[5] Heat, Work, and Internal Energy the First Law of Thermodynamics Work Done by Or on a Gas EXAMPLE Meteoro

Total Page:16

File Type:pdf, Size:1020Kb

[5] Heat, Work, and Internal Energy the First Law of Thermodynamics Work Done by Or on a Gas EXAMPLE Meteoro L 20 Thermodynamics [5] Heat, work, and internal energy • The gas has internal energy, the temperature is the average KE • if heat is added its internal energy • heat, work, and internal energy increases st • if the gas expands and does work • the 1 law of thermodynamics on the atmosphere, its internal • the 2nd law of thermodynamics energy decreases • Heat and work are forms of energy gas • Heat engines which can change the internal • order to disorder Æ entropy energy heat •the 1st law of thermodynamics • Electric cars and Hybrid cars keeps track of the balance between the heat, work and internal energy of the gas The First Law of Thermodynamics work done by or on a gas • the change in internal energy of the gas •if a gas does work (expansion) its internal energy goes down and so does its temp. = the heat absorbed by the gas •if work is done on a gas (compression) its minus the work done by the gas internal energy goes up and so does its temperature system • the internal energy of a gas can be HEAT internal WORK energy changed by adding or taking away heat or by having the gas do work or doing work • this is a simple energy accounting on the gas principle (law of conservation of energy) st EXAMPLE Meteorology and the 1 Law • What is the change in the internal energy of a gas if 3000 J of heat are added while the gas does 1000 J of • Air temperature rises as heat is added work? • Air temperature rises (or falls) as pressure increases (decreases) • change in internal energy • In processes called adiabatic the amount of heat ∆IE = Qin − Wout added or lost is very small = 3000 J - 1000 J = 2000 J • As a parcel of air rises it expands adiabatically and its temperature decreases by about 10° C the internal energy increases by 2000 J for each kilometer of elevation 1 Heat engines The 2nd Law of Thermodynamics • A heat engine is a device that uses heat • Not all of the heat can be converted into work. (input, which you must pay for) to do work • try to understand the difference between work (output, which is useful). energy and heat energy • The central issue is how much of the heat • give the block a push– it will stop due to friction taken in can be converted into work • the kinetic energy is converted to HEAT • This is quantified by the engine efficiency • but, I cannot make the block move by heating it! • The amount of heat that can be converted to work is limited by the 1st law Îyou can’t get more out than goes in Heat – disordered energy order to disorder • All naturally occurring processes go in the • When an object is heated, the energy of all direction from order to disorder of its molecules is increased. • ice melts when placed in water; it never gets colder and the water gets warmer • however, the molecules do not all move in • ice, the solid state of H2O is more ordered than the same direction Æ they move about in water, the liquid state all directions Æ this is what we mean by • in a solid all the molecules are lined up in a disordered (or thermal) energy regular (ordered) array; there is less order in the • on the other hand, if we want to get the liquid state, and even less in the gaseous state system to do some useful work, we want it • when salt is put in water it dissociates; crystals to move in some particular direction of salt never spontaneously form in a salt water solution Work is ordered energy, heat is Heat Engines disordered energy • an engine operates in a cycle • It is possible to convert some of the random HOT • fuel is burned to make heat energy to do useful work • some of the heat is converted into Qin work • when a gas is allowed to expand, some of • the heat that is not converted to its random thermal energy is converted into WORK work is removed to bring the system work back to the beginning state (cycle) Wout • since the system is always returned • the 2nd law explicitly prohibits all of the to the original state the change in Q internal energy is ZERO heat from being converted into work out • First Law Î Q = W + Q • this is a fact of natureÎ the way things are! in out out COLD W efficiency = out Qin 2 steam engines 1st and 2nd Laws of Thermodynamics • For an engine operating in a cycle the 1st law requires that: work out = heat in – heat out • the 2nd law says that it is impossible to make the heat out (Qout) = 0 Î not all the heat energy can be converted into work, some must be discarded – thermal waste work can be used to run • engine efficiency = work out / heat in an electric generator or • no engine can be 100% efficient Î this is turn the shaft of a propeller a law of nature! Heat engine example Second law of thermodynamics A heat engine, operating in a cycle, absorbs 10,000 J of energy from a heat source, performs work, and I. (Kelvin) It is impossible to have a heat discards 6,000 J of heat to a cold reservoir. engine that is 100 % efficient (a) how much work is performed? Î Not all of the heat taken in by the (b) what is this engine’s efficiency? engine can be converted to work (c) what is the change in internal energy of this engine? II. (Clausius) In a spontaneous process, heat (a) Wout = Qin-Qout = 10,000 J – 6,000 J = 4,000 J flows from a hot to a cold substance (b) efficiency= Wout/Qin = 4,000/10,000 = 0.4 or 40 % Î Work must by done to move heat from (c) ∆IE = 0, the change in internal energy for an a cold to a hot substance. engine operating in a cycle is ZERO refrigerators and air conditioners internal combustion engine HOT • Heat pump (heat valves engine in reverse) • You can make heat flow backward (cold cylinder to hot) only if there is piston connecting an input of work rod WORK • in an air conditioner crankshaft or refrigerator, this work must be COLD supplied by electricity. at cruising speeds this cycle happens at 3000 times/min (50 /s) 3 Electric cars Hybrid Automobiles • Propelled by a battery-powered electric Combination of 2 different systems motor – does not need gasoline • A hybrid car propels itself on fuel or batteries • No tailpipe emissions – reduces urban pollution and greenhouse gases • It combines electrical and mechanical power • It switches easily between fuel, batteries, or both • Batteries must be charged, but electric • It can recharge its batteries during braking. In a power is provided by domestic fuel sources conventional auto, much of the kinetic energy is • Chevy Volt – charged on $1.50/day dissipated as heat during braking. • Range limited by battery charge • It can turn its engine off when not needed • Poor acceleration • It can restart its engine quickly and easily • Excellent fuel economy up to 50 mpg (Toyota • expensive Prius) Hybrid: gas engine + electric motor Disadvantages of hybrid cars • Expensive gasoline • Limited top speed engine • Î Poor acceleration (0 – 60 mph in 10 s) • Mechanically complicated • Î Batteries must be replaced; discarded batteries pose an environmental issue But, hybrid cars are a new technology that is constantly being improved 4.
Recommended publications
  • Lecture 4: 09.16.05 Temperature, Heat, and Entropy
    3.012 Fundamentals of Materials Science Fall 2005 Lecture 4: 09.16.05 Temperature, heat, and entropy Today: LAST TIME .........................................................................................................................................................................................2� State functions ..............................................................................................................................................................................2� Path dependent variables: heat and work..................................................................................................................................2� DEFINING TEMPERATURE ...................................................................................................................................................................4� The zeroth law of thermodynamics .............................................................................................................................................4� The absolute temperature scale ..................................................................................................................................................5� CONSEQUENCES OF THE RELATION BETWEEN TEMPERATURE, HEAT, AND ENTROPY: HEAT CAPACITY .......................................6� The difference between heat and temperature ...........................................................................................................................6� Defining heat capacity.................................................................................................................................................................6�
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities
    Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 October 4, 2017 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 1 / 12 Maximum Work If a thermally isolated system is in non-equilibrium state it may do work on some external bodies while equilibrium is being established. The total work done depends on the way leading to the equilibrium. Therefore the final state will also be different. In any event, since system is thermally isolated the work done by the system: jAj = E0 − E(S); where E0 is the initial energy and E(S) is final (equilibrium) one. Le us consider the case when Vinit = Vfinal but can change during the process. @ jAj @E = − = −Tfinal < 0 @S @S V The entropy cannot decrease. Then it means that the greater is the change of the entropy the smaller is work done by the system The maximum work done by the system corresponds to the reversible process when ∆S = Sfinal − Sinitial = 0 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 2 / 12 Clausius Theorem dS 0 R > dS < 0 R S S TA > TA T > T B B A δQA > 0 B Q 0 δ B < The system following a closed path A: System receives heat from a hot reservoir. Temperature of the thermostat is slightly larger then the system temperature B: System dumps heat to a cold reservoir. Temperature of the system is slightly larger then that of the thermostat Chapter II.
