Abelmoschus Esculentus, 244 Acacia, 244 Acaciella Angustissima, 167

Total Page:16

File Type:pdf, Size:1020Kb

Abelmoschus Esculentus, 244 Acacia, 244 Acaciella Angustissima, 167 Index A Allium cepa, 244 Abelmoschus esculentus, 244 Amaranthus, 244, 279 Acacia, 244 A. hypochondriacus, 219 Acaciella angustissima, 167, 172 Amazon, 65, 310 Acaulospora, 124, 244 Ambrosia dumosa, 113 A. laevis, 244 Aminobacter, 167 A. scrobiculata, 244 Ammonia-oxidizing archaea (AOA), Acetobacter, 240 145, 149 Acid Ammonia-oxidizing bacteria (AOB), carboxylic, 97 145, 149 citric, 216 amoA gene, 145 gluconic, 130 Amplified ribosomal DNA restriction organic, 215–217 analysis (ARDRA), 146 Acidithiobacillus, 214, 221 Anabaena, 145, 147, 148, 151 A. ferroxidans, 214 Andropogon, 99 A. thiooxidans, 214 Arachis hypogaea, 88, 96, 98, 244 Acidobacteria, 152 Archaeopora, 124 Actinobacteria, 215 Artemisia Adesmia bedwellii, 115 A. herba-alba, 124 Aeschynomene, 172, 174 A. tridentata, 110, 123 Africa, sub-Saharan, 82 Arthrobacter, 141 Agave, 117 Ascomycetes, 121 A. datilyo, 112 Aspergillus, 242 A. deserti, 125 A. awamor, 220 Agriculture, 83, 185, 235, 299, 312 A. niger, 220 terrace, 304 Atlantic Coastal Rainforest, 65 Agrobacterium, 166 Atriplex A. rhizogenes, 246 A. confertifolia, 123 A. tumefaciens, 167 A. halimus, 124 Agroforestry, 73–75, 185–202 Axonopus, 99 Agromonas, 167 Azoarcus, 152, 154 Alcaligenes, 144 Azolla, 147, 148 317 318 Index Azorhizobium, 168 B. brasilensis, 240 A. caulinodans, 145, 172, 173 B. cepacia, 215 Azospirillum, 126, 144, 147, 152, 220 B. tropica, 69, 240 A. amazonense, 69, 240 B. vietnamiensis, 141, 241 A. brasilense, 129, 131, 240 A. lipoferum, 240, 241 Azotobacter, 144, 147, 220 C A. armeniacus, 147 Caatinga, 75 A. chroococcum, 219, 240 Calliandra calothyrsus, 192, 199 A. nigricans, 147 Calothrix elenkenii, 151 A. paspali, 240 Capsicum annuum, 244 Carbon cycling, 47, 194 B d13C composition, 18 Bacillus, 118, 141, 144, 175, 212 qCO2, 29, 34–36 B. circulans, 220 sequestration, 150–151, 194 B. coagulans, 222 Carica papaya, 245 B. fusiformis, 142 Carrichtera annua, 121 B. megaterium, 217, 218, 220, 221, 243 Cenchrus ciliaris, 191 B. subtilis, 220 Ceratocephalus testiculatus, 115 Beauveria, 98 Ceratoides lanata, 123 Beijerinckia fluminensis, 240 Cerrado, 11, 65, 75, 239 Beneficial microorganism, 87, 89, 97–100. Chara vulgaris, 149 See also Mycorrhizal fungi; Nitrogen- Chelator, 214–215 fixing bacteria; Phosphate-solubilizing Chorispora tenella, 115 bacteria; Plant growth-promoting Chroococcidiopsis, 125 bacteria Citrobacter, 144 Biofertilizer, 67, 69, 87, 100, 147, C. koseri, 222 211–215, 217, 226, 235, 238 Climate Biofilm, 214 change, 123 Biofuel, 174 pulsed, 195 Biogeography, 259–264 tropical, 2–3, 88 Biological crust, 118–123 Clostridium, 147 restoration, 128–129 C. bifermentans, 141 Bioremediation, 285–286 Coffea Biotechnology, 227 C. arabica, 88, 245 Blastobacter, 167 C. robusta, 