Translation from the 5′ Untranslated Region Shapes the Integrated Stress Response Shelley R

Total Page:16

File Type:pdf, Size:1020Kb

Translation from the 5′ Untranslated Region Shapes the Integrated Stress Response Shelley R RESEARCH ◥ duce tracer peptides. These translation prod- RESEARCH ARTICLE SUMMARY ucts are processed and loaded onto major histocompatibility complex class I (MHC I) molecules in the ER and transit to the cell STRESS RESPONSE surface, where they can be detected by specific T cell hybridomas that are activated and quan- ′ tified using a colorimetric reagent. 3T provides Translation from the 5 untranslated an approach to interrogate the thousands of predicted uORFs in mammalian genomes, char- region shapes the integrated acterize the importance of uORF biology for regulation, and generate fundamental insights stress response into uORF mutation-based diseases. Shelley R. Starck,* Jordan C. Tsai, Keling Chen, Michael Shodiya, Lei Wang, RESULTS: 3T proved to be a sensitive and Kinnosuke Yahiro, Manuela Martins-Green, Nilabh Shastri,* Peter Walter* robust indicator of uORF expression. We mea- sured uORF expression in the 5′ UTR of INTRODUCTION: Protein synthesis is con- mRNAs, such as ATF4 and CHOP, that harbor mRNAs at multiple distinct regions, while trolled by a plethora of developmental and small upstream open reading frames (uORFs) ◥ simultaneously detecting environmental conditions. One intracellular in their 5′ untranslated regions (5′ UTRs). Still ON OUR WEB SITE expression of the CDS. We signaling network, the integrated stress re- other mRNAs sustain translation despite ISR Read the full article directly measured uORF sponse (ISR), activates one of four kinases in activation. We developed tracing translation at http://dx.doi. peptide expression from response to a variety of distinct stress stimuli: by T cells (3T) as an exquisitely sensitive tech- org/10.1126/ ATF4 mRNA and showed the endoplasmic reticulum (ER)–resident kinase nique to probe the translational dynamics of science.aad3867 that its translation per- .................................................. (PERK), the interferon-induced double-stranded uORFs directly during the ISR. With 3T, we sisted during the ISR. We RNA–dependent eIF2a kinase (PKR), the gen- measured the peptide products of uORFs applied 3T to study BiP expression, an ER ′ eral control nonderepressible 2 (GCN2), or the present in the 5 UTR of the essential ER- chaperone stably synthesized during the ISR. on September 22, 2016 heme-regulated inhibitor kinase (HRI). These resident chaperone, binding immunoglobulin We showed that the BiP 5′ UTR harbors four kinases recognize a central target and protein (BiP), also known as heat shock pro- uORFs that are exclusively initiated by UUG phosphorylate a single residue, Ser51, on the tein family A member 5 (HSPA5), and charac- and CUG start codons. BiP uORF expression a subunit of the eukaryotic initiation factor 2 terized their requirement for BiP expression bypassed a requirement for eIF2 and was de- (eIF2a), which is a component of the trimeric during the ISR. pendent on the alternative initiation factor initiation factor eIF2 that catalyzes translation eIF2A. Both translation of the UUG-initiated initiation at AUG start codons. Phosphoryl- RATIONALE: We repurposed the sensitivity uORF and eIF2A were necessary for BiP ex- ation of eIF2a down-regulates eIF2-dependent and specificity of T cells to interrogate the pression during the ISR. Unexpectedly, the protein synthesis, which is important in devel- translational capacity of RNA outside of an- products of uORF translation are predicted opment and immunity but also is implicated in notated protein coding sequences (CDSs). 3T to generate MHC I peptides active in adaptive neurodegeneration, cancer, and autoimmunity. relies on insertion of a tracer peptide coding immunity. We propose that this phenomenon However, protein synthesis does not cease on all sequence into a candidate DNA sequence. The presents an extracellular signature during http://science.sciencemag.org/ mRNAs during the ISR. Rather, eIF2a phos- resulting mRNAs harboring the nested tracer the ISR. phorylation is required for expression of select peptide coding sequence are translated to pro- CONCLUSION: Our findings introduce the notion that cells harbor a distinct translation initiation pathway to respond to a variety of environmental conditions and cellular dys- function. We showed that cells utilize a dis- Downloaded from tinct, eIF2A-mediated initiation pathway, which includes uORF translation, to sustain expres- sion of particular proteins during the ISR. 3T offers a valuable method to characterize the thousands of predicted translation events in 5′ UTRs and other noncoding RNAs and, expanded to a genome-wide scale, can com- plement ribosome profiling and mass spec- trometry in uORF and short ORF discovery. Our observations underscore the importance of translation outside of annotated CDSs and challenge the very definition of the U in 5′ UTR.