrome Mitchell LS, Gillespie SC, McAllister F,Fanarraga ML, Kirkham D, demonstrated by MR imaging. J Comput Assist Tomogr Kelly B, Brophy PJ, Grittiths IR, Montague P, Kennedy PGE. 1987; 11: 226–231 Developmental expression of major myelin protein genes Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F. Sphin- in the CNS of X-linked hypomyelinating mutant rumpshak- gomyelin is synthesized in the cis Golgi. FEBS Lett 1990; er. J Neurosci Res 1992; 33; 205–217 261: 155–157 Morell P,ed. Myelin, 2nd ed. New York: Plenum Press, 1984 Kamholz J, Toffenetti, Lazzarini RA. Organization and expres- Morell P,Wiesmann U. A correlative synopsis of the leukodys- sion of the human myelin basic protein gene. J Neurosci trophies. Neuropediatrics 1984; 15 (suppl): 62–65 Res 1988; 21: 62–70 Morell P,Quarles RH, Norton WT. Formation, structure, and bio- Keene LMF, Hewer EE. Some observations on myelination in chemistry of myelin. In: Siegel GJ, Agranoff BW, Albers RW, the human central nervous system. J Anat 1931; 66: 1–13 eds. Basic neurochemistry: molecular, cellular and medical Kinney HC,Brody BA,Kloman AS,Gilles FH.Sequence of central aspects, 4th ed. New York: Raven Press, 1989, 109–136 nervous system myelination in human infancy. II. Patterns Norton WT. Recent advances in myelin biochemistry. Ann NY of myelination in autopsied infants. J Neuropathol Exp Acad Sci 1984; 436: 5–10 Neurol 1988; 47: 217–234 Norton WT,Autilio LA.The lipid composition of purified bovine Kinney HC, Karthigasan J, Borenshteyn NI, Flax JD, Kirschner brain myelin. J Neurochem 1966; 13: 213–222 DA.Myelination in the developing human brain: biochemi- Norton WT, Cammer W. Isolation and characterization of cal correlates. Neurochem Res 1994; 19: 983–996 myelin. In: Morell P, ed. Myelin. Plenum, New York, 1984, Konola JT, Yamamura T, Tyler B, Lees MB. Orientation of the pp 147–195 myelin proteolipid protein C-terminus in oligodendroglial Notterpek LM,Rome LH.Functional evidence for the role of ax- membranes. Glia 1992; 5: 112–121 olemma in CNS myelination. Neuron 1994; 13: 473–485 Langworthy OR. Development of behavior patterns and Pagano RE. The Golgi apparatus: insights from lipid biochem- myelinization of the nervous system in human fetus and in- istry.
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • N-Acetyl-L-Leucine Improves Functional Recovery and Attenuates Cortical Cell
    www.nature.com/scientificreports OPEN N‑Acetyl‑l‑leucine improves functional recovery and attenuates cortical cell death and neuroinfammation after traumatic brain injury in mice Nivedita Hegdekar1, Marta M. Lipinski1,2* & Chinmoy Sarkar1* Traumatic brain injury (TBI) is a major cause of mortality and long‑term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinfammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interventions following TBI is essential to restrict neuronal cell death and neuroinfammation. We demonstrate that orally administered N‑acetyl‑l‑ leucine (NALL) signifcantly improved motor and cognitive outcomes in the injured mice, led to the attenuation of cell death, and reduced the expression of neuroinfammatory markers after controlled cortical impact (CCI) induced experimental TBI in mice. Our data indicate that partial restoration of autophagy fux mediated by NALL may account for the positive efect of treatment in the injured mouse brain. Taken together, our study indicates that treatment with NALL would be expected to improve neurological function after injury by restricting cortical cell death and neuroinfammation. Therefore, NALL is a promising novel, neuroprotective drug candidate for the treatment of TBI. Traumatic brain injury (TBI) is a major health concern all over the world. Between 1990 and 2016, the prevalence of TBI increased by around 8.4%1. Almost 27 million new cases of TBI were reported worldwide in 2016, with an incidence rate of 369 per 100,000 people 1. In the US around 1.7 million cases of TBI are reported each year 2,3.