88 Brachiaria, 99, 197, 239 Cola, 88 B. decumbens, 245 Coleogyne ramosissima, 121 B. humidicola, 74 Collema, 121 Bradyrhizobium, 145, 166, 168, 172, 237 Commission for Technical Co-operation B. betae, 167 in Africa, 8 B. elkanii, 72 Community B. japonicum, 35, 72, 173 composition, 59, 116, 265 Brazil, 65 distribution, 115, 259 Brucella, 167 diversity, 59, 66–67, 140–146, Burkholderia, 68, 144, 147, 152, 170, 263–264 172, 212 function, 51, 53, 85, 263 Index 319 resilience, 52 E response to disturbance, 51, 55, 57 Earth spirit, 299 structure, 51, 56 Echinocereus, 117 study by culture-independent methods, Ecosystem, 59 50, 141, 142, 146 Elaeis guineensis, 88, 97 turnover, 266 Elosine coracana, 219 Emericella, 242 Conservation. See Soil Endemism, 262 Cratylia argentea, 239 Endophyte, 117, 130, 174–176, 240 Crop diversity in rice, 142, 152–155 contamination, 279, 289, 291 Ensifer, 166 loss, 254 Enterobacter, 212 tropical, 253 E. absuriae, 222 Crotalaria, 95, 99 E. agglomerans, 215 Crust. See Biological crust Enterolobium, 172 Cryptosporidium, 278 Entrophospora, 124 Culture medium E. colombiana, 244 pH, 223 Enzyme P-solubilizing bacteria isolation, 222 chitinase, 154 Cupriavidus, 167, 170, 173 chitosanase, 151 Cyanobacteria, 120, 125, 129, 143, 145, endoglucanase, 155 147, 149, 151 extracellular activity, 54, 56 gluconokinase, 130 glucosidase, 54 D lignase, 56 Dacryodes edulis, 88 ligninase, 154 Dalbergia nigra, 199 nitrogenase, 116, 149, 151 Daucus carota, 70 phosphatase, 54, 196, 215, 242 Deforestation, 84 phosphogluconate dehydrogenase, 130 Deinococcus, 152 phytase, 217, 242 Denaturing gel gradient electrophoresis reductase, 56 (DGGE), 50, 57, 141 urease, 54 Denitrification, 56, 126 xylanase, 151 Derxia, 144 Epiphyte, 126 Desert, 109 Equatorial rainforest, 18 biota, 118, 132 Eremopyrum orientale, 115 restoration, 127–132 Erwinia, 175 Devosia, 168 Erythrina, 74 Diazotroph. See also Nitrogen-fixing Escherichia, 212 bacteria E. coli, 276, 279, 284 Ethnopedology, 304 diversity, 143–145 Eucalyptus grandis, 75 non-symbiotic, 240–241 Exopolysaccharide, 214 symbiotic, 237–239 Dichanthium aristatum, 190 Dioscorea, 88 F Disease, 277, 284 Fagopyrium esculentum, 219 Diversity. See Community Faidherbia albida, 198 Dolichos, 99 Fatty-acid methyl esters (FAME), 49–50, 52 320 Index Ferocactus acanthodes, 125 Herbaspirillum, 147, 153, 240 Fertility island. See Resource island H. rubrisubalbicans, 69, 240 Fertility management, 100, 237 H. seropedicae, 69, 154, 240, 241 integrated soil fertility management Hevea brasiliensis, 75 (ISFM), 84 Himalayas, 1 Ficus palmeri, 116 Horizon, 9 Fluorescent in situ hybridization (FISH), argic, 8, 11 141 argillic, 8, 11 Food insecurity, 82, 209 ferralic, 7, 10 Fouquieria columnaris, 124 nitic, 11 Fungi, 56. See also Mycorrhizal fungi oxic, 7, 10 Fusarium oxysporum, 76, 97 plinthic, 13 Human influence on ecosystems, 5, 18, 45 G knowledge, 299, 302, 312 Garcinia