Selective Antimicrobial Modulation of the Intestinal Tract by Associated

Total Page:16

File Type:pdf, Size:1020Kb

Selective Antimicrobial Modulation of the Intestinal Tract by Associated ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, June 1986, p. 1047-1052 Vol. 29, No. 6 0066-4804/86/061047-06$02.00/0 Copyright X3 1986, American Society for Microbiology Selective Antimicrobial Modulation of the Intestinal Tract by Norfloxacin in Human Volunteers and in Gnotobiotic Mice Associated with a Human Fecal Flora SOPHIE PECQUET, ANTOINE ANDREMONT,* AND CYRILLE TANCREDE Service de Microbiologie Medicale, Institut Gustave-Roussy, 94805 Villejuif Cedex, France Received 5 November 1985/Accepted 15 March 1986 Intestinal endogenous members of the family Enterobacteriaceae were eliminated in 12 human volunteers treated with 400 or 800 mg of oral norfloxacin per day for 5 days. No clones resistant to quinolone derivatives were isolated. Counts of aerotolerant streptococci were affected to various degrees, depending on their susceptibility to norfloxacin. During treatment, counts of anaerobes remained above 9.8 loglo CFU/g of feces. A total of 932 anaerobic isolates from the predominant flora (over 109 CFU/g) in fecal samples obtained before or during norfloxacin treatment were classified by a simple morphological and physiological scheme. The composition of this flora was fairly stable from one sample to another before treatment and was not substantially modified by norfloxacin. Intestinal resistance to colonization by exogenous microorganisms was studied in gnotobiotic mice associated with a human fecal flora. The composition of the fecal flora of the human donor and the fecal concentrations of norfloxacin in the volunteers were reproduced in the intestine of the mice. Resistance to colonization by exogenous microorganisms was reduced by norfloxacin for only 2 of 14 (14%) of the strains tested. These results suggest that norfloxacin is a good candidate for selective antimicrobial modulation of the intestinal tract in humans. Intestinal colonization is the major harbinger of gram- MATERIALS AND METHODS negative bacteremia in neutropenic patients with hematolog- ical malignancies (23). Selective antimicrobial modulation of Human volunteers. Twelve healthy, fully informed adult the intestinal tract has been proposed and successfully used volunteers were included in the study. None had taken to prevent such colonization and subsequent infections (12). antibiotics for at least 1 month before the study. Oral Drugs potentially useful for such modulation should be norfloxacin was administered twice daily for 5 days in doses active in vitro against aerobic gram-negative bacteria and in of200 or 400 mg. Six subjects were randomly assigned to each vivo should reduce the number of endogenous members of ofthe two regimens. Blood samples were drawn 2 h after drug the family Enterobacteriaceae in the intestinal lumen. They absorption. Freshly passed fecal samples were obtained once should be as little active as possible against the anaerobic before treatment, daily during treatment, and 1 week endogenous mnicroflora, because studies in animals suggest thereafter. that resistance of the gut to colonization by exogenous Gnotobiotic mice. Adult germfree C3H mice (Centre de microorganisms may be related to the activity of the Sdlection des Animaux de Laboratoire, Orleans, France) anaerobic flora (24). Polymyxin (17), nalidixic acid (25), and were maintained in plastic Trexler-type isolators. They were trimethoprim-sulfamethoxazole (25) have been proposed for fed a locally prepared diet (2) sterilized by gamma irradia- antimicrobial modulation of the intestinal tract, and more tion. Autoclaved drinking water at pH 3 prepared by the recently, erythromycin (2), aztreonam (9), pipemidic acid addition of hydrochloric acid to deionized water was given (19), and ciprofloxacin (6). ad libitum. Where indicated, 4 or 0.4 g of norfloxacin per liter A new quinolone derivative, norfloxacin, is also a poten- was added to the drinking water. Bottles were changed every tial candidate for this modulation because in vitro it has an week. Antibiotic activity remained stable between the expanded spectrum against