▪ 3T reveals the translational landscape of the genome outside of annotated coding sequences. Tracer peptide coding sequences are inserted into regions outside the annotated CDS, such as The list of author affiliations is available in the full article online. uORFs. When translated, they generate peptides that are transported into the ER, are loaded onto *Corresponding authors. E-mail: [email protected] – (S.R.S.); [email protected] (N.S.); [email protected]. MHC I, and transit to the cell surface. T cell hybridomas that recognize the specific tracer peptide edu (P.W.) Cite this article as S. R. Starck et al., Science 351, MHC I complex become activated, which is detected using a colorimetric substrate. aad3867 (2016). DOI: 10.1126/science.aad3867 SCIENCE sciencemag.org 29 JANUARY 2016 • VOL 351 ISSUE 6272 465 RESEARCH ◥ is imperative to alleviate ER stress. BiP [im- RESEARCH ARTICLE munoglobulin heavy chain–binding protein, also known as heat shock 70 kD protein (HSP70), heat shock protein family A member 5 (HSPA5), STRESS RESPONSE or glucose-regulated protein 78] is an essential HSP70-type chaperone in the ER and is ex- pressed persistently during ER stress (22–24). Translation from the 5′ untranslated It plays a role in cancer progression (25) and is a therapeutic target for a variety of diseases (26, 27). Yet, it has remained a mystery how BiP region shapes the integrated and other stress-response mRNAs escape trans- lational down-regulation imposed by the ISR. stress response Elements in the 5′ UTRs, including internal ri- bosome entry sites (IRESs), uORFs, and nucle- Shelley R. Starck,1,2† Jordan C. Tsai,1 Keling Chen,2 Michael Shodiya,2 Lei Wang,3 otide modifications, have all been suggested to Kinnosuke Yahiro,4 Manuela Martins-Green,3 Nilabh Shastri,2*† Peter Walter1*† confer translational privilege to these mRNAs (28, 29). Translated regions distinct from annotated coding sequences have emerged as essential Recent genome-wide approaches predict that elements of the proteome. This includes upstream open reading frames (uORFs) present in nearly half of all mammalian mRNAs harbor mRNAs controlled by the integrated stress response (ISR) that show “privileged” translation uORFs in their 5′ UTRs, and many are initiated despite inhibited eukaryotic initiation factor 2–guanosine triphosphate–initiator methionyl with non-AUG start codons (30–34). The pres- Met transfer RNA (eIF2·GTP·Met-tRNAi ). We developed tracing translation by T cells to directly ence of uORFs in 5′ UTRs may reflect a general measure the translation products of uORFs during the ISR. We identified signature translation mechanism to regulate downstream CDS expres- events from uORFs in the 5′ untranslated region of binding immunoglobulin protein (BiP) mRNA sion, such as proto-oncogenes and growth factors (also called heat shock 70-kilodalton protein5mRNA)thatwerenotinitiatedatthestart (30), as well as other disease-causing proteins codon AUG. BiP expression during the ISR required both the alternative initiation factor eIF2A (35), including hereditary thrombocythemia (36–38). and non–AUG-initiated uORFs. We propose that persistent uORF translation, for a variety of Given the abundance of uORFs and their po- chaperones, shelters select mRNAs from the ISR, while simultaneously generating peptides that tential for regulatory roles, as well as the emer- on September 22, 2016 could serve as major histocompatibility complex class I ligands, marking cells for recognition by ging plethora of short open reading frames the adaptive immune system. (sORFs) (39–41) with bioactive properties (42), we developed a method to measure translation from RNA regions outside of annotated CDSs Met omeostatic mechanisms facilitate adapta- fer RNA (tRNA) (eIF2·GTP·Met-tRNAi )ternary systematically. tion to a variety of environmental condi- complex. Phosphorylation