Ecosystem Restoration Program Conservation Strategy for Restoration of the Sacramento-San Joaquin Delta, Sacramento and San Joaq

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Restoration Program Conservation Strategy for Restoration of the Sacramento-San Joaquin Delta, Sacramento and San Joaq Ecosystem Restoration Program Conservation Strategy for Restoration of the Sacramento-San Joaquin Delta, Sacramento Valley and San Joaquin Valley Regions May 2014 Department of Fish and U. S. Fish and Wildlife Service NOAA Fisheries Wildlife 650 Capitol Mall, Suite 8-300 National Marine Fisheries 830 S Street Sacramento, CA 95814 Service Sacramento, CA 95811 (916) 930 - 5603 650 Capitol Mall, Suite 5-100 (916) 445-1700 Sacramento, CA 95814 (916) 930-3600 The Ecosystem Restoration Program (ERP) Implementing Agencies (California Department of Fish and Wildlife [CDFW], United States Fish and Wildlife Service [USFWS], and National Marine Fisheries Service [NMFS]) provide this Conservation Strategy (Strategy) to help guide future environmental restoration in the Sacramento- San Joaquin Delta and its watershed (Focus Area). This Strategy, built on lessons learned during Stage 1 of CALFED (2000 through 2007), was developed by CDFW collaboratively with USFWS and NMFS. The Strategy identifies ERP goals and conservation priorities and processes for Stage 2 of CALFED (2008 through 2030), while providing impetus for improvement in the future. It provides flexibility so that management decisions can be made adaptively based on new scientific findings, changing circumstances, and new or modified conservation priorities. All agencies, groups, or individuals interested in resource conservation and management within the Focus Area are encouraged to use this document to help guide and coordinate their activities. Foreword To reduce conflicts between interest groups and move towards a restored Sacramento- San Joaquin Delta (Delta) ecosystem, the CALFED Bay-Delta Program (CALFED) was established in 1994 with the signing of the Bay-Delta Accord. The original purpose of the CALFED Program was to address four interrelated objectives: Levee System Integrity, Ecosystem Restoration, Water Supply Reliability, and Water Quality. Over the next six years specific goals and objectives of the 30-year CALFED program were elucidated in the CALFED Multi-Species Conservation Strategy (MSCS), the Programmatic Environmental Impact Statement/Environmental Impact Report (EIS/EIR), and the Record of Decision (ROD) (CALFED 2000c, 2000d, 2000e). In 2009 the California legislature passed the Delta Reform Act, thereby authorizing new planning efforts to achieve the co-equal goals of water supply reliability and a healthy Delta ecosystem. This act created two new State agencies to help accomplish the co- equal goals, the Delta Stewardship Council (DSC) and the Sacramento-San Joaquin Delta Conservancy (Conservancy). As the State implementing agency for the CALFED Ecosystem Restoration Program (ERP), the California Department of Fish and Wildlife (CDFW) (previously known as the Department of Fish and Game) is pursuing a seamless transition from the previous structure, guided by the California Bay-Delta Authority and CALFED Science Program, to the new governance structure established by the Delta Reform Act. CDFW, the United States Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) coordinate with the DSC and the Conservancy in the implementation of ERP activities, obtaining their guidance to assure consistency with the Delta Plan being developed by the DSC. Coordination with the DSC to promote consistency with the Delta Plan and other planning efforts will ensure that DSC actions are informed by future implementation of ERP and information gained from ERP's first seven years of restoration, research, monitoring, and assessment efforts. The stated mission of CALFED “…is to develop a long-term comprehensive plan that would restore ecosystem health and improve water management for beneficial uses of the Bay-Delta system.” ERP is the principal CALFED program component designed to restore the ecological health of the Bay-Delta ecosystem. The approach of ERP is to restore or mimic ecological processes and to increase and improve aquatic and terrestrial habitats to support stable, self-sustaining populations of diverse and valuable species. Implementation of the 30-Year CALFED ROD (ROD) was divided into two stages, Stage 1 (2000-2007) and Stage 2 (2008–2030). The Stage 1 Plan for Ecosystem Restoration was developed for implementation during the first seven years of the program. It was acknowledged that judging progress could not be accurately assessed during the early phases of the program. The ROD stipulated that to be successfully implemented, ERP must have a minimum of $150 million annually of dedicated funding during Stage 1 Implementation. In addition, long term implementation of ERP would include an adaptive management framework