kola, 88 population, 45, 86 Gemmatimonadetes, 125 Humid forest, 83, 88, 91, 94, 99–100 Gigaspora G. gigantea, 245 G. margarita, 99 I Gliricidia sepium, 190 Innovation, 309 Glomalin-related soil protein (GRSP), Inoculant, 235 193, 197 commercial, 238, 242 Glomus, 124 field trial, 241 G. aggregatum, 245 multi-strain, 241 G. clarum, 99 mycorrhizal, 202, 243–245 G. constrictum, 115 production of, 245 G. deserticola, 98 rhizobia-based, 171–172, 237 G. etunicatum, 244, 245 Integrated pest management, 85, 251 G. fasciculatum, 221 International Center for Tropical G. intraradices, 244, 246 Agriculture (CIAT), 242, 244 G. manihotis, 220, 245 Ipomoea batatas, 88, 244 G. mosseae, 221, 245 Irrigation, 275, 288–289 G. proliferum, 246 Irvingia gabonensis, 88 G. spurcum, 245 G. vermiforme, 246 K Gluconacetobacter diazotrophicus, 69, 240 Klebsiella, 118 Glycine max, 66, 95 K. planticola, 141 Gnetum, 88 K. pneumoniae, 173 Greenhouse gas, 194 K-strategist, 192 Guadua angustifolia, 244 L H Lablab, 172 Health risk, 276–277, 279, 280, 283–285 Lactuca sativa, 70, 219 reduction of, 285–292 Land Helianthus annuus ssp. jaegeri, 126 agricultural superficies, 45, 46 Helminth, 278, 279, 287 arid, 109, 111 infection, 276, 283 grading, 286 Index 321 marginal, 209 Methylobacterium, 68, 146, 152, 168 use and conversion, 29, 32, 35, 45, 55, Methylocaldum, 146 81–102 Methylocella, 146 Lasiurus sindicus, 126 Methylococcus, 146 Laterite, 13. See also Plinthite Methylocystis, 146 Leeia oryzae, 142 Methylomicrobium, 146 Legume, 75, 93–97, 110, 147 Methylomonas, 146 domesticated species, 164 Methylosinus, 146 evolution, 163–165 Microcoleus, 129 seed protein content, 165 Micromonospora, 215 symbiosis establishment, 165–167, Mimosa caesalpinifolia, 72 239 Moss, 128 Lemaireocereus thurberi, 114 Mucuna, 93, 95, 99 Leucaena, 165, 172, 244 M. pruriens, 176 L. diversifolia, 166, 191 Musa, 88, 244, 246 Leymus secalinus, 127 Mycelium network, 189–191 Lichen, 118 Mycobacterium, 141 Ligand, 216 Mycoplasma, 167 lin genes, 264 Mycorrizal fungi, 87, 91–93, 186, 220, 243 Lophocereus schottii, 112, 131 within agroforestry system, 185–202 Lotus, 239 concept of parasitic behavior of, 189 L. japonicus, 173 density in soil, 91 Lycopersicum esculentum, 244 diversity, 90 effect on plant health, 197 effect on soil structure, 193–194 M impact on soil fertility, 53, 195 Machaerocereus gummosus, 114 inoculation assays, 89, 91–93, 98, 101, Macroptilium atropurpureum, 94 220, 244 Magic, 302 in vitro culture, 246 Mammillaria fraileana, 116–118, 130 within limiting environment, 123–125 Manguifera indica, 88 mycelium network, 189–191 Manihot esculenta, 75, 88, 244 within resource island, 113–115 Medicago truncatula, 173, 175 response of plant to, 91, 93, 192, 244 Medium. See Culture medium response to disturbance, 52 Melilotus, 239 restoration action, 129–132 Meloidogyne, 98, 155 Mythology, 302 Mesorhizobium M. loti, 10, 39, 166, 173 Metal N