gram-negative and gram-positive changes (data not shown). aerobic bacteria and displays little activity against anaerobes Some of the tnice were used in the germfree state. The (20). We therefore assessed the effect of norfloxacin on the remainder were given a complex human fecal flora by fecal flora of human volunteers. Ethical and cost consider- intragastric and intrarectal inoculation of a dilution of the ations prevented us from challenging the volunteers with live original flora, as previously described (2). The human donor pdtentially pathogenic microorganisms. Gnotobiotic mice, of the flora was chosen from among the volunteers on the on the other hand, can be associated with strains pathogenic basis of the absence of strains of Enterobacteriaceae resist- for humans without experiencing any clinical symptom of ant to quinolone derivatives in a series of fecal samples disease (for a recent review, see reference 3). Thus, in obtained during the days preceding the transfer of the flora to several instances, these mice have been associated with a the mice. Germfree and human-flora-associated (HFA) mice humian fecal flora for the study of enteric bacterial interac- were each divided into two groups. One germfree and one tions (1, 2, 18). Consequently, we studied the effects of HFA group were left untreated, and one group of each type norfloxacin treatment on the resistance of human intestinal was treated with norfloxacin; for the treated HFA group 2 flora to colonization by exogenous bacteria, when these flora weeks were allowed to elapse between the introduction of were associated with gnotobiotic mice. the fecal flora and the beginning of norfloxacin administra- tion. Both treated and untreated mice were challenged with various strains 2 weeks after norfloxacin ingestion started in * Corresponding author. the treated groups. The challenge was performed as previ- 1047 1048 PECQUET ET AL. ANTIMICROB. AGENTS CHEMOTHER. HUMAN HUMAN MICE inside the glove box by the method of Steers et al. (22) on FECES PELLETS 10000 SERUM Aranki agar (4). An inoculated petri dish was incubated outside the glove box to confirm that the isolates studied were strict anaerobes. Susceptibility to 1 h of exposure to : atmospheric oxygen was studied as described previously (2). :1 r4I.1 Strains killed by such exposure are referred to as oxygen 1000 St3 ..T sensitive. The shape and Gram stain properties of bacteria were studied on the first day on which the colonies grown on I Aranki agar inside the glove box were visible. Kopeloffs modification of the Gram stain procedure (8) was used; reading was done as described previously (8). The shape and E 100 _ position of spores were determined by direct phase-contrast 0 microscopic examination of a wet-mounted preparation from a colonies grown inside the glove box on Aranki agar. M. Group D streptococci from four volunteers were counted 10 on bile-esculin agar (Difco Laboratories, Detroit, Mich.) without antibiotic or supplemented with 1, 10, 100, or 1,000 ,ug of norfloxacin (Merck) per ml. Endogenous enterobacte- n* riaceae were counted on Drigalski agar (IPP, Paris, France) without antibiotic or supplemented with 16 ,ug of norfloxacin 1 per ml or 4 or 40 ,ug of nalidixic acid (Winthrop Laboratories, .2 Div. Sterling Drug Inc., New York, N.Y.) per ml. *1 E. coli IGR46 was counted on Drigalski agar, and E. coli 1GR49 was counted on Drigalski agar with 4 pag of nalidixic 0.1- acid per ml. E. coli IGR48, P. stuartii IGR51, and M. morganfi IGR52 were counted on Drigalski agar with 40 ,ug E E E E of nalidix acid per ml. S. aureus IGR53 and MSD4310 were counted on Chapmann agar (Difco). S. flexneri DKR115 was counted on salmonella-shigella agar (Difco) or detected after in FIG, 1. Concentrations of norfloxacin in serum and feces of enrichment Mueller-Kaufmann broth (IPP). P. aeruginosa human volunteers treated with 400 or 800 mg of norfloxacin per day IGR54 and MSD4385 were counted on cetrimide agar (IPP), for 5 days and in pellets of mice treated with 0.4 or 4 g of norfloxacin V. cholerae 569B and V. parahaemolyticus J525C were per liter in drinking water. counted on thiosulfate-citrate-bile-sucrose agar (Difco), C. coli IGR6 was counted on Butzler agar (Oxoid