of eIF2a (eIF2a-P) in- tions and cellular dysfunction. The integrated hibits exchange of guanosine diphosphate for Development of tracing translation stress response (ISR) is one such mecha- GTP by eIF2B, the dedicated eIF2 guanine nu- by T cells (3T) to measure translation H outside of annotated coding sequences nism, triggered when cells encounter an cleotide exchange factor, which causes inhibition array of stress stimuli. These stimuli include of total protein synthesis (8). The blockade in Ribosome-profiling experiments reveal that misfolded proteins, which elicit the unfolded pro- translation is important for cell survival and the mRNAs encoding stress-response proteins har- tein response (UPR) and thereby activate the endo- eventual switch into apoptosis if homeostasis bor a particularly high abundance of uORFs http://science.sciencemag.org/ plasmic reticulum (ER)–resident
Recommended publications
  • Mayr, Annu Rev Genet 2017
    GE51CH09-Mayr ARI 12 October 2017 10:21 Annual Review of Genetics Regulation by 3-Untranslated Regions Christine Mayr Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; email: [email protected] Annu. Rev. Genet. 2017. 51:171–94 Keywords First published as a Review in Advance on August noncoding RNA, regulatory RNA, alternative 3-UTRs, alternative 30, 2017 polyadenylation, cotranslational protein complex formation, cellular The Annual Review of Genetics is online at organization, mRNA localization, RNA-binding proteins, cooperativity, genet.annualreviews.org accessibility of regulatory elements https://doi.org/10.1146/annurev-genet-120116- 024704 Abstract Copyright c 2017 by Annual Reviews. 3 -untranslated regions (3 -UTRs) are the noncoding parts of mRNAs. Com- All rights reserved pared to yeast, in humans, median 3-UTR length has expanded approx- imately tenfold alongside an increased generation of alternative 3-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3-UTRs in the biology of higher organisms. 3-UTRs are best known to regulate ANNUAL REVIEWS Further diverse fates of mRNAs, including degradation, translation, and localiza- Click here to view this article's tion, but they can also function like long noncoding or small RNAs, as has Annu. Rev. Genet. 2017.51:171-194. Downloaded from www.annualreviews.org online features: • Download figures as PPT slides been shown for whole 3 -UTRs as well as for cleaved fragments. Further- • Navigate linked references • Download citations more, 3 -UTRs determine the fate of proteins through the regulation of Access provided by Memorial Sloan-Kettering Cancer Center on 11/30/17.
    [Show full text]
  • Expression Cloning of a Human Dual-Specificity Phosphatase TOSHIO ISHIBASHI, DONALD P
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 12170-12174, December 1992 Biochemistry Expression cloning of a human dual-specificity phosphatase TOSHIO ISHIBASHI, DONALD P. BOTTARO, ANDREW CHAN, TORU MIKI, AND STUART A. AARONSON* Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892 Communicated by Leon A. Heppel, September 24, 1992 ABSTRACT Using an expression cloning strategy, we iso- substrate specificity for both phosphotyrosine and phospho- lated a cDNA encoding a human protein-tyrosine-phosphatase. serine. Bacteria expressing the kinase domain of the keratinocyte growth factor receptor (bek/fibroblast growth factor receptor 2) were infected with a fibroblast cDNA library in a phanid MATERIALS AND METHODS prokaryotic expression vector and screened with a monoclonal Plamid Construction of bek Kiame. The EcoRI-Sal I anti-phosphotyrosine antibody. Among several clones showing fragment of the mouse keratinocyte growth factor (KGF) decreased anti-phosphotyrosine recognition, one displayed receptor cDNA (15), which includes the kinase and carboxyl- phosphatase activity toward the kinase in vitro. The 4.1- terminal domains (residues 361-707), was ligated to the kilobase cDNA encoded a deduced protein of 185 amino ds EcoRP-Sal I fragment ofthe expression vector pCEV-lacZ to with limited sequence similar to the vaccinia virus phospha- generate the plasmid pCEV-bek (Fig. 1A). pCEV-lacZ is a tase VH1. The puriffied recombinant protein dephosphorlated pUC-based plasmid expression vector that produces a 3-gal several activated growth factor receptors, as well as serine- fusion protein under the control of the lac promoter (see phosphorylated casein, in vitro. Both serine and tyrosine phos- below).