bioaccumulation, 280 nif genes, 120, 144, 155, 173 toxicity, 197, 280–281 Nitrification, 149 Metarhizium, 89, 98 Nitrogen Methane, 140, 146 biological fixation, 120, 147, 165, 188, emission reduction, 150 237–241 Methanogen, 145–146 contribution of biological crust to, 122 Methanomicrobiales, 146 cycling, 143–145 Methanotroph, 145–146, 150 excess, 282 Methylobacter, 146 15N abundance, 191, 240 322 Index soil content, 30 P. microphylla, 130 transfer between plants, 191 P. praecox, 116 Nitrogen-fixing bacteria, 67–69, 87, Passiflora edulis, 244 93–97, 168, 198, 211. See also Pathogen Diazotroph detection, 279 diversity, 96, 144, 168 level reduction methods, 286, 287, 291, inoculation assays, 89, 95, 96, 100, 292 219–220 survival, 277–279 Nitrosomonas europaea, 145 transfer to crops, 279 Nod factor, 172 wastewater contamination, 276–277, nod genes, 173 283 Nodulation, 172–174 Penicillium, 242 Nostoc, 119, 120, 145, 151 P. bilaii, 243 nosZ gene, 56 Pennisetum, 99 Nutrient Persea americana,
Recommended publications
  • I Scope and Importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker System & Cronquist
    Syllabus: 2020-2021 Unit – I Scope and importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker system & Cronquist. Flora, revision and Monographs. Botanical nomenclature (ICBN), Taxonomic hierarchy, typification, principles of priority, publication, Keys and their types, Preparation and role of Herbarium. Importance of Botanical gardens. PLANT KINGDOM Amongst plants nearly 15,000 species belong to Mosses and Liverworts, 12,700 Ferns and their allies, 1,079 Gymnosperms and 295,383 Angiosperms (belonging to about 485 families and 13,372 genera), considered to be the most recent and vigorous group of plants that have occurred on earth. Angiosperms occupy the majority of the terrestrial space on earth, and are the major components of the world‘s vegetation. Brazil (First) and Colombia (second), both located in the tropics considered to be countries with the most diverse angiosperms floras China (Third) even though the main part of her land is not located in the tropics, the number of angiosperms still occupies the third place in the world. In INDIA there are about 18042 species of flowering plants approximately 320 families, 40 genera and 30,000 species. IUCN Red list Categories: EX –Extinct; EW- Extinct in the Wild-Threatened; CR -Critically Endangered; VU- Vulnerable Angiosperm (Flowering Plants) SPECIES RICHNESS AROUND THE WORLD PLANT CLASSIFICATION Historia Plantarum - the earliest surviving treatise on plants in which Theophrastus listed the names of over 500 plant species. Artificial system of Classification Theophrastus attempted common groupings of folklore combined with growth form such as ( Tree Shrub; Undershrub); or Herb. Or (Annual and Biennials plants) or (Cyme and Raceme inflorescences) or (Archichlamydeae and Meta chlamydeae) or (Upper or Lower ovarian ).