Ltd., Lon- don, England), and C. albicans IGR41 was counted on ously described, by intragastric inoculation of 1 ml of a Sabouraud agar with 10 ,ug of gentamicin (Bio-Mdrieux, culture containing 108 CFU of one of the challenge strains Charbonni&res-les-Bains, France) per ml. Isolates were per ml (2). biotyped according to the API system (API System S.A., La Challenge strains. Escherichia coli IGR46 was the predom- Balme-les-Grottes, France). Strain discrimination was based inant endogenous coliform of the human flora transferred to on biochemical and growth characteristics. The MICs of the mice. The strains E. coli IGR48, E. coli IGR49, nalidixic acid and norfloxacin were determined on Mueller- Providencia stuartii IGR51, Morganella morganii IGR52, Hinton agar. Staphylococc s aureus IGR53, Pseudomonas aeruginosa Norfloxacin assays. The norfloxacin concentrations in hu- IGR54, Candida albicans IGR41, and Campylobacter coli IGR6 were isQlated in our laboratory from human feces. S. aureus MSIi4310 and P. aeruginosa MSD4385 were from TABLE 1. Bacterial counts in the feces of human volunteers and Merck Pharmnaceuticals. Vibrio cholerae 569B, Shigella the pellets of HFA mice before, during, and after flexneti DKR115, and Vibrio parahaemolyticus J525C were norfloxacin treatmenta isolated froni
Recommended publications
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • INN-Nimet 1 1.4.2019 a Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum Abagovomabi Abaloparatide Abaloparatidum Abalopara
    INN-nimet Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency 1.4.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: a Review
    chemosensors Review Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review Eduardo C. Reynoso 1 , Serena Laschi 2, Ilaria Palchetti 3,* and Eduardo Torres 1,4 1 Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; [email protected] (E.C.R.); [email protected] (E.T.) 2 Nanobiosens Join Lab, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy; [email protected] 3 Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy 4 Centro de Quìmica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico * Correspondence: ilaria.palchetti@unifi.it Abstract: The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling an- timicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diag- Citation: Reynoso, E.C.; Laschi, S.; nosis of resistant microorganisms and could provide crucial information on the choice of antibiotic Palchetti, I.; Torres, E.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,504,381 B2 Mor Et Al
    USOO7504381 B2 (12) United States Patent (10) Patent No.: US 7,504,381 B2 Mor et al. (45) Date of Patent: Mar. 17, 2009 (54) ANTIMICROBIAL AGENTS Tossi et al. "Amphipathic, Alpha-Helical Antimicrobial Peptides'. Biopolymers, 55(1): 4-30, 2000. Abstract, Table 1, p. 7-8, Table II, p. (75) Inventors: Amram Mor, Haifa (IL); Inna 13. Radzishevsky, Haifa (IL) Huang "Peptide-Lipid Interactions and Mechanisms of Antimicro bial Peptides”, Novartis Found Symposium, 225: 188-200, 1999. (73) Assignee: Technion Research & Development Discussion 200-206. Epand et al. “Mechanisms for the Modulation of Membrane Bilayer Foundation Ltd., Haifa (IL) Properties by Amphipathic Helical Peptides'. Biopolymers, 37(5): 319-338, 1995. Abstract. (*) Notice: Subject to any disclaimer, the term of this Ono et al. “Design and Synthesis of Basic Peptides Having patent is extended or adjusted under 35 Amphipathic Beta-Structure and Their Interaction With U.S.C. 154(b) by 153 days. Phospholipid Membranes'. Biochimica et Biophysica Acta (BBA) Biomembranes, 1022(2): 237-244, 1990. Abstract. (21) Appl. No.: 11/234,183 Aarbiou et al. “Human Neutrophil Defensins Induce Lung Epithelial Cell Proliferation. In Vitro”, Journal of Leukocyte Biology, 72: 167 (22) Filed: Sep. 26, 2005 174, 2002. Acar “Consequences of Bacterial Resistance to Antibiotics in Medi (65) Prior Publication Data cal Practice'. Clinical Infectious Diseases, 24(Suppl. 1): S17-S18. 1997. US 2006/OO74O21 A1 Apr. 6, 2006 Alan et al. “Expression of A Magainin-Type Antimicrobial Peptide Gene (MSI-99) in Tomato Enhances Resistance to Bacterial Speck Related U.S. Application Data Disease'. Plant Cell Reports, 22:388-396, 2004.