    [Show full text]
  • US5266490.Pdf
    ||||||||||||I|| US005266490A United States Patent (19) 11 Patent Number: 5,266,490 Davis et al. 45 Date of Patent: Nov.30, 1993 (54) MAMMALIAN EXPRESSION VECTOR Maniatis et al. (1990), Molecular Cloning: A Laboratory Manual, vol. 2, pp. 16.3-16.81. 75 Inventors: Samuel Davis, New York; George D. Martson (1987), DNA Cloning: A Practical Approach, Yancopoulos, Briarcliff Manor, both vol. 3, Chap. 4, pp. 59-88. of N.Y. Mizushima et al. (1990), Nucl. Acids Res. 18 (17): 5322. 73) Assignee: Regeneron Pharmaceuticals, Inc., Sambrook et al. (1988), Focus 10(3): 41-48. Tarrytown, N.Y. Simmons et al. (1988), J. Immunol. 141 (8): 2797-2800. Spector (1985), Genet. Engineering 7: 199-234. (21) Appl. No.: 678,408 Stamenkovic et al. (1988), J. Exp. Med. 167: 1975-1980. (22 Filed: Mar. 28, 1991 Urlaub et al. (1980), Proc. Nat. Acad. Sci USA 77(7): 51) Int. Cl.5...................... C12N 15/79; C12N 15/12; 426-4220. C12N 15/18 Woeltje et al. (1990), J. Biol. Chem. 265 (18): 10720-10725. 52) U.S. C. ................................ 435/320.1; 536/23.4; Wysocki et al. (1978); Proc. Nat. Acad. Sci USA 75(6): 536/23.5; 536/24.1 2844-2848. 58) Field of Search ................. 435/320.1, 69.1, 172.3; Seed, B. (Oct. 1987), Nature, vol. 329, pp. 840-842. 536/27, 24.1, 23.4, 23.5 Yanisch-Perron et al. (1985), Gene, vol. 33, pp. (56) References Cited 103-119. PUBLICATIONS Seed et al. (May, 1987), Proc. Nat. Acad. Sci USA, vol. 84, pp. 3365-3369.
    [Show full text]
  • Regulation of Translation by the 3' Untranslated Region of Barley Yellow Dwarf Virus-PAV RNA Shanping Wang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1996 Regulation of translation by the 3' untranslated region of barley yellow dwarf virus-PAV RNA Shanping Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Pathology Commons Recommended Citation Wang, Shanping, "Regulation of translation by the 3' untranslated region of barley yellow dwarf virus-PAV RNA " (1996). Retrospective Theses and Dissertations. 11426. https://lib.dr.iastate.edu/rtd/11426 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afTect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
    1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function.
    [Show full text]
  • Mechanisms of Mrna Polyadenylation
    Turkish Journal of Biology Turk J Biol (2016) 40: 529-538 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Review Article doi:10.3906/biy-1505-94 Mechanisms of mRNA polyadenylation Hızlan Hıncal AĞUŞ, Ayşe Elif ERSON BENSAN* Department of Biology, Arts and Sciences, Middle East Technical University, Ankara, Turkey Received: 26.05.2015 Accepted/Published Online: 21.08.2015 Final Version: 18.05.2016 Abstract: mRNA 3’-end processing involves the addition of a poly(A) tail based on the recognition of the poly(A) signal and subsequent cleavage of the mRNA at the poly(A) site. Alternative polyadenylation (APA) is emerging as a novel mechanism of gene expression regulation in normal and in disease states. APA results from the recognition of less canonical proximal or distal poly(A) signals leading to changes in the 3’ untranslated region (UTR) lengths and even in some cases changes in the coding sequence of the distal part of the transcript. Consequently, RNA-binding proteins and/or microRNAs may differentially bind to shorter or longer isoforms. These changes may eventually alter the stability, localization, and/or translational efficiency of the mRNAs. Overall, the 3’ UTRs are gaining more attention as they possess a significant posttranscriptional regulation potential guided by APA, microRNAs, and RNA-binding proteins. Here we provide an overview of the recent developments in the APA field in connection with cancer as a potential oncogene activator and/or tumor suppressor silencing mechanism. A better understanding of the extent and significance of APA deregulation will pave the way to possible new developments to utilize the APA machinery and its downstream effects in cancer cells for diagnostic and therapeutic applications.