for addressing program performance. Conservation Strategy for Restoration of the i Sacramento-San Joaquin Delta, Sacramento Valley and San Joaquin Valley Regions This Conservation Strategy describes Stage 2 conservation priorities of the Sacramento-San Joaquin Delta and the Sacramento Valley and San Joaquin Valley Regions. It responds to analysis of Stage 1 research, restoration, and monitoring activities that determined the CALFED through-Delta conveyance alternative, as it had been implemented, did not achieve sufficient progress in sustaining viable populations of endangered and threatened aquatic species. Findings of Stage 1 ERP implementation are presented in this document only to the extent they inform scientific understanding of the system since the certification of the ROD in 2000. CDFW was the lead agency in developing the Conservation Strategy, in coordination with USFWS and NMFS. This final version incorporates public and agency comments. Coordination of future updates to the Conservation Strategy will be made concurrently with updates to the Delta Plan, if and when appropriate. This Conservation Strategy will be reviewed and updated, as necessary, until implementation of the ROD is completed (2030). Conservation Strategy for Restoration of the ii Sacramento-San Joaquin Delta, Sacramento Valley and San Joaquin Valley Regions TABLE OF CONTENTS Foreword .......................................................................................................................... i Introduction ..................................................................................................................... 1 Purpose and Intended Use .............................................................................................. 1 ERP Goals ...................................................................................................................... 3 Lessons Learned in Stage 1 and Management Considerations for Stage 2 .................... 5 Other Considerations for ERP ......................................................................................... 6 Integration and Relationship of the Conservation Strategy to Other Planning Efforts ..... 8 Ecological Setting and Vision for Restoration of the Delta and its Watershed ............... 12 SECTION 1: Sacramento-San Joaquin Delta Region ................................................... 15 Background ................................................................................................................... 15 I. Ecosystem Processes ........................................................................................... 16 II. Habitats ................................................................................................................. 29 III. Stressors ............................................................................................................... 43 IV. Species ................................................................................................................. 62 SECTION 2: Sacramento Valley Region ....................................................................... 85 Background ................................................................................................................... 85 I. Ecosystem Processes ........................................................................................... 86 II. Habitats ................................................................................................................. 96 III. Stressors ............................................................................................................. 100 IV. Species ............................................................................................................... 108 SECTION 3: San Joaquin Valley Region .................................................................... 119 Background ................................................................................................................. 119 I. Ecosystem Processes ......................................................................................... 121 II. Habitats ............................................................................................................... 130 III. Stressors ............................................................................................................. 134 IV. Species ............................................................................................................... 141 SECTION 4: Adaptive Management............................................................................ 154 I. A Three Phase Adaptive Management Framework ............................................. 154 II. Performance Measures ....................................................................................... 163 III. Monitoring Program ............................................................................................