    [Show full text]
  • Diccionario Del Sistema De Clasificación Anatómica, Terapéutica, Química - ATC CATALOGO SECTORIAL DE PRODUCTOS FARMACEUTICOS
    DIRECCION GENERAL DE MEDICAMENTOS, INSUMOS Y DROGAS - DIGEMID EQUIPO DE ASESORIA - AREA DE CATALOGACION Diccionario del Sistema de Clasificación Anatómica, Terapéutica, Química - ATC CATALOGO SECTORIAL DE PRODUCTOS FARMACEUTICOS CODIGO DESCRIPCION ATC EN CASTELLANO DESCRIPCION ATC EN INGLES FUENTE A TRACTO ALIMENTARIO Y METABOLISMO ALIMENTARY TRACT AND METABOLISM ATC OMS A01 PREPARADOS ESTOMATOLÓGICOS STOMATOLOGICAL PREPARATIONS ATC OMS A01A PREPARADOS ESTOMATOLÓGICOS STOMATOLOGICAL PREPARATIONS ATC OMS A01AA Agentes para la profilaxis de las caries Caries prophylactic agents ATC OMS A01AA01 Fluoruro de sodio Sodium fluoride ATC OMS A01AA02 Monofluorfosfato de sodio Sodium monofluorophosphate ATC OMS A01AA03 Olaflur Olaflur ATC OMS A01AA04 Fluoruro de estaño Stannous fluoride ATC OMS A01AA30 Combinaciones Combinations ATC OMS A01AA51 Fluoruro de sodio, combinaciones Sodium fluoride, combinations ATC OMS A01AB Antiinfecciosos y antisépticos para el tratamiento oral local Antiinfectives and antiseptics for local oral treatment ATC OMS A01AB02 Peróxido de hidrógeno Hydrogen peroxide ATC OMS A01AB03 Clorhexidina Chlorhexidine ATC OMS A01AB04 Amfotericina B Amphotericin B ATC OMS A01AB05 Polinoxilina Polynoxylin ATC OMS A01AB06 Domifeno Domiphen ATC OMS A01AB07 Oxiquinolina Oxyquinoline ATC OMS A01AB08 Neomicina Neomycin ATC OMS A01AB09 Miconazol Miconazole ATC OMS A01AB10 Natamicina Natamycin ATC OMS A01AB11 Varios Various ATC OMS A01AB12 Hexetidina Hexetidine ATC OMS A01AB13 Tetraciclina Tetracycline ATC OMS A01AB14 Cloruro de benzoxonio
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom Et Al
    USOO8383154B2 (12) United States Patent (10) Patent No.: US 8,383,154 B2 Bar-Shalom et al. (45) Date of Patent: Feb. 26, 2013 (54) SWELLABLE DOSAGE FORM COMPRISING W W 2.3. A. 3. 2. GELLAN GUMI WO WOO1,76610 10, 2001 WO WOO2,46571 A2 6, 2002 (75) Inventors: Daniel Bar-Shalom, Kokkedal (DK); WO WO O2/49571 A2 6, 2002 Lillian Slot, Virum (DK); Gina Fischer, WO WO 03/043638 A1 5, 2003 yerlosea (DK), Pernille Heyrup WO WO 2004/096906 A1 11, 2004 Hemmingsen, Bagsvaerd (DK) WO WO 2005/007074 1, 2005 WO WO 2005/007074 A 1, 2005 (73) Assignee: Egalet A/S, Vaerlose (DK) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 JECFA, “Gellangum”. FNP 52 Addendum 4 (1996).* U.S.C. 154(b) by 1259 days. JECFA, “Talc”, FNP 52 Addendum 1 (1992).* Alterna LLC, “ElixSure, Allergy Formula', description and label (21) Appl. No.: 111596,123 directions, online (Feb. 6, 2007). Hagerström, H., “Polymer gels as pharmaceutical dosage forms'. (22) PCT Filed: May 11, 2005 comprehensive Summaries of Uppsala dissertations from the faculty of pharmacy, vol. 293 Uppsala (2003). (86). PCT No.: PCT/DK2OOS/OOO317 Lin, “Gellan Gum', U.S. Food and Drug Administration, www. inchem.org, online (Jan. 17, 2005). S371 (c)(1), Miyazaki, S., et al., “In situ-gelling gellan formulations as vehicles (2), (4) Date: Aug. 14, 2007 for oral drug delivery”. J. Control Release, vol. 60, pp. 287-295 (1999). (87) PCT Pub. No.: WO2005/107713 Rowe, Raymond C.
    [Show full text]