    [Show full text]
  • Timbe (Acaciella Angustissima) Pods Extracts Reduce the Levels Of
    molecules Article Timbe (Acaciella angustissima) Pods Extracts Reduce the Levels of Glucose, Insulin and Improved Physiological Parameters, Hypolipidemic Effect, Oxidative Stress and Renal Damage in Streptozotocin-Induced Diabetic Rats Adriana Jheny Rodríguez-Méndez 1,†, Wendy Carmen-Sandoval 1,†, Consuelo Lomas-Soria 2, Ramón G. Guevara-González 2, Rosalía Reynoso-Camacho 3, María Elena Villagran-Herrera 1, Luis Salazar-Olivo 4 , Irineo Torres-Pacheco 2 and Ana A. Feregrino-Pérez 2,* 1 Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel No 200, Col. Prados de la Capilla, 76176 Querétaro, Mexico; [email protected] (A.J.R.-M.); [email protected] (W.C.-S.); [email protected] (M.E.V.-H.) 2 División de Estudios de Posgrado, C.A. Ingeniería de Biosistemas. Facultad de Ingeniería. Universidad Autónoma de Querétaro, C. U. Cerro de las Campanas, S/N, 76010 Querétaro, Mexico; [email protected] (C.L.-S.); [email protected] (R.G.G.-G.); [email protected] (I.T.-P.) 3 Departamento de Investigación y Posgrado en Alimentos, PROPAC, Facultad de Química, Universidad Autónoma de Querétaro, C. U. Cerro de las Campanas, S/N, 76010 Querétaro, Mexico; [email protected] 4 Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, camino a la presa san José 2055, col. Lomas 4 sección, 78216, San Luis Potosí, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-01-442-192-12-00 (ext. 6016) † These authors contributed equally to this work. Received: 9 October 2018; Accepted: 26 October 2018; Published: 30 October 2018 Abstract: In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it.
    [Show full text]
  • White Lead Tree (Leucaena Leucocephala)
    UF/IFAS Extension Hernando County Fact Sheet 2015-03 White Lead Tree (Leucaena leucocephala) Dr. William Lester, Extension Agent II • Email: [email protected] Lead tree is the common name for all members of the Leucaena genus. White lead tree refers to this particular tree’s whitish blossoms. The lead tree is native to Mexico and Central America, but it is cultivated throughout the tropics, and it has widely escaped and naturalized. In the United States, it has been reported as an adventive from Arizona, California, Florida, Hawaii, Puerto Rico, Texas and the Virgin Islands. In Hernando County the tree is mostly located along the coast, but has been found growing in alkaline soils further inland. White lead tree grows best in full sunlight and can reach heights of up to 60 feet. The leaves are alternately arranged, bipinnately compound, and typically 10 inches in length. Each leaflet is ½ inch long and spear-shaped. The bark is lightly textured and grayish-brown in color when mature. Flowers are white and grow in globe-shaped clusters at the ends of the branches, with each cluster being less than 1 inch wide. Fruits are 4- to 6-inch-long, flat pods that are 1–2 inches wide. Pods have raised edges, turn from green to brown with maturity, and contain 10–30 oval-shaped, brown seeds. In Florida, white leadtree is considered a category II invasive species, and has the potential to displace native plant communities because it is an aggressive competitor for resources. As a result, the Division of Plant Industry strictly prohibits possessing (including collecting), transporting (including importing), and cultivating this species.
    [Show full text]
  • P.PSH.1055 Final Report.Pdf
    Final report Desmanthus legume in livestock grazing pastures and its role in methane emissions Project code: P.PSH.1055 Prepared by: Ed Charmley CSIRO Date published: 13 November 2020 PUBLISHED BY Meat and Livestock Australia Limited PO Box 1961 NORTH SYDNEY NSW 2059 This is an MLA Donor Company funded project. Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government and contributions from the Australian Meat Processor Corporation to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Page 1 of 51 P.PSH.1055 – Desmanthus and methane emissions Abstract Methane is a greenhouse gas produced as a by-product of fermentation of feedstuffs in ruminants. Desmanthus is a tropical legume adapted to parts of northern Australia. Laboratory studies have demonstrated that Desmanthus can reduce the production of methane when incubated with rumen fluid. The objective of this project was to determine if methane production could be reduced by feeding Desmanthus to cattle and to provide data to support a methodology allowing the avoided emissions to be traded in the carbon market. Several cultivars developed by JCU and Agrimix Pastures Pty Ltd were tested in three cattle feeding trials.