Recommended publications
  • 0 5 10 15 20 Miles Μ and Statewide Resources Office
    Woodland RD Name RD Number Atlas Tract 2126 5 !"#$ Bacon Island 2028 !"#$80 Bethel Island BIMID Bishop Tract 2042 16 ·|}þ Bixler Tract 2121 Lovdal Boggs Tract 0404 ·|}þ113 District Sacramento River at I Street Bridge Bouldin Island 0756 80 Gaging Station )*+,- Brack Tract 2033 Bradford Island 2059 ·|}þ160 Brannan-Andrus BALMD Lovdal 50 Byron Tract 0800 Sacramento Weir District ¤£ r Cache Haas Area 2098 Y o l o ive Canal Ranch 2086 R Mather Can-Can/Greenhead 2139 Sacramento ican mer Air Force Chadbourne 2034 A Base Coney Island 2117 Port of Dead Horse Island 2111 Sacramento ¤£50 Davis !"#$80 Denverton Slough 2134 West Sacramento Drexler Tract Drexler Dutch Slough 2137 West Egbert Tract 0536 Winters Sacramento Ehrheardt Club 0813 Putah Creek ·|}þ160 ·|}þ16 Empire Tract 2029 ·|}þ84 Fabian Tract 0773 Sacramento Fay Island 2113 ·|}þ128 South Fork Putah Creek Executive Airport Frost Lake 2129 haven s Lake Green d n Glanville 1002 a l r Florin e h Glide District 0765 t S a c r a m e n t o e N Glide EBMUD Grand Island 0003 District Pocket Freeport Grizzly West 2136 Lake Intake Hastings Tract 2060 l Holland Tract 2025 Berryessa e n Holt Station 2116 n Freeport 505 h Honker Bay 2130 %&'( a g strict Elk Grove u Lisbon Di Hotchkiss Tract 0799 h lo S C Jersey Island 0830 Babe l Dixon p s i Kasson District 2085 s h a King Island 2044 S p Libby Mcneil 0369 y r !"#$5 ·|}þ99 B e !"#$80 t Liberty Island 2093 o l a Lisbon District 0307 o Clarksburg Y W l a Little Egbert Tract 2084 S o l a n o n p a r C Little Holland Tract 2120 e in e a e M Little Mandeville
    [Show full text]
  • Priority Actions to Improve Provenance Decision-Making
    Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017).
    [Show full text]
  • Fisheries and Aquatic Ecosystems Technical Report
    Draft Fisheries and Aquatic Ecosystems Technical Report Shasta Lake Water Resources Investigation Prepared by: United States Department of the Interior Bureau of Reclamation Mid-Pacific Region U.S. Department of the Interior Bureau of Reclamation June 2013 Contents Contents Chapter 1 Affected Environment .................................................................................... 1-1 1.1 Environmental Setting ............................................................................................... 1-1 1.1.1 Aquatic Habitat ................................................................................................. 1-1 1.1.2 Fisheries Resources......................................................................................... 1-13 1.1.3 Aquatic Macroinvertebrates ............................................................................ 1-48 Chapter 2 Impact Assessment .......................................................................................... 2-1 Chapter 3 References ........................................................................................................ 3-1 3.1 Printed Sources .......................................................................................................... 3-1 3.2 Personal Communications ....................................................................................... 3-14 Tables Table 1-1. Fish Species Known to Occur in Primary Study Area ............................................. 1-13 Table 1-2. Central Valley Fish Species Potentially Affected
    [Show full text]
  • Evolutionary Restoration Ecology
    ch06 2/9/06 12:45 PM Page 113 189686 / Island Press / Falk Chapter 6 Evolutionary Restoration Ecology Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry Restoration Ecology and Evolutionary Process Restoration activities have increased dramatically in recent years, creating evolutionary chal- lenges and opportunities. Though restoration has favored a strong focus on the role of habi- tat, concerns surrounding the evolutionary ecology of populations are increasing. In this con- text, previous researchers have considered the importance of preserving extant diversity and maintaining future evolutionary potential (Montalvo et al. 1997; Lesica and Allendorf 1999), but they have usually ignored the prospect of ongoing evolution in real time. However, such contemporary evolution (changes occurring over one to a few hundred generations) appears to be relatively common in nature (Stockwell and Weeks 1999; Bone and Farres 2001; Kin- nison and Hendry 2001; Reznick and Ghalambor 2001; Ashley et al. 2003; Stockwell et al. 2003). Moreover, it is often associated with situations that may prevail in restoration projects, namely the presence of introduced populations and other anthropogenic disturbances (Stockwell and Weeks 1999; Bone and Farres 2001; Reznick and Ghalambor 2001) (Table 6.1). Any restoration program may thus entail consideration of evolution in the past, present, and future. Restoration efforts often involve dramatic and rapid shifts in habitat that may even lead to different ecological states (such as altered fire regimes) (Suding et al. 2003). Genetic variants that evolved within historically different evolutionary contexts (the past) may thus be pitted against novel and mismatched current conditions (the present). The degree of this mismatch should then determine the pattern and strength of selection acting on trait variation in such populations (Box 6.1; Figure 6.1).
