Assessing and Controlling Bio-Deterioration of Maize in Tanzania Rashid Ali Suleiman Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Assessing and Controlling Bio-Deterioration of Maize in Tanzania Rashid Ali Suleiman Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Assessing and controlling bio-deterioration of maize in Tanzania Rashid Ali Suleiman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Suleiman, Rashid Ali, "Assessing and controlling bio-deterioration of maize in Tanzania" (2016). Graduate Theses and Dissertations. 15817. https://lib.dr.iastate.edu/etd/15817 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Assessing and controlling bio-deterioration of maize in Tanzania by Rashid Ali Suleiman A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Industrial and Agricultural Technology Program of Study Committee: Kurt A. Rosentrater, Major Professor Carl J. Bern Thomas J. Brumm Gretchen A. Mosher Joel R. Coats Iowa State University Ames, Iowa 2016 Copyright © Rashid Ali Suleiman, 2016. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my father the late Ali Suleiman Abdallah and my mother Moza Massoud Seif for their endless love, sacrifices, patience, care, and most importantly giving me strength to achieve higher goals in life. I also dedicate this work to my beautiful wife Mchanga Massoud Msabah and my daughter Khadija Rashid Suleiman for their enduring patience, support, encouragement and whose sacrifices, which were realized by our loss of precious time together, were for me the most painful and humbling of all. iii TABLE OF CONTENTS DEDICATION .......................................................................................................................... ii TABLE OF CONTENTS ......................................................................................................... iii LIST OF FIGURES ................................................................................................................. ix LIST OF TABLES ................................................................................................................. xiv NOMENCLATURE ............................................................................................................. xvii ABSTRACT ........................................................................................................................... xxi CHAPTER 1. GENERAL INTRODUCTION ..........................................................................1 1.1. Research problem ........................................................................................................... 1 1.2. Problem Justification ...................................................................................................... 3 1.3. Research Objectives ....................................................................................................... 5 1.4. Research Hypotheses ...................................................................................................... 6 1.5. Thesis Outline ............................................................................................................... 10 1.6. References .................................................................................................................... 11 CHAPTER 2. CURRENT MAIZE PRODUCTION, POSTHARVEST LOSSES AND THE RISK OF MYCOTOXINS CONTAMINATION IN TANZANIA ......................14 2.1. Introduction .................................................................................................................. 15 2.2. Background ................................................................................................................... 16 2.3. The History of Maize in Tanzania ................................................................................ 19 2.4. Maize Production in Tanzania ...................................................................................... 20 2.4.1. Overview of Maize Production Trends ...................................................................20 2.4.2. Consumption Trends ...............................................................................................24 2.5. Postharvest Losses of Maize ......................................................................................... 25 2.5.1. Types of Losses .......................................................................................................27 2.5.2. Weight Loss.............................................................................................................28 2.6. Major Pests of Maize in Tanzania ................................................................................ 30 2.6.1. Maize Stalk Borers ..................................................................................................31 2.6.2. African Armyworm .................................................................................................32 2.6.3. Weeds ......................................................................................................................34 2.6.4. Striga (witchweed) ..................................................................................................35 2.7. Maize Diseases of Maize in Tanzania .......................................................................... 37 2.7.1. Maize Streak Disease ..............................................................................................38 iv 2.8. Storage Pests ................................................................................................................. 39 2.8.1. The Larger Grain Borer (Prostephanus truncatus) .................................................40 2.8.2. The Maize Weevil (Sitophilus zeamais)..................................................................43 2.9. Rodents ......................................................................................................................... 46 2.9.1. Rodents in Tanzania ................................................................................................47 2.10. Strategies to Reduce Postharvest Losses .................................................................... 48 2.10.1. Technology and Infrastructure ..............................................................................50 2.10.2. Hermetic Storage Technology (HST) ...................................................................51 2.10.3. Types of Hermetic Storage ....................................................................................51 2.10.3.1. Purdue Improved Crop Storage (PICS) ......................................................... 52 2.10.3.2. The GrainPro Super Bags .............................................................................. 54 2.10.3.3. Metals Silo Technology ................................................................................. 55 2.10.3.4. Silo Bags ........................................................................................................ 57 2.11. Mycotoxins ................................................................................................................. 58 2.11.1. Fungi deterioration ................................................................................................58 2.11.2. Aflatoxins (AFs) ....................................................................................................62 2.11.3. Fumonisin (FUM) .................................................................................................65 2.11.4. Ochratoxins (OT) ..................................................................................................66 2.11.5. Trichothecenes (TCT) ...........................................................................................67 2.11.6. Deoxynivalenol (DON) .........................................................................................70 2.11.7. Zearalenone (ZEA) ................................................................................................73 2.11.8. Mycotoxins Contamination in Tanzania ...............................................................74 2.11.9. Mycotoxin Economic Aspects ..............................................................................77 2.11.10. Strategies for prevention of mycotoxins in maize ...............................................79 2.11.11. Pre-harvest Strategies ..........................................................................................79 2.11.12. Post-harvest Strategies ........................................................................................82 2.12. Conclusions ................................................................................................................ 82 2.13. References .................................................................................................................. 85 CHAPTER 3. EFFECTS OF DETERIORATION PARAMETERS ON STORAGE OF MAIZE ...................................................................................................................................122 3.1. Introduction ...............................................................................................................