    [Show full text]
  • Acacia Angustissima (Mill.) SCORE: 9.0 RATING: High Risk Kuntze
    TAXON: Acacia angustissima (Mill.) SCORE: 9.0 RATING: High Risk Kuntze Taxon: Acacia angustissima (Mill.) Kuntze Family: Fabaceae Common Name(s): fern acacia Synonym(s): Acacia boliviana Rusby prairie acacia Acacia suffrutescens Rose Prairie wattle Acaciella angustissima (Mill.) Britton & Rose whiteball acacia Acaciella suffrutescens (Rose) Britton Mimosa& Rose angustissima Mill. Senegalia angustissima (Mill.) Pedley Assessor: Chuck Chimera Status: Assessor Approved End Date: 28 Jan 2016 WRA Score: 9.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Shrub, Weedy, Thicket-Forming, N-Fixing, Coppices Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix
    [Show full text]
  • Genome of Rhizobium Leucaenae Strains CFN 299T and CPAO 29.8
    Ormeño-Orrillo et al. BMC Genomics (2016) 17:534 DOI 10.1186/s12864-016-2859-z RESEARCHARTICLE Open Access Genome of Rhizobium leucaenae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions Ernesto Ormeño-Orrillo1†, Douglas Fabiano Gomes2,3†, Pablo del Cerro4, Ana Tereza Ribeiro Vasconcelos5, Carlos Canchaya6, Luiz Gonzaga Paula Almeida5, Fabio Martins Mercante7, Francisco Javier Ollero4, Manuel Megías4 and Mariangela Hungria2* Abstract Background: Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici “group” are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian “Cerrados” soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299T and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. Results: The genomes of R. leucaenae strains CFN 299T and CPAO 29.8 were estimated at 6.7–6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency.
    [Show full text]
  • Protocolos Monitoreo Especiies Invasoras
    tÍi:�::;::,;;:::::;:�;:7:::·�;;;enCnOO Hermen Ferrás Álvarez1 *, Arianna González Rodríguez2, Luz Margarita Figueredo Cardona2 & Arturo Salmerón López2 1 2 Instituto de Ecología y Sistemática, CITMA, La Habana. Centro Oriental de Ecosistemas y Biodiversidad, CITMA, Santiago de Cuba. *Contacto: [email protected] INTRODUCCIÓN El término monitoreo en este documento se refiere a la evaluación periódica de uno o varios indicadores para detectar tendencias, cambios e irregularidades en relación con un manejo determinado aplicado a la especie de nuestro interés, coincidiendo con Oviedo & al. (2012). Leucaena leucocephala (Lam.) de Wit es una de las especies más utilizadas en los sistemas silvopastoriles tropicales, por su rápido crecimiento, su capacidad de mejoras el suelo y el gran contenido proteico. Es a su vez una de las especies invasoras más agresivas a nivel mundial (Lowe & al., 2004), formando matorrales monoespecíficos difíciles de eliminar, por su gran producción de semillas y capacidad de regeneración. Esta especie en Cuba invade terrenos de cultivo abandonados, áreas abiertas de vegetación secundaria, totalmente deforestadas o seminaturales, donde forma densos bosques, dificulta la reutilización de estas áreas en otras labores agrícolas, ganaderas o el establecimiento de la vegetación nativa (Fuentes & González, 2011 ). Este documento persigue el objetivo de establecer un protocolo para el monitoreo de la especie en Cuba, con el objetivo de evaluar la efectividad de las acciones de manejo sobre la misma. CARACTERIZACIÓN DE LA ESPECIE Nombre científico: Leucaena leucocephala (Lam.) de Wit Clasificacación taxonómica superior de la especie: Género: Leucaena, Familia: Fabaceae (Leguminosae), Orden: Fabales, División: Magnoliophyta. Publicación original: la especie fue descrita en 1783 por el naturalista francés Jean-Baptiste Lamarck, con el nombre de Mimosa leucocephala (Encyclopédie Méthodique, Botanique 1 (1): 12.