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • NTSAD Web Page on Miglustat Fran Platt Substrate Reduction Therapy
    NTSAD Web Page on Miglustat Fran Platt Substrate Reduction Therapy for LSDs Background Several lysosomal storage diseases (LSDs) involve the storage of fatty molecules within cells of the body that are called sphingolipids (1). This is because an enzyme that normally works to break these molecules down in the lysosome, the waste disposal/recycling center of our cells, does not work properly (2, 3). Some sphingolipids are modified by the cells of our bodies by adding sugars, creating a family of specialized sphingolipids called glycosphingolipids (GSLs) (1). For example, in Gaucher disease a glycosphingolipid called glucosylceramide is not broken down and is stored, whereas in Tay-Sachs and Sandhoff disease it is a glycosphingolipid called GM2 ganglioside that is stored (1). Glycosphingolipids are made in the cells of our bodies by a single metabolic pathway that begins with the addition of a sugar molecule called glucose to a sphingolipid molecule called ceramide (1). The fact that there is only a single major pathway to make most glycosphingolipids offers a potential way of treating these diseases using a small molecule drug (4). How would a drug work? The principle behind this treatment is called substrate reduction therapy (SRT)(4). The idea is to partially block the cells in our body from making glycosphingolipids, specifically stopping them from adding glucose to ceramide, which is the first step in this pathway. This would mean fewer glycosphingolipids are made, so fewer would require breaking down in the lysosome. The aim is to balance the rates of glycosphingolipid manufacture with their impaired rate of breakdown.
    [Show full text]
  • Mouse Model of GM2 Activator Deficiency Manifests Cerebellar Pathology and Motor Impairment
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8138–8143, July 1997 Medical Sciences Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment (animal modelyGM2 gangliosidosisygene targetingylysosomal storage disease) YUJING LIU*, ALEXANDER HOFFMANN†,ALEXANDER GRINBERG‡,HEINER WESTPHAL‡,MICHAEL P. MCDONALD§, KATHERINE M. MILLER§,JACQUELINE N. CRAWLEY§,KONRAD SANDHOFF†,KINUKO SUZUKI¶, AND RICHARD L. PROIA* *Section on Biochemical Genetics, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, ‡Laboratory of Mammalian Genes and Development, National Institute of Child Health and Development, and §Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; †Institut fu¨r Oganische Chemie und Biochemie der Universita¨tBonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; and ¶Department of Pathology and Laboratory Medicine, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 Communicated by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, May 12, 1997 (received for review March 21, 1997) ABSTRACT The GM2 activator deficiency (also known as disorder, the respective genetic lesion results in impairment of the AB variant), Tay–Sachs disease, and Sandhoff disease are the the degradation of GM2 ganglioside and related substrates. major forms of the GM2 gangliosidoses, disorders caused by In humans, in vivo GM2 ganglioside degradation requires the defective degradation of GM2 ganglioside. Tay–Sachs and Sand- GM2 activator protein to form a complex with GM2 ganglioside. hoff diseases are caused by mutations in the genes (HEXA and b-Hexosaminidase A then is able to interact with the activator- HEXB) encoding the subunits of b-hexosaminidase A.