    [Show full text]
  • Human Intestinal Nutrient Transporters
    Gastrointestinal Functions, edited by Edgard E. Delvin and Michael J. Lentze. Nestle Nutrition Workshop Series. Pediatric Program. Vol. 46. Nestec Ltd.. Vevey/Lippincott Williams & Wilkins, Philadelphia © 2001. Human Intestinal Nutrient Transporters Ernest M. Wright Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA Over the past decade, advances in molecular biology have revolutionized studies on intestinal nutrient absorption in humans. Before the advent of molecular biology, the study of nutrient absorption was largely limited to in vivo and in vitro animal model systems. This did result in the classification of the different transport systems involved, and in the development of models for nutrient transport across enterocytes (1). Nutrients are either absorbed passively or actively. Passive transport across the epithelium occurs down the nutrient's concentration gradient by simple or facilitated diffusion. The efficiency of simple diffusion depends on the lipid solubility of the nutrient in the plasma membranes—the higher the molecule's partition coefficient, the higher the rate of diffusion. Facilitated diffusion depends on the presence of simple carriers (uniporters) in the plasma membranes, and the kinetic properties of these uniporters. The rate of facilitated diffusion depends on the density, turnover number, and affinity of the uniporters in the brush border and basolateral membranes. The ' 'active'' transport of nutrients simply means that energy is provided to transport molecules across the gut against their concentration gradient. It is now well recog- nized that active nutrient transport is brought about by Na+ or H+ cotransporters (symporters) that harness the energy stored in ion gradients to drive the uphill trans- port of a solute.
    [Show full text]
  • Genomic/Plasmid Dna and Rna)
    NPTEL – Bio Technology – Genetic Engineering & Applications MODULE 4- LECTURE 1 ISOLATION AND PURIFICATION OF NUCLEIC ACIDS (GENOMIC/PLASMID DNA AND RNA) 4-1.1. Introduction Every gene manipulation procedure requires genetic material like DNA and RNA. Nucleic acids occur naturally in association with proteins and lipoprotein organelles. The dissociation of a nucleoprotein into nucleic acid and protein moieties and their subsequent separation, are the essential steps in the isolation of all species of nucleic acids. Isolation of nucleic acids is followed by quantitation of nucleic acids generally done by either spectrophotometric or by using fluorescent dyes to determine the average concentrations and purity of DNA or RNA present in a mixture. Isolating the genetic material (DNA) from cells (bacterial, viral, plant or animal) involves three basic steps- • Rupturing of cell membrane to release the cellular components and DNA • Separation of the nucleic acids from other cellular components • Purification of nucleic acids 4-1.2. Isolation and Purification of Genomic DNA Genomic DNA is found in the nucleus of all living cells with the structure of double- stranded DNA remaining unchanged (helical ribbon). The isolation of genomic DNA differs in animals and plant cells. DNA isolation from plant cells is difficult due to the presence of cell wall, as compared to animal cells. The amount and purity of extracted DNA depends on the nature of the cell. The method of isolation of genomic DNA from a bacterium comprises following steps (Figure 4-1.2.)- 1. Bacterial culture growth and harvest. 2. Cell wall rupture and cell extract preparation. Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 57 NPTEL – Bio Technology – Genetic Engineering & Applications 3.
    [Show full text]
  • Translation from the 5′ Untranslated Region Shapes the Integrated Stress Response Shelley R
    RESEARCH ◥ duce tracer peptides. These translation prod- RESEARCH ARTICLE SUMMARY ucts are processed and loaded onto major histocompatibility complex class I (MHC I) molecules in the ER and transit to the cell STRESS RESPONSE surface, where they can be detected by specific T cell hybridomas that are activated and quan- ′ tified using a colorimetric reagent. 3T provides Translation from the 5 untranslated an approach to interrogate the thousands of predicted uORFs in mammalian genomes, char- region shapes the integrated acterize the importance of uORF biology for regulation, and generate fundamental insights stress response into uORF mutation-based diseases. Shelley R. Starck,* Jordan C. Tsai, Keling Chen, Michael Shodiya, Lei Wang, RESULTS: 3T proved to be a sensitive and Kinnosuke Yahiro, Manuela Martins-Green, Nilabh Shastri,* Peter Walter* robust indicator of uORF expression. We mea- sured uORF expression in the 5′ UTR of INTRODUCTION: Protein synthesis is con- mRNAs, such as ATF4 and CHOP, that harbor mRNAs at multiple distinct regions, while trolled by a plethora of developmental and small upstream open reading frames (uORFs) ◥ simultaneously detecting environmental conditions. One intracellular in their 5′ untranslated regions (5′ UTRs). Still ON OUR WEB SITE expression of the CDS. We signaling network, the integrated stress re- other mRNAs sustain translation despite ISR Read the full article directly measured uORF sponse (ISR), activates one of four kinases in activation. We developed tracing translation at http://dx.doi. peptide expression from response to a variety of distinct stress stimuli: by T cells (3T) as an exquisitely sensitive tech- org/10.1126/ ATF4 mRNA and showed the endoplasmic reticulum (ER)–resident kinase nique to probe the translational dynamics of science.aad3867 that its translation per- .................................................