    [Show full text]
  • Entropy: Is It What We Think It Is and How Should We Teach It?
    Entropy: is it what we think it is and how should we teach it? David Sands Dept. Physics and Mathematics University of Hull UK Institute of Physics, December 2012 We owe our current view of entropy to Gibbs: “For the equilibrium of any isolated system it is necessary and sufficient that in all possible variations of the system that do not alter its energy, the variation of its entropy shall vanish or be negative.” Equilibrium of Heterogeneous Substances, 1875 And Maxwell: “We must regard the entropy of a body, like its volume, pressure, and temperature, as a distinct physical property of the body depending on its actual state.” Theory of Heat, 1891 Clausius: Was interested in what he called “internal work” – work done in overcoming inter-particle forces; Sought to extend the theory of cyclic processes to cover non-cyclic changes; Actively looked for an equivalent equation to the central result for cyclic processes; dQ 0 T Clausius: In modern thermodynamics the sign is negative, because heat must be extracted from the system to restore the original state if the cycle is irreversible . The positive sign arises because of Clausius’ view of heat; not caloric but still a property of a body The transformation of heat into work was something that occurred within a body – led to the notion of “equivalence value”, Q/T Clausius: Invented the concept “disgregation”, Z, to extend the ideas to irreversible, non-cyclic processes; TdZ dI dW Inserted disgregation into the First Law; dQ dH TdZ 0 Clausius: Changed the sign of dQ;(originally dQ=dH+AdL; dL=dI+dW) dHdQ Derived; dZ 0 T dH Called; dZ the entropy of a body.
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Internal Energy in an Electric Field
    Internal energy in an electric field In an electric field, if the dipole moment is changed, the change of the energy is, U E P Using Einstein notation dU Ek dP k This is part of the total derivative of U dU TdSij d ij E kK dP H l dM l Make a Legendre transformation to the Gibbs potential G(T, H, E, ) GUTSijij EP kK HM l l SGTE data for pure elements http://www.sciencedirect.com/science/article/pii/036459169190030N Gibbs free energy GUTSijij EP kK HM l l dG dU TdS SdTijij d ij d ij E kk dP P kk dE H l dM l M l dH l dU TdSij d ij E kK dP H l dM l dG SdTij d ij P k dE k M l dH l G G G G total derivative: dG dT d dE dH ij k l T ij EH k l G G ij Pk E ij k G G M l S Hl T Direct and reciprocal effects (Maxwell relations) Useful to check for errors in experiments or calculations Maxwell relations Useful to check for errors in experiments or calculations Point Groups Crystals can have symmetries: rotation, reflection, inversion,... x 1 0 0 x y 0 cos sin y z 0 sin cos z Symmetries can be represented by matrices. All such matrices that bring the crystal into itself form the group of the crystal. AB G for A, B G 32 point groups (one point remains fixed during transformation) 230 space groups Cyclic groups C2 C4 http://en.wikipedia.org/wiki/Cyclic_group 2G Pyroelectricity i Ei T Pyroelectricity is described by a rank 1 tensor Pi i T 1 0 0 x x x 0 1 0 y y y 0 0 1 z z 0 1 0 0 x x 0 0 1 0 y y 0 0 0 1 z z 0 Pyroelectricity example Turmalin: point group 3m Quartz, ZnO, LaTaO 3 for T = 1°C, E ~ 7 ·104 V/m Pyroelectrics have a spontaneous polarization.