    [Show full text]
  • Contra Costa County, California
    APPENDIX G BIOLOGICAL RESOURCES ASSESSMENT AND ARBORIST REPORTS Biological Resources Assessment for the Sufi Church Project Contra Costa County, California Prepared for: Meher Schools G-1 Prepared for: Meher Schools 999 Leland Drive Lafayette, CA 94549 925-938-9958 Prepared by: EDAW 2099 Mt. Diablo Blvd., Suite 204 Walnut Creek, CA 94596 (925) 279-0580 June 18, 2008 BIOLOGICAL RESOURCES ASSESSMENT FOR THE PROPOSED SUFI CHURCH PROJECT, CONTRA COSTA COUNTY, CALIFORNIA G-2 The information provided in this document is intended solely for the use and benefit of Meher Schools. No other person or entity shall be entitled to rely on the services, opinions, recommendations, plans or specifications provided herein, without the express written consent of EDAW, 2099 Mt. Diablo Blvd., Suite 204, Walnut Creek, CA 94596. G-3 TABLE OF CONTENTS SUMMARY.............................................................................................................................. i 1.0 INTRODUCTION AND METHODS .............................................................................1 2.0 EXISTING CONDITIONS.............................................................................................5 2.1 SETTING......................................................................................................................5 2.2 PLANT COMMUNITIES AND WILDLIFE HABITATS........................................................5 3.0 SPECIAL-STATUS BIOLOGICAL RESOURCES.......................................................7 3.1 SPECIAL-STATUS PLANTS ...........................................................................................7
    [Show full text]
  • Summary of Floods Ir the United States During 1960
    Summary of Floods ir the United States During 1960 By J. O. ROSTVEDT FLOODS OF 1960 IN THE UNITED STATES GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1790-B Prepared in cooperation with Federal, State, and local agencies CNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE DTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.G. 20402 - Price 45 cents (pap^r cover) CONTENTS Page Abstract___-_--_____-__-____---_--__-______-___-___.____________ Bl Introduction._____________________________________________________ 1 Determination of flood stages and discharges_________________________ 6 Explanation of data_________________-__-___________________-_____- 11 Summary of floods of 1960_____________________________________ 13 Floods of: February 8-10 in northern California._______________________ 13 March 7-9 in southern Idaho.______,____-__-__-_-_____-____ 18 March 17-April 5 in central Florida.________________________ 20 March-April in the Skunk River and lower Iowa River basins, Iowa_ _________________________________________________ 24 March 29-April 6 in southeastern Wisconsin and northeastern Illinois.----.-.-_____________________________-. 27 March-April in eastern Nebraska and adjacent areas._________ 30 March 30-April 6 in New York___-_-_____---_-__-_-_--__-__ 47 April 15^19 in west-central Missouri.________________________ 51 April and May in northern Wisconsin and Michigan Upper Peninsula. ___ ___________-_-______-__-_-_--___-_-_-_-_-__ 53 May 4-6 in northwestern Arkansas and east-central Oklahoma. _ 58 May 5-9 in southern Mississippi.___________________________ 60 May 6 in south-central Missouri.- __________________________ 64 May 19-22 in southwestern Arkansas and southeastern Okla­ homa.