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 3 0 0 North Z eeb Road. Ann Arbor. Ml 4 8106-1346 USA 313/761-4700 800/521-0600 Order Number 9130518 Studies of epidemiology of maize streak virus and itsCicadulina leafhopper vectors in Nigeria Mbey-yame, Asanzi Christopher, Ph.D.
    [Show full text]
  • Performance of Popcorn Introductions for Agronomic Characters, Grain Yield and Popping Qualities in the Forest and Derived Savannah Agro-Ecologies of Nigeria
    doi:10.14720/aas.2019.114.1.6 Original research article / izvirni znanstveni članek Performance of popcorn introductions for agronomic characters, grain yield and popping qualities in the forest and derived savannah agro-ecologies of Nigeria Oloruntoba OLAKOJO 1, 2, Gbadebo OLAOYE 1, Adewole AKINTUNDE 3 Received April 25, 2019; accepted August 14, 2019. Delo je prispelo 25. aprila 2019, sprejeto 14. avgusta 2019. Performance of popcorn introductions for agronomic char- Predstavitev uspešnosti uvajanja pokovke na osnovi njenih acters, grain yield and popping qualities in the forest and de- agronomskih lastnosti, pridelka zrnja in kakovosti nabreka- rived savannah agro-ecologies of Nigeria nja v gozdnih in prehodno-savanskih agroekosistemih Nige- Abstract: The study focus on the evaluation of popcorn rije lines for their yield and agronomic potentials. Genetic materi- Izvleček: Raziskava je bile osredotočena na ovredno- als were evaluated under irrigation in a three-replicate in a Ran- tenje linij pokovke glede na njen pridelek in agronomske domized Complete Block Design (RCBD) with a commercial lastnosti. Genetski material je bil ovrednoten ob namakanju variety as check. Two seeds were planted per hole using two- v naključnem bločnem poskusu s tremi ponovitvami v prim- row plots of 5 m long with inter and intra-row spacing of 0.75 m erjavi s komercialno sorto. Po dve semeni sta bili posejani v x 0.5 m, respectively in two locations viz: Ibadan and Ikenne vrstah na ploskvah dolžine 5 m, z medvrstno razdaljo 0,75 m representing the forest and savannah agro-ecologies of Nige- in znotrajvrstno razdaljo 0,5 m, na lokacijah Ibadan in Ikenne, ria respectively.
    [Show full text]
  • Bisdesmosidic Saponins from Securidaca Longepedunculata Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests
    8860 J. Agric. Food Chem. 2009, 57, 8860–8867 DOI:10.1021/jf901599j Bisdesmosidic Saponins from Securidaca longepedunculata Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests ,†,‡ †,§ † PHILIP C. STEVENSON,* THAMARA K. DAYARATHNA, STEVEN R. BELMAIN, AND ‡ NIGEL C. VEITCH †Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom, and ‡Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. § Current address: Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada. Powdered dry root bark of Securidaca longepedunculata was mixed with maize and cowpea and effectively reduced the numbers of Sitophilus zeamais and Callosobruchus maculatus emerging from these commodities, respectively, more than 9 months after treatment. This effect was reciprocated in grain treated with a methanol extract of the root bark, indicating that compounds were present that were oviposition deterrents or directly toxic to the adults or larvae. Two new bisdesmosidic saponins, 3-O-β-D- glucopyranosyl-28-O-(R-L-arabinopyranosyl-(1 f 3)-β-D-xylopyranosyl-(1 f 4)[β-D-apiofuranosyl-(1 f 3)]- R-L-rhamnopyranosyl-(1 f 2)-[4-O-(4-methoxycinnamoyl-β-D-fucopyranosyl)])-medicagenic acid (securi- dacaside A) and 3-O-β-D-glucopyranosyl-28-O-(R-L-arabinopyranosyl-(1 f 3)-β-D-xylopyranosyl-(1 f 4)- [β-D-apiofuranosyl-(1f3)]-R-L-rhamnopyranosyl-(1 f 2)-[4-O-(3,4,5-trimethoxy-(E )-cinnamoyl-β-D-fucopy- ranosyl)])-medicagenic acid (securidacaside B), were isolated from the methanol extract of the roots of S.