    [Show full text]
  • Work-Energy for a System of Particles and Its Relation to Conservation Of
    Conservation of Energy, the Work-Energy Principle, and the Mechanical Energy Balance In your study of engineering and physics, you will run across a number of engineering concepts related to energy. Three of the most common are Conservation of Energy, the Work-Energy Principle, and the Mechanical Engineering Balance. The Conservation of Energy is treated in this course as one of the overarching and fundamental physical laws. The other two concepts are special cases and only apply under limited conditions. The purpose of this note is to review the pedigree of the Work-Energy Principle, to show how the more general Mechanical Energy Bal- ance is developed from Conservation of Energy, and finally to describe the conditions under which the Mechanical Energy Balance is preferred over the Work-Energy Principle. Work-Energy Principle for a Particle Consider a particle of mass m and velocity V moving in a gravitational field of strength g sub- G ject to a surface force Rsurface . Under these conditions, writing Conservation of Linear Momen- tum for the particle gives the following: d mV= R+ mg (1.1) dt ()Gsurface Forming the dot product of Eq. (1.1) with the velocity of the particle and rearranging terms gives the rate form of the Work-Energy Principle for a particle: 2 dV⎛⎞ d d ⎜⎟mmgzRV+=() surfacei G ⇒ () EEWK += GP mech, in (1.2) dt⎝⎠2 dt dt Gravitational mechanical Kinetic potential power into energy energy the system Recall that mechanical power is defined as WRmech, in= surfaceiV G , the dot product of the surface force with the velocity of its point of application.
    [Show full text]
  • 3. Energy, Heat, and Work
    3. Energy, Heat, and Work 3.1. Energy 3.2. Potential and Kinetic Energy 3.3. Internal Energy 3.4. Relatively Effects 3.5. Heat 3.6. Work 3.7. Notation and Sign Convention In these Lecture Notes we examine the basis of thermodynamics – fundamental definitions and equations for energy, heat, and work. 3-1. Energy. Two of man's earliest observations was that: 1)useful work could be accomplished by exerting a force through a distance and that the product of force and distance was proportional to the expended effort, and 2)heat could be ‘felt’ in when close or in contact with a warm body. There were many explanations for this second observation including that of invisible particles traveling through space1. It was not until the early beginnings of modern science and molecular theory that scientists discovered a true physical understanding of ‘heat flow’. It was later that a few notable individuals, including James Prescott Joule, discovered through experiment that work and heat were the same phenomenon and that this phenomenon was energy: Energy is the capacity, either latent or apparent, to exert a force through a distance. The presence of energy is indicated by the macroscopic characteristics of the physical or chemical structure of matter such as its pressure, density, or temperature - properties of matter. The concept of hot versus cold arose in the distant past as a consequence of man's sense of touch or feel. Observations show that, when a hot and a cold substance are placed together, the hot substance gets colder as the cold substance gets hotter.
    [Show full text]
  • Chemistry 130 Gibbs Free Energy
    Chemistry 130 Gibbs Free Energy Dr. John F. C. Turner 409 Buehler Hall [email protected] Chemistry 130 Equilibrium and energy So far in chemistry 130, and in Chemistry 120, we have described chemical reactions thermodynamically by using U - the change in internal energy, U, which involves heat transferring in or out of the system only or H - the change in enthalpy, H, which involves heat transfers in and out of the system as well as changes in work. U applies at constant volume, where as H applies at constant pressure. Chemistry 130 Equilibrium and energy When chemical systems change, either physically through melting, evaporation, freezing or some other physical process variables (V, P, T) or chemically by reaction variables (ni) they move to a point of equilibrium by either exothermic or endothermic processes. Characterizing the change as exothermic or endothermic does not tell us whether the change is spontaneous or not. Both endothermic and exothermic processes are seen to occur spontaneously. Chemistry 130 Equilibrium and energy Our descriptions of reactions and other chemical changes are on the basis of exothermicity or endothermicity ± whether H is negative or positive H is negative ± exothermic H is positive ± endothermic As a description of changes in heat content and work, these are adequate but they do not describe whether a process is spontaneous or not. There are endothermic processes that are spontaneous ± evaporation of water, the dissolution of ammonium chloride in water, the melting of ice and so on. We need a thermodynamic description of spontaneous processes in order to fully describe a chemical system Chemistry 130 Equilibrium and energy A spontaneous process is one that takes place without any influence external to the system.