    [Show full text]
  • Botanical Priority Guidebook
    Botanical Priority Protection Areas Alameda and Contra Costa Counties the East Bay Regional Park District. However, certain BPPAs include Hills have been from residential development. public parcels or properties with other conservation status. These are cases where land has been conserved since the creation of these boundaries or where potential management decisions have the poten- Following this initial mapping effort, the East Bay Chap- \ ntroduction tial to negatively affect an area’s botanical resources. Additionally, ter’s Conservation Committee began to utilize the con- each acre within these BPPAs represents a potential area of high pri- cept in draft form in key local planning efforts. Lech ority. Both urban and natural settings are included within these Naumovich, the chapter’s Conservation Analyst staff The lands that comprise the East Bay Chapter are located at the convergence boundaries, therefore, they are intended to be considered as areas person, showcased the map set in forums such as the of the San Francisco Bay, the North and South Coast Ranges, the Sacra- warranting further scrutiny due to the abundance of nearby sensitive BAOSC’s Upland Habitat Goals Project and the Green mento-San Joaquin Delta, and the San Joaquin Valley. The East Bay Chapter botanical resources supported by high quality habitat within each E A S T B A Y Vision Group (in association with Greenbelt Alliance); area supports a unique congregation of ecological conditions and native BPPA. Although a parcel, available for preservation through fee title C N P S East Bay Regional Park District’s Master Plan Process; plants. Based on historic botanical collections, the pressures from growth- purchase or conservation easement, may be located within the and local municipalities.
    [Show full text]
  • REPORT 1St Session HOUSE of REPRESENTATIVES 104–149 " !
    104TH CONGRESS REPORT 1st Session HOUSE OF REPRESENTATIVES 104±149 " ! ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, 1996 JUNE 20, 1995.ÐCommitted to the Committee of the Whole House on the State of the Union and ordered to be printed Mr. MYERS of Indiana, from the Committee on Appropriations, submitted the following R E P O R T together with ADDITIONAL VIEWS [To accompany H.R. 1905] The Committee on Appropriations submits the following report in explanation of the accompanying bill making appropriations for en- ergy and water development for the fiscal year ending September 30, 1996, and for other purposes. INDEX TO BILL AND REPORT Page Number Bill Report I. Department of DefenseÐCivil: Corps of engineersÐCivil: General investigations ................................................................. 2 6 Construction, general .................................................................. 3 26 Flood control, Mississippi River and tributaries, Arkansas, Il- linois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee .................................................................................. 5 36 Operation and maintenance, general ......................................... 5 38 Regulatory program ..................................................................... 6 52 Flood control and coastal emergencies ....................................... 6 52 Oil spill research .......................................................................... 7 52 General expenses ........................................................................
    [Show full text]
  • Big Tarplant (Blepharizonia Plumosa)
    Plants Big Tarplant (Blepharizonia plumosa) Big Tarplant (Blepharizonia plumosa) Status Federal: None State: None CNPS: List 1B Population Trend Global: Unknown State: Unknown Within Inventory Area: Unknown © 2002 John Game Data Characterization The location database for big tarplant includes 36 data records dated from 1916 to 2001 (California Natural Diversity Database 2005). Twenty-nine of the occurrences were documented within the last 10 years. Seven of the occurrences have not been observed for over 60 years, but all the other occurrences are believed to be extant (California Natural Diversity Database 2005). Most of the occurrences are of high precision and may be accurately located, including those within the inventory area. Very little ecological information is available for big tarplant. The published literature on the species pertains primarily to its taxonomy. The main sources of general information on this species are the Jepson Manual (Hickman 1993) and the California Native Plant Society (2005). Specific observations on habitat and plant associates, threats, and other factors are summarized in the California Natural Diversity Database (2005). Range Big tarplant is endemic to the Mount Diablo foothills and is found primarily in eastern Contra Costa, eastern Alameda, and western San Joaquin Counties (Hoover 1937). Occurrences within the ECCC HCP/NCCP Inventory Area In the inventory area, big tarplant is known from 4 occurrences on Cowell Ranch, west of Brentwood, 7 occurrences on Roddy Ranch, south of Antioch, and one occurrence in Mount Diablo State Park, southeast of Clayton (California Natural Diversity Database 2005, Lake 2004). The historic occurrences in Antioch are likely to have been extirpated, although at least 1 population is present at Black Diamond Mines Regional Park (Preston pers.