    [Show full text]
  • Prevalence of Lysosomal Storage Diseases in Portugal
    European Journal of Human Genetics (2004) 12, 87–92 & 2004 Nature Publishing Group All rights reserved 1018-4813/04 $25.00 www.nature.com/ejhg ARTICLE Prevalence of lysosomal storage diseases in Portugal Rui Pinto1,2, Carla Caseiro1, Manuela Lemos1, Lurdes Lopes1, Augusta Fontes1, Helena Ribeiro1, Euge´nia Pinto1, Elisabete Silva1,So´nia Rocha1, Ana Marca˜o2, Isaura Ribeiro1,2,Lu´cia Lacerda1,2, Gil Ribeiro1,2, Olga Amaral1,2,MCSa´ Miranda*,1,2 1Instituto de Gene´tica Me´dica Jacinto de Magalha˜es, Porto, Portugal; 2Instituto de Biologia Molecular & Celular (IBMC), Portugal Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders individually considered as rare, and few data on its prevalence has been reported in the literature. The overall birth prevalence of the 29 different LSDs studied in the Portuguese population was calculated to be 25/100 000 live births, twice the prevalence previously described in Australia and in The Netherlands. The comparison of the prevalence profile of the LSDs presenting a prevalence higher than 0.5/100 000 in the Portuguese, Dutch and Australian populations showed, in the Portuguese, the existence of a higher prevalence of GM2 gangliosidoses (B variant), mucolipidoses (II and III), Niemman-Pick type C and metachromatic leukodystrophy (MLD), and a lower prevalence of Pompe and Fabry. The highest prevalence value for a single LSD is the one of GM2 gangliosidoses (B variant), corresponding to 3/100 000, a value which is significantly higher than the prevalence of the most frequent LSD in Dutch, Pompe disease (2/100 000) and Australians, Gaucher’s disease (GD) (1.8/100 000).
    [Show full text]
  • INAUGURAL-DISSERTATION Zur Erlangung Des Doktorgrades Der Medizin
    Aus der Universitätsklinik für Kinderheilkunde und Jugendmedizin Abteilung Kinderheilkunde III mit Poliklinik Ärztliche Direktorin: Frau Professor Dr. I. Krägeloh-Mann Bestimmung von sphingolipidabbauenden Enzymen in Granulozyten, Monozyten und Lymphozyten zur Optimierung der Labordiagnostik bei Sphingolipid-Speichererkrankungen INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Medizin der MEDIZINISCHEN FAKULTÄT der Eberhard-Karls-Universität zu Tübingen vorgelegt von SEBASTIAN GEORG CHRISTOPHER STROBEL aus Burlington/USA 2005 Dekan: Professor Dr. med. C. D. Claussen 1. Berichterstatter: Professor Dr. rer. nat. G. Bruchelt 2. Berichterstatter: Privatdozentin Dr. rer. nat. H. Schmid Für meine Eltern und Geschwister 4 INHALTSVERZEICHNIS Inhalt Seite 1. Einleitung 8 1.1. Einführung 8 1.2. Lysosomale Speicherkrankheiten 10 1.2.1. Stoffwechsel der Sphingolipide 10 1.2.1.1. Funktion der Sphingolipide 10 1.2.1.2. Biosynthese der Sphingolipide 11 1.2.1.3. Abbau der Sphingolipide 14 1.2.1.4. Störungen im lysosomalen Sphingolipidabbau: Lipidspeicherkrankheiten 15 1.2.1.5. Synthese und Reifung lysosomaler Enzyme 17 1.2.1.6. Speicherung und Freisetzung der lysosomalen Enzyme 19 1.2.2. Erkrankungen durch Störungen des Sphingolipidabbaus 20 1.2.2.1. Metachromatische Leukodystrophie (MLD) 23 1.2.2.2. ß-Galaktosidase-Mangel (GM1 Gangliosidose, Morquio B) 27 1.2.2.3. GM2 Gangliosidosen 35 1.2.3. Diagnostik der Sphingolipidosen 40 1.2.3.1. Biochemische Diagnostik 40 1.2.3.1.1. Analyse der gespeicherten Materialien aus Biopsien 40 1.2.3.1.2. Enzymatische Nachweisverfahren 41 1.2.3.1.3. Metabolische Untersuchungen 43 1.2.3.2. Molekulare Nachweisverfahren und genetische Diagnostik 44 1.2.3.3.