    [Show full text]
  • Insect Pests of Stored Grain Blog
    Insect Pests of Stored Grain Insect Pest Population Potential • Insects are 1/16 to ½ inch depending on the species. • Large numbers insects in small amounts of debris. • 500 female insects • each female produces 200 offspring • 10 million insects in two generations. Adapted from the Penn State University Agronomy Guide Store Grain Insects Economic Damage • Lose up to 10% of the grain weight in a full storage bin • grain bin containing 30,000 bushels of corn valued at $3.00 per bushel would lose $9,000 • The loss does not include dockage or the cost of eliminating the insects from the grain. Adapted from the Penn State University Agronomy Guide Sampling for Bugs Looking for Bugs Docking screens can be used to separate beetles from the grain. Primary Stored Grain Feeders in NYS Weevils • Granary Weevil • Rice Weevil • Maize Weevil Beetles • Lesser Grain Borer Moths • Angoumois grain moth Weevils Have Snouts! Snout No Snout Gary Alpert, Harvard University, Bugwood.org Gary Alpert, Harvard University, Bugwood.org Maize Weevil Lesser Grain Borer Granary weevil Sitophilus granarius (L.) • polished, blackish or brown. • 3/16 of an inch long • no wings • Not in the field • longitudinal punctures- thorax • 80-300 eggs laid • One egg per grain kernel • corn, oats, barley, rye, and wheat Clemson University - USDA Cooperative Extension Slide Series , Bugwood.org Rice Weevil (Sitophilus oryzae) • 3/32 of an inch. • reddish brown to black • Small round pits-thorax • Has wings with yellow markings • Lays 80-500 eggs inside of grain • One egg per grain kernel • Start in the field • wheat, corn, oats, rye, Joseph Berger, Bugwood.org barley, sorghum, buckwheat, dried beans Maize Weevil Sitophilus zeamais • Very similar to rice weevil • slightly larger • 1/8 of an inch long • Small round pits on thorax with a mid line.
    [Show full text]
  • Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use
    NAPPO Discussion Document DD 04: Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use Prepared by members of the Pest Risk Analysis Panel of the North American Plant Protection Organization (NAPPO) December 2011 Contents Introduction ...........................................................................................................................3 Purpose ................................................................................................................................4 Scope ...................................................................................................................................4 1. Background ....................................................................................................................4 2. Description of the Commodity ........................................................................................6 3. Assessment of Pest Risks Associated with Wooden Articles Intended for Indoor and Outdoor Use ...................................................................................................................6 Probability of Entry of Pests into the NAPPO Region ...........................................................6 3.1 Probability of Pests Occurring in or on the Commodity at Origin ................................6 3.2 Survival during Transport .......................................................................................... 10 3.3 Probability of Pest Surviving Existing Pest Management Practices .......................... 10 3.4 Probability
    [Show full text]
  • Table of Contents
    Table of Contents Foreword . 2 Introduction. 3 Industrial Uses of Refined Corn Products . 7 Industrial Markets for Starch and Corn-derived Chemicals . 11 The Enzyme Advantage . 15 Plastics from Corn—The Vision Becomes Reality . 19 Renewable Resources Bring Sustainability to DuPont’s Newest Polymer Platform . 22 Corn Industry Statistics Shipments of Products of the Corn Refining Industry - 2000 . 3 Member Company Products . 5 Corn for Grain: Yield and Production . 14 Corn: Food and Industrial Uses . 16 U.S. Per Capita Sweetener Consumption . 18 World Corn Production, Consumption and Stocks . 21 Corn: Supply and Disappearance . 23 Exports of Products from Corn . 24 2001 Corn Annual Foreword The 2001 Corn Annual focuses on industrial uses and markets for refined corn products. Of the tradi- tional products of the industry—corn starch, sweeteners, oil and feedstuffs—starch has been the leader in industrial applications. In several industrial sectors, the use of starch is well established, but development of new uses and the extension of existing applications continue. Applications for sweeteners are rooted in food manufacturing, but advances in processing technology have opened several opportunities. By exploring the uses of starch in the established sectors of paper, adhesives and textiles, we hope to convey a better understanding of how starch can advance the production process. The review is also intended to provide an appreciation for product characteristics attributable to starch. An examination of the current and potential industrial markets for corn starch and corn-derived Charles F. Conner chemicals shows promising growth for the corn wet milling industry. This market analysis is President intended to provide insight to the dynamic of the relationship between supplier and consumer Corn Refiners as well as identify the factors that will influence growth.