    [Show full text]
  • Eukaryotic Expression Cloning with an Antimetastatic
    [CANCER RESEARCH 59, 3812–3820, August 1, 1999] Eukaryotic Expression Cloning with an Antimetastatic Monoclonal Antibody Identifies a Tetraspanin (PETA-3/CD151) as an Effector of Human Tumor Cell Migration and Metastasis1 Jacqueline E. Testa,2,3 Peter C. Brooks,4 Jian-Min Lin,5 and James P. Quigley3 Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794 ABSTRACT interactions with different matrix proteins. Our efforts to identify novel metastasis-associated antigens have, therefore, focused on the tumor cell A monoclonal antibody (mAb), 50-6, generated by subtractive immuniza- surface. As our model system, we have used a highly metastatic human tion, was found to specifically inhibit in vivo metastasis of a human epider- epidermoid carcinoma cell line, HEp-3, which disseminates to host lung moid carcinoma cell line, HEp-3. The cDNA of the cognate antigen of mAb 50-6 was isolated by a modified eukaryotic expression cloning protocol from tissue. The distinct characteristics and behavior patterns of this tumor cell a HEp-3 library. Sequence analysis identified the antigen as PETA-3/CD151, line have been described by Ossowski in a series of papers published a recently described member of the tetraspanin family of proteins. The cloned between 1980 and 1998 (7–9). These cells are very aggressive and readily antigen was also recognized by a previously described antimetastatic anti- give rise to metastasizing tumors in both the chicken embryo (10–12) and body, mAb 1A5. Inhibition of HEp-3 metastasis by the mAbs could not be in the nude mouse model (13, 14).
    [Show full text]
  • Gene Expression Regulation by Upstream Open Reading Frames In
    Silva J, Fernandes R, Romão L. J Rare Dis Res Treat. (2017) 2(4): 33-38 Journal of www.rarediseasesjournal.com Rare Diseases Research & Treatment Mini review Open Access Gene expression regulation by upstream open reading frames in rare diseases Joana Silva1,2, Rafael Fernandes1,2, and Luísa Romão1,2* 1Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal 2Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal Article Info ABSTRACT Article Notes Upstream open reading frames (uORFs) constitute a class of cis-acting Received: June 19, 2017 elements that regulate translation initiation. Mutations or polymorphisms that Accepted: July 21, 2017 alter, create or disrupt a uORF have been widely associated with several human *Correspondence: disorders, including rare diseases. In this mini-review, we intend to highlight the Dr. Luísa Romão, Department of Human Genetics, Instituto mechanisms associated with the uORF-mediated translational regulation and Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, describe recent examples of their deregulation in the etiology of human rare 1649-016, Lisboa, Portugal; Tel: (+351) 21 750 8155; Fax: diseases. Additionally, we discuss new insights arising from ribosome profiling (+351) 21 752 6410; studies and reporter assays regarding uORF features and their intrinsic role E-mail: [email protected]. in translational regulation. This type of knowledge is of most importance to © 2017 Romão L. This article is distributed under the terms of design and implement new or improved diagnostic and/or treatment strategies the Creative Commons Attribution 4.0 International License.
    [Show full text]
  • Reviews/0004.1
    http://genomebiology.com/2002/3/3/reviews/0004.1 Review Untranslated regions of mRNAs comment Flavio Mignone*, Carmela Gissi*, Sabino Liuni† and Graziano Pesole* Addresses: *Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Via Celoria, 26, 20133 Milano, Italy. †Centro di Studio sui Mitocondri e Metabolismo Energetico, Via Amendola 166/5, 70126 Bari, Italy. Correspondence: Graziano Pesole. E-mail: [email protected] reviews Published: 28 February 2002 Genome Biology 2002, 3(3):reviews0004.1–0004.10 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2002/3/3/reviews/0004 © BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914) Abstract reports Gene expression is finely regulated at the post-transcriptional level. Features of the untranslated regions of mRNAs that control their translation, degradation and localization include stem-loop structures, upstream initiation codons and open reading frames, internal ribosome entry sites and various cis-acting elements that are bound by RNA-binding proteins. deposited research The recent analysis of the human genome [1,2] and the data 5? untranslated region (5? UTR), a coding region made up of available about other higher eukaryotic genomes have triplet codons that each encode an amino acid and a 3? revealed that only a small fraction of the genetic material - untranslated region (3? UTR). Figure 1 shows these and about 1.5 % - codes for protein. Indeed, most genomic DNA other features of mRNAs. is
    [Show full text]