    [Show full text]
  • Leucaena Leucocephala (Lam.) De Wit Mily a F a E P E)/ A
    Leucaena leucocephala (Lam.) de Wit MILY A F A E P e)/ A Common Name: Lead tree; white leadtree; jumbie bean; koa haole; cycling and nutrient accumulation ability (Budelman 1989), it EGUMINOS white popinac can potentially alter soil biogeochemistry. Increases soil acidifica- L Synonymy: L. glauca Benth. tion (Noble et al.1998) and the rate and extent of N mineraliza- E ( E Origin: Central America (and possibly the Florida Keys; see Zarate tion (Mulongoy and Gasser 1993). Contributes high amounts of A 2000) N, P, and K to the soil through leaf decomposition (Mwiinga et al. 1994). Toxic allelochemicals, such as mimosine, are released from CE Botanical Description: Deciduous shrub or small tree to 10 m (33 leaf litter, and suppress understory growth (Chou 1995). Leachates A ft) tall with slender trunks and an open, spreading crown; trunk reduced germination and growth in beans, (Kohli 1998), tomatoes B with deep red inner bark; young stems often with white, silky pu- bescence. Leaves alternate, twice-pinnately compound, to 30 cm (Sanker and Rai 1993), sorghum (Suresh and Rai 1987), corn (Singh Fa (12 in) long, with 4-8 pairs of pinnae, these having 13-17 pairs et al.1999), and oats (Rishi and Dhillon 1997). Foliage and seeds of leaflets. Leaflets sessile, opposite, grayish green, glabrous, asym- highly toxic to non-ruminant animals (Shelton et al. 1994), and metric, sickle-shaped; margins entire sometimes with small hairs, linked to reproductive problems in rodents (Hegarty et al. 1978). bases rounded, tips short-pointed, midveins offset. Upper side of Distribution: Herbarium specimens documented from 18 coun- leaf petiole bearing a conspicuous, yellow green, saucer-shaped ties across Florida (Wunderlin and Hansen 2002).
    [Show full text]
  • Leucaena Leucocephala (Lam.) De
    Leucaena leucocephala (Lam.) De wit Leucaena leucocephala The fast-growing, nitrogen-fixing tree/shrub is cultivated as a fodder plant, for green manure, as a windbreak, for reforestation, as a biofuel crop etc. Leucaena has been widely introduced due to its beneficial qualities; it has become an aggressive invader in disturbed areas in many tropical and sub-tropical locations and is listed as one of the ‘100 of the World’s Worst Invasive Alien Species’. Leucaena is a prolific bearer of seeds (up-to 1700 pods per tree with each pod containing 20 seeds with 2-3 cycles per year); seeds are dispersed by rodents, birds and naturally. It forms dense monotypic stands in disturbed areas that it invades preventing the establishment of native plant species. It also excludes plant growth in its vicinity by an allelopathic effect caused by a chemical Ek Balam it produces called mimosine. Young leaves and mature seeds have Photo Credit: Wikimedia commons (User: ) a high mimosine content. Leucaena was introduced to the Bonin Ogasawara Islands in 1862 Leucaena is one of several invasive alien plants that are a threat and has had negative impacts on the native plant communities; to the highly threatened sclerophyll forests in New Caledonia, in disturbed areas it invades early in succession preventing dominating open and secondary forests. The sclerophyll forests are regeneration of native plant communities and promoting the home to many endemic plant species some of which which are listed Bischofia javanica Pittosporum tanianum establishment of more aggressive late-successional alien species as ‘Critically Endangered (CR)’ in the IUCN Red List of Threatened such as Bishopwood ( ) References:Species such .