    [Show full text]
  • Key Restoration Methods of a Polluted River Ecosystem
    Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review.
    [Show full text]
  • C a S E S T U D Y R E P O R T Sherman Island Delta
    C A S E S T U D Y R E P O R T SHERMAN ISLAND DELTA PROJECT November 2013 Written by Bradley Angell, Richard Fisher & Ryan Whipple a project of Ante Meridiem Incorporated with the direct support of the Delta Alliance International Foundation © 2013 Ante Meridiem Incorporated ABSTRACT This report is an official beginning to a model design for Sherman Island, an important land mass that lies at the meeting point of the Sacramento and San Joaquin Rivers of the California Delta system. As design is typically dominated by a particular driving discipline or a paramount policy concern, the resulting decision-making apparatus is normally governed by that discipline or policy. After initial review of Sherman Island, such a “single” discipline or “principle” policy approach is not appropriate for Sherman Island. At this critical physical place at the heart of California Delta, an inter-disciplinary and equal-weighted policy balance is necessary to meet both the immediate and long-term requirements for rehabilitation of the project site. Exhibiting the collected work of a small team of design and policy specialists, the Case Study Report for the Sherman Island Delta Project outlines the multitude of interests, disciplines and potential opportunities for design expression on the selected 1,000 acre portion of Sherman Island under review. Funded principally by a generous grant from the Delta Alliance, the team researched applicable uses and technologies with a pragmatic case study approach to the subject, physically documenting exhibitions of each technology as geographically close to the project site as possible. After study and on-site documentation, the team compiled this wealth of discovery in three substantive chapters: a site characterization report, the stakeholders & goals assessment, and a case study report.
    [Show full text]
  • Designing a High-Frequency Nutrient and Biogeochemical Monitoring Network for the Sacramento–San Joaquin Delta, Northern California
    Prepared in cooperation with the Delta Regional Monitoring Program Designing a High-Frequency Nutrient and Biogeochemical Monitoring Network for the Sacramento–San Joaquin Delta, Northern California Scientific Investigations Report 2017–5058 U.S. Department of the Interior U.S. Geological Survey FRONT COVER: Top left: Photograph showing monitoring buoy at Liberty Island, California, being serviced by hydrologic technician. Photograph by Bryan Downing, December 19, 2013. Bottom Left: Example of a daily report for the monitoring buoy in Liberty Island, California that is emailed out to interested parties. Report generated by Frank Anderson, 2014. Bottom middle: Photograph showing vertical water quality profiler in the Sacramento River. Photograph by Michael Sauer, April 16, 2013. Right: Map of nitrate concentrations collected via high speed boat mapping in the Cache Slough Complex/North Delta. Map created by Travis von Dessonneck and Bryan Downing, October 10, 2014. BACK COVER: Top left: Photograph showing monitoring buoy at Liberty Island, California. Photograph by Bryan Downing, March 8, 2017. Bottom Left: Photograph showing vertical profiling instrumentation, Sacramento River, Freeport, California. Photograph courtesy of Michael Sauer, April 16, 2013. Right: Photograph showing flow monitoring station in Liberty Island, California. Photograph by Bryan Downing, March 8, 2017. Bottom: Photograph showing sunset in the northern Delta, Little Holland Tract, California. Photograph by Bryan Downing, March 8, 2017. Designing a High-Frequency Nutrient and Biogeochemical Monitoring Network for the Sacramento–San Joaquin Delta, Northern California By Brian A. Bergamaschi, Bryan D. Downing, Tamara E.C. Kraus, and Brian A. Pellerin Prepared in cooperation with the Delta Regional Monitoring Program Scientific Investigations Report 2017–5058 U.S.
    [Show full text]