    [Show full text]
  • Early Differential Diagnosis of Infantile Neuronal Ceroid Lipofuscinosis, Rett Syndrome, and Krabbe Disease by CT and MR
    Early Differential Diagnosis of Infantile Neuronal Ceroid Lipofuscinosis, Rett Syndrome, and Krabbe Disease by CT and MR Sanna-Leena Vanhanen, Raili Raininko, and Pirkko Santavuori PURPOSE: To compare early radiologic findings in three clinically similar progressive encepha­ lopathies of childhood. METHODS: Brain CT and/ or MR studies were done in 57 children 3 to 36 months of age: 16 with infantile neuronal ceroid lipofuscinosis, 5 with Rett syndrome, 6 with Krabbe disease, and 30 control subjects with normal neurologic status. In addition, previous descriptions in the literature were collected. RESULTS: No significant changes were seen in Rett syndrome. Early atrophy was found in infantile neuronal ceroid lipofu scinosis and in Krabbe disease, being more severe in the latter. The thalami were hyperdense in 4 of 13 patients with infantile neuronal ceroid lipofuscinosis and in 1 of 4 patients with Krabbe disease (in the literature in 12 of 30 examinations). Cerebral calcifications and density abnormalities in the cerebral and cerebellar white matter were seen in Krabbe disease only . On MR, the white matter changes in the two diseases were differently located. In every patient with infantile neuronal ceroid lipofu scinosis, decreased T2 signal was seen in the thalami and periventricular high-signal rims after the age of 13 months. Hypointensity of the thalami and basal ganglia was seen in both diseases , but Krabbe disease showed more variations. Abnormalities of cerebellar intensity were found in Krabbe disease only. CONCLUSIONS: CT and MR are of value in the differential diagnosi s of these three diseases. MR especially facilitates the early diagnosis of infantile neuronal ceroid lipofuscinosi s.
    [Show full text]
  • Late-Onset Tay-Sachs Disease: Phenotypic Characterization and Genotypic Correlations in 21 Affected Patients Orit Neudorfer1, Gregory M
    February 2005 ⅐ Vol. 7 ⅐ No. 2 article Late-onset Tay-Sachs disease: Phenotypic characterization and genotypic correlations in 21 affected patients Orit Neudorfer1, Gregory M. Pastores1,2, Bai J. Zeng1, John Gianutsos3, Charles M. Zaroff4, and Edwin H. Kolodny1 Purpose: The purpose of this study was to describe the phenotype (and corresponding genotype) of adult patients with late-onset Tay-Sachs disease, a clinical variant of the GM2-gangliosidoses. Methods: A comprehensive physical examination, including neurological assessments, was performed to establish the current disease pattern and severity. In addition, the patients’ past medical histories were reviewed. The patients’ ␣-subunit mutations (␤-Hexosaminidase A genotype) were determined and correlated with their corresponding clinical findings and disease course. Results: Twenty-one patients (current mean age: 27.0 years; range: 14–47 years) were identified. The pedigree revealed a relative with the “classic” infantile or late-onset form of Tay-Sachs disease in four (out of 18) unrelated families. The patients were predominantly male (15/21 individuals) and of Ashkenazi Jewish ancestry (15/18 families). Mean age at onset was 18.1 years; balance problems and difficulty climbing stairs were the most frequent presenting complaints. In several cases, the diagnosis was delayed (mean age at diagnosis: 27.0 years). Analysis of the ␤-hex A gene revealed the G269S mutation as the most common disease allele; found in homozygosity (N ϭ 1) or heterozygosity (N ϭ 18; including 2 sib pairs). Disease onset (age 36 years) was delayed and progression relatively slower in the homozygous G269S patient. Two siblings (ages 28 and 31 years), of non-Jewish ancestry, were compound heterozygotes (TATC1278/W474C); their clinical course is dominated by psychiatric problems.