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • Acacia Glauca (L.) Moench Fabaceae - Mimosoideae
    Acacia glauca (L.) Moench Fabaceae - Mimosoideae LOCAL NAMES English (wild dividivi,redwood); French (amourette); Javanese (mlanding sabrang,mlanding merah) BOTANIC DESCRIPTION Acacia glauca is an erect, unarmed shrub or small tree, 1-3(-5) m tall; crown open, branches many, terete, sparsely pubescent to glabrous, younger twigs more strigose; bark dark red. Leaves bipinnately or sometimes tripinnately compound, pinnae in 2-10 pairs, 4-9 cm long, rachis 8-12 cm long, glandless; leaflets 10-30 pairs per pinna, opposite, oblong-lanceolate, 4-10 mm x 1-2 mm, unequal sided, base rounded, top blunt with acute tip, hairy to glabrescent; stipules lanceolate, early caducous. Inflorescence a short, sometimes subcapitate, 20-40-flowered spike, 2-6 together in upper axils, the uppermost arranged in racemes; peduncle up to 2.5 cm long, pedicel 1-2 mm, articulated; flowers 5-merous, bisexual, white turning yellowish; calyx campanulate, 0.5-1 mm long, 5-lobed; corolla tubular, 5-lobed, 2-4 mm long; stamens numerous, ovary stipitate with 5 mm long style. Fruit a flat, membranous pod, oblong to strap-shaped, 1.5-10 cm x 0.5-2 cm, stalk about 1 cm long, apiculate, glossy brown, 1-8 seeded, valves swollen where seeds develop, transversely veined along the margins. Seeds ovoid to lenticular, brown. The generic name ‘acacia’ comes from the Greek word ‘akis’, meaning point or barb. BIOLOGY Flowering and fruiting may start as early as 6 months and flowering occurs throughout the year. Agroforestry Database 4.0 (Orwa et al.2009) Page 1 of 5 Acacia glauca (L.) Moench Fabaceae - Mimosoideae ECOLOGY A.
    [Show full text]
  • Universidade De Brasília Centro De Desenvolvimento Sustentável Programa De Pós-Graduação Em Desenvolvimento Sustentável
    Universidade de Brasília Centro de Desenvolvimento Sustentável Programa de Pós-Graduação em Desenvolvimento Sustentável A espécie Leucaena leucocephala (Lam.) de Wit. no Parque Nacional de Brasília, DF: implicações ambientais de uma espécie exótica invasora Marilia Teresinha de Sousa Machado Tese de Doutorado Brasília-DF, maio/2018 Marilia Teresinha de Sousa Machado A espécie Leucaena leucocephala (Lam.) de Wit. no Parque Nacional de Brasília, DF: implicações ambientais de uma espécie exótica invasora Tese apresentada ao Programa de Pós- Graduação em Desenvolvimento Sustentável do Centro de Desenvolvimento Sustentável da Universidade de Brasília, como requisito parcial à obtenção do título de Doutor em Desenvolvimento Sustentável. Orientador: Prof. Dr. José Augusto Drummond Co-orientador: Prof. Dr. Rafael Dudeque Zenni Brasília-DF, maio/ 2018 UNIVERSIDADE DE BRASÍLIA Centro de Desenvolvimento Sustentável Programa de Pós-Graduação em Desenvolvimento Sustentável TERMO DE APROVAÇÃO A espécie Leucaena leucocephala (Lam.) de Wit. no Parque Nacional de Brasília, DF: implicações ambientais de uma espécie exótica invasora Marilia Teresinha de Sousa Machado Tese apresentada ao Programa de Pós-Graduação em Desenvolvimento Sustentável do Centro de Desenvolvimento Sustentável da Universidade de Brasília, como requisito parcial à obtenção do título de Doutor em Desenvolvimento Sustentável. Área de Concentração: Política e Gestão Ambiental. Aprovada em 22 de maio de 2018. Banca Examinadora: Orientador: ______________________________________________ Profº Dr. José Augusto Drummond Centro de Desenvolvimento Sustentável, CDS/ UnB Membro externo: ______________________________________________ Profª Dra. Vívian da Silva Braz Centro Universitário de Anápolis Membro externo: ______________________________________________ Profª Dra. Josiane do Socorro Aguiar de Souza Faculdade do Gama, FGA/UnB Membro interno: ______________________________________________ Profª Dra. Cristiane Gomes Barreto Centro de Desenvolvimento Sustentável, CDS/UnB DEDICATÓRIA À minha família, pelo incentivo.
    [Show full text]