    [Show full text]
  • Corn Has Diverse Uses and Can Be Transformed Into Varied Products
    Maize Based Products Compiled and Edited by Dr Shruti Sethi, Principal Scientist & Dr. S. K. Jha, Principal Scientist & Professor Division of Food Science and Postharvest Technology ICAR-Indian Agricultural Research Institute, Pusa New Delhi 110012 Maize is also known as Corn or Makka in Hindi. It is one of the most versatile crops having adaptability under varied agro-climatic conditions. Globally, it is known as queen of cereals due to its highest genetic yield potential among the cereals. In India, Maize is grown throughout the year. It is predominantly a kharif crop with 85 per cent of the area under cultivation in the season. The United States of America (USA) is the largest producer of maize contributing about 36% of the total production. Production of maize ranks third in the country after rice and wheat. About 26 million tonnes corn was produced in 2016-17 from 9.6 Mha area. The country exported 3,70,066.11 MT of maize to the world for the worth of Rs. 1,019.29 crores/ 142.76 USD Millions in 2019-20. Major export destinations included Nepal, Bangladesh Pr, Myanmar, Pakistan Ir, Bhutan The corn kernel has highest energy density (365 kcal/100 g) among the cereals and also contains vitamins namely, vitamin B1 (thiamine), B2 (niacin), B3 (riboflavin), B5 (pantothenic acid) and B6. Although maize kernels contain many macro and micronutrients necessary for human metabolic needs, normal corn is inherently deficient in two essential amino acids, viz lysine and tryptophan. Maize is staple food for human being and quality feed for animals.
    [Show full text]
  • Integrated Arthropod Pest Management Systems for Human Health Improvement in Africa
    Insect Sci. Applic. Vol. 23, No. 2, pp. 85-98, 2003 0191-9040/03 $3.00 + 0.00 Printed in Kenya. All rights reserved © 2003 ICIPE MINI REVIEW- INTEGRATED ARTHROPOD PEST MANAGEMENT SYSTEMS FOR HUMAN HEALTH IMPROVEMENT IN AFRICA JOHANN BAUMGARTNER1, FRITZ SCHULTHESS2 AND YUNLONG XIA3 'International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 17319, Addis Ababa, Ethiopia; 2Postfach 112-4, Chur, Switzerland; international Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi 00100, Kenya (Accepted 12 March'2003) Abstract— In a sub-Saharan African context, limited natural resources, infectious diseases, including those transmitted by arthropod vectors, and chronic exposure to food contaminated with mycotoxin- producing fungi which, among others, are vectored by insects, are among the major constraints to human health. Thus, pest control should be an important component in human health improvement projects. It appears that the advantages of preventive over curative methods are rarely recognised in Africa, with more emphasis being given to the search for the 'silver bullet' than to integrated control approaches. Integrated pest management (IPM) systems can be assigned to different decision- making levels as well as to different integration levels, combining ecological (individual pest species, species communities, species assemblages) and management (crop, cropping systems, farms, communities) levels with the respective control systems. These levels produce a highly structured environment for decision-making, in which the use of modern information technology is important. Case studies show that IPM systems are developed and implemented at four integration levels, whereby most work is done on the lowest integration level, addressing a single pest or pest complex attacking a particular crop, group of livestock or human population, and the respective control measures undertaken.