    [Show full text]
  • Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses
    551 38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses Marie T. Vanier, Catherine Caillaud, Thierry Levade 38.1 Disorders of Sphingolipid Synthesis – 553 38.2 Sphingolipidoses – 556 38.3 Niemann-Pick Disease Type C – 566 38.4 Neuronal Ceroid Lipofuscinoses – 568 References – 571 J.-M. Saudubray et al. (Eds.), Inborn Metabolic Diseases, DOI 10.1007/978-3-662-49771-5_ 38 , © Springer-Verlag Berlin Heidelberg 2016 552 Chapter 38 · Disor ders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses O C 22:0 (Fatty acid) Ganglio- series a series b HN OH Sphingosine (Sphingoid base) OH βββ β βββ β Typical Ceramide (Cer) -Cer -Cer GD1a GT1b Glc ββββ βββ β Gal -Cer -Cer Globo-series GalNAc GM1a GD1b Neu5Ac βαββ -Cer Gb4 ββ β ββ β -Cer -Cer αβ β -Cer GM2 GD2 Sphingomyelin Pcholine-Cer Gb3 B4GALNT1 [SPG46] [SPG26] β β β ββ ββ CERS1-6 GBA2 -Cer -Cer ST3GAL5 -Cer -Cer So1P So Cer GM3 GD3 GlcCer - LacCer UDP-Glc UDP Gal CMP -Neu5Ac - UDP Gal PAPS Glycosphingolipids GalCer Sulfatide ββ Dihydro -Cer -Cer SO 4 Golgi Ceramide apparatus 2-OH- 2-OH-FA Acyl-CoA FA2H CERS1-6 [SPG35] CYP4F22 ω-OH- ω-OH- FA Acyl-CoA ULCFA ULCFA-CoA ULCFA GM1, GM2, GM3: monosialo- Sphinganine gangliosides Endoplasmic GD3, GD2, GD1a, GD1b: disialo-gangliosides reticulum KetoSphinganine GT1b: trisialoganglioside SPTLC1/2 [HSAN1] N-acetyl-neuraminic acid: sialic acid found in normal human cells Palmitoyl-CoA Deoxy-sphinganine + Serine +Ala or Gly Deoxymethylsphinganine 38 . Fig. 38.1 Schematic representation of the structure of the main sphingolipids , and their biosynthetic pathways.
    [Show full text]
  • Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease
    International Journal of Molecular Sciences Review Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease Bernadette Breiden and Konrad Sandhoff * Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany; [email protected] * Correspondence: sandhoff@uni-bonn.de; Tel.: +49-228-73-5346 Received: 5 March 2020; Accepted: 4 April 2020; Published: 7 April 2020 Abstract: Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,604,011 B2 Melon (45) Date of Patent: Dec
    USOO8604011 B2 (12) United States Patent (10) Patent No.: US 8,604,011 B2 MelOn (45) Date of Patent: Dec. 10, 2013 (54) THERAPY FORTREATMENT OF CHRONIC OTHER PUBLICATIONS DEGENERATIVE BRAIN DISEASES AND NERVOUS SYSTEM INJURY Frolov (The JBC, 2003, 278, 28, p. 25517-25525).* NINDS, NIH document (http://www.ninds.nih.gov/disorders/ (75) Inventor: Synthia Mellon, San Francisco, CA niemann/niemann.htm), 2010, p. 1-2.* (US) Timby, Gynecological Endocrinology, 2010, p. 1-7.* Mellon (Brain Research Reviews, 2008, 410-420).* 73) Assignee:9. The Regentsg of the UniversitVy of Burns et al. (Nature Medicine, vol. 10, 7, Jul. 2004).* California, Oakland, CA (US) Bramlett, K. S. et al., “A Natural Product Ligand of the Oxysterol Receptor, Liver X Receptor'. The Journal of Pharmacology and *) Notice: Subject to anyy disclaimer, the term of this Experimental Therapeutics, vol. 307, pp. 291-296 (2003). patent is extended or adjusted under 35 Collins, Jon L., “Therapeutic opportunities for liver X receptor U.S.C. 154(b) by 781 days. modulators'. Current Opinion in Drug Discovery & Development, vol. 7, No. 5, pp. 692-702 (2004). Griffin, Lisa D. et al., “Niemann-Pick type C disease involves dis (21) Appl. No.: 11/576,125 rupted neurosteroidogenesis and responds to allopregnanolone'. (22) PCT Filed: Sep. 27, 2005 Nature Medicine, vol. 10, No. 7, pp. 704-711 (2004). di Michelle, F. et al., “Decreased plasma and cerebrospinal fluid (86). PCT No.: PCT/US2OOS/O34746 content of neuroactive steroids in Parkinson's disease'. Neurol. Sci. vol. 24, pp. 172-173 (2003). S371 (c)(1), Reddy, D.
    [Show full text]