    [Show full text]
  • Energy Minimum Principle
    ESCI 341 – Atmospheric Thermodynamics Lesson 12 – The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE We’ve seen that a reversible process achieves maximum thermodynamic efficiency. Imagine that I am adding heat to a system (dQin), converting some of it to work (dW), and discarding the remaining heat (dQout). We’ve already demonstrated that dQout cannot be zero (this would violate the second law). We also have shown that dQout will be a minimum for a reversible process, since a reversible process is the most efficient. This means that the net heat for the system (dQ = dQin dQout) will be a maximum for a reversible process, dQrev dQirrev . The change in entropy of the system, dS, is defined in terms of reversible heat as dQrev/T. We can thus write the following inequality dQ dQ dS rev irrev , (1) T T Notice that for Eq. (1), if the system is reversible and adiabatic, we get dQ dS 0 irrev , T or dQirrev 0 which illustrates the following: If two states can be connected by a reversible adiabatic process, then any irreversible process connecting the two states must involve the removal of heat from the system. Eq. (1) can be written as dS dQ T (2) The equality will hold if all processes in the system are reversible. The inequality will hold if there are irreversible processes in the system. For an isolated system (dQ = 0) the inequality becomes dS 0 isolated system , which is just a restatement of the second law of thermodynamics.
    [Show full text]
  • Discipline in Thermodynamics
    energies Perspective Discipline in Thermodynamics Adrian Bejan Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, USA; [email protected] Received: 24 April 2020; Accepted: 11 May 2020; Published: 15 May 2020 Abstract: Thermodynamics is a discipline, with unambiguous concepts, words, laws and usefulness. Today it is in danger of becoming a Tower of Babel. Its key words are being pasted brazenly on new concepts, to promote them with no respect for their proper meaning. In this brief Perspective, I outline a few steps to correct our difficult situation. Keywords: thermodynamics; discipline; misunderstandings; disorder; entropy; second law; false science; false publishing 1. Our Difficult Situation Thermodynamics used to be brief, simple and unambiguous. Today, thermodynamics is in a difficult situation because of the confusion and gibberish that permeate through scientific publications, popular science, journalism, and public conversations. Thermodynamics, entropy, and similar names are pasted brazenly on new concepts in order to promote them, without respect for their proper meaning. Thermodynamics is a discipline, a body of knowledge with unambiguous concepts, words, rules and promise. Recently, I made attempts to clarify our difficult situation [1–4], so here are the main ideas: The thermodynamics that in the 1850s joined science serves now as a pillar for the broadest tent, which is physics. From Carnot, Rankine, Clausius, and William Thomson (Lord Kelvin) came not one but two laws: the law of energy conservation (the first law) and the law of irreversibility (the second law). The success of the new science has been truly monumental, from steam engines and power plants of all kinds, to electric power in every outlet, refrigeration, air conditioning, transportation, and fast communication today.
    [Show full text]
  • 16. the First Law of Thermodynamics
    16. The First Law of Thermodynamics Introduction and Summary The First Law of Thermodynamics is basically a statement of Conservation of Energy. The total energy of a thermodynamic system is called the Internal Energy U. A system can have its Internal Energy changed (DU) in two major ways: (1) Heat Q can flow into the system from the surroundings and (2) the system can do work W on the surroundings. The concept of Heat Energy Q has been discussed previously in connection with Specific Heat c and the Latent Heats of fusion and vaporization at phase transitions. Here, we will focus on the Heat Q absorbed or given off by an ideal gas. Also, the Work W done by an ideal gas will be calculated. Both heat and work are energy, and it is important to understand the difference between the heat Q and the work W. Thermodynamic Work W Previously, we understood the concept of Mechanical Work in connection with Newton's Laws of Motion. There the focus was work done ON THE SYSTEM. For example, the work done on a mass M in raising it up a height h against gravity is W=Mgh. Thermodynamic Work is similar to Mechanical Work BUT in Thermodynamic Work the focus is on the work done BY THE SYSTEM. Historically, Thermodynamics was developed in order to understand the work done BY heat engines like the steam engine. So when a system (like a heat engine) does work ON its surroundings, then the Thermodynamic Work is POSITIVE. (This is the opposite for Mechanical Work.) If work is done on the heat engine, the Thermodynamic Work is NEGATIVE.
    [Show full text]