    [Show full text]
  • Life History of Immature Maize Weevils (Coleoptera: Curculionidae) on Corn Stored at Constant Temperatures and Relative Humiditi
    Popur,erroN Ecor,ocv Life History of Immature Maize Weevils (Coleoptera: Curculionidae)on Corn Storedat Constant Temperaturesand Relative Humidities in the Laboratorv JAMESE. THRONE Sto re d- P ro a" " t I" "L::1, "8llTr%?torv'u s D A-A Rs' ffi fi:Tfr ff#l:t.t ABSTRACTLire historr";itiff*""ii?1",1,"#'*t"tilulitrl f"tit)r", zeamaisMotschursky, was studied at 10-40'C and 4T76Vo RH. The optimal quantity of corn for minimizing density effects and the optimal observation frequency for minimizing disturbance effects were determined at 30'C and 75Vo RH. The quantity of corn (32-256 g) provided to five females ovipositing for 24 h did not affect duration of development, but the number of progeny produced increased asymptotically as the quantity of corn provided increased. Frequency of observation (from l- to l4-d intervals) did not affect duration of development or number of progeny produced. Using moisture contents measured in the life history study, an equation was developed for predicting equilibrium moisture content of corn from temperature and relative humidity. Duration of immature development did not vary with sex, but did vary with test. This suggests that insect strain or chemical composition of the corn must be included as factors in a model predicting effects of environment on duration of immature development. Survival from egg to adult emergence was greatest at 25'C. Sex ratio of emerging adults did not differ from l:1. The number of multiply-infested kernels was low at all environmental conditions, and survival from egg to adult emergence in these kernels averaged L8Vo.
    [Show full text]
  • Corn - an A-Maizing Plant
    Corn - An A-Maizing Plant Grade Level: 4-6 Approximate Length of Activity: Two to three class periods Objectives: Teacher: 1. Guide students in a discussion on corn production. 2. Help students understand the history of corn production. Students: 1. Locate and label the states on a U.S. map that make up the "Corn Belt". 2. Become familiar with the parts of the corn kernel. 3. Recognize products made from corn used in our daily lives. 4. Be able to distinguish, through dissection, the four different parts of a corn kernel. Michigan Content Standards: (Social Studies) II.2.2; II.2.3; IV.2.3 Introduction: The Corn Belt is a group of states where most of the corn in the United States is produced. Illinois, Iowa, Nebraska, and Minnesota produce 50 percent of all the corn grown in the US. Other major corn growing states include Indiana, Wisconsin, Michigan, South Dakota, Kansas, Missouri, Kentucky, and Ohio. These 12 states make up the Corn Belt. Corn is the major feed grain grown by farmers in the U.S., leading all other crops in value and volume of production. Corn is a major component in foods like cereals, peanut butter, and snack foods. An ear of corn has an average of 16 rows with 800 kernels. A pound of corn consists of approximately 1,300 kernels. An acre (about the size of a football field) of corn, yielding 100 bushels, produces approximately 7,280,000 kernels. Most of the weight of a bushel of corn is the starch, oil, protein, and fiber, with some natural moisture.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting Template
    EFFECTS OF INTERCROPPING AND BIOLOGICAL INSECTICIDES ON SUGARCANE APHID (HEMIPTERA: APHIDIDAE) INFESTATIONS ON SORGHUM, AND IDENTIFICATION OF NATURAL ENEMIES AND ALTERNATE HOSTS IN HAITI By WILFRID CALVIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Wilfrid Calvin To Jehovah, Issa, Calissa, Amelise, and Mercilhome ACKNOWLEDGMENTS I thank God for always holding my hand through every step in my life. I am also grateful to my family for their unfailing support throughout my life. I would like to thank my lovely wife for her undying assistance and constant encouragement during my study period. Special thanks to my adorable daughter who endured with love such a long period of time away from daddy to make this achievement possible. I thank Dr. Julien Beuzelin, my committee chair, for all his guidance and support during my master’s study. My committee members, Drs. Oscar Liburd and Marc Branham, have also provided useful advice and support for which I am so thankful. I am also thankful to Mr. Ludger Jean Simon for his support toward the success of the experiments conducted in Haiti. I would like to thank Dr. Elijah Talamas for his help identifying insect samples from Haiti. I thank Donna Larsen for providing technical assistance in all experiments conducted at the UF/IFAS Everglades Research and Education Center (EREC) and for all the help to make my stay in Belle Glade successful. I am also thankful to Erik Roldán for all his help during my master’s program.
    [Show full text]