Amaryllis Magic with Yellowish Throat Flowering at Kirstenbosch

Total Page:16

File Type:pdf, Size:1020Kb

Amaryllis Magic with Yellowish Throat Flowering at Kirstenbosch ABOVE LEFT: Changing forms and colours. The pale pink, small-flowered form of Amaryllis belladonna from the Cape west coast with characteristic prominent contrasting veins and RIGHT, Amaryllis 'Multiflora': a white form Amaryllis magic with yellowish throat flowering at Kirstenbosch. Photos: Graham Duncan. From controversy to crossbreeding, this beautiful Cape bulb does not fail to enchant. by Graham Duncan, Kirstenbosch For many a city-bound motorist, the rush hour journey the world and it has become naturalised in many temperate along the southern end of Cape Town's Union Avenue linking parts, including the Mediterranean coast, the western and the southern suburbs with the city centre, is made more tol­ southern parts of Australia, and in California and New erable around March by the sudden appearance, as if by Zealand. On the Channel Island of Jersey the plant has magic, of hundreds of spear-shaped flower buds from the become such a familiar sight that it is boldly depicted on post bone dry earth in the centre traffic island, that rapidly trans.­ cards there and resolutely referred to as the Jersey lily! form into spectacular heads of deliciously fragrant pink Similarly on one of the well-known terraces at Trescoe Abbey trumpets. Gardens on the Isles of Scilly, a host of A. belladonna provide Amaryllis belladonna, the familiar 'Belladonn Lily' or a brilliant feast of pink each October. 'March Lily', was one of the first Cape bulbs to be taken back For almost fifty years, from 1938 to 1987, a heated debate to Europe, where it has been grown for well over three and a raged between botanists as to the correct application of the half centuries. It was illustrated by the Jesuit priest G.B. name Amaryllis belladonna. The controversy stemmed from Ferrari in Rome as far back as 1633, but it was Linnaeus the fact that over many decades this name had been applied who in 1753 afforded it its modern binomial in his Species to numerous different bulbous plants, by different authors, plantarum. His admiration for our beautiful lily is clearly including the tropical South American and Caribbean reflected in both the generic and specific names with which species Hippeastrum puniceum, as well as the plant we know he chose to describe the species. Amaryllis is derived from so well in South Africa. It was the view of certain American the Greek amarullis, referring to a beautiful Roman shep­ botanists that the name A. belladonna be retained for the herdess often mentioned in the classical mythology of Ovid, South American plant, despite the fact that the type speci­ Theocritus and Virgil, while belladonna is Italian for beauti­ men clearly upheld the identity of the South African plant. fullady. The matter was finally brought to conclusion in 1987 at a Its exquisite blooms, overpoweringly fruity-sweet perfume meeting of the Committee for Spermatophyta, at which and ease of cultivation has endeared it to gardeners around preservation of the name was unanimously supported for the 142 December 2004 Veld&Flora South African plant. Unfortunately, the tunics with age and are exceptionally known respectively by the bigeneric vivid, large-flowered, summer-flowering poisonous due to the presence of names x Amarygia, x Amarcrinum and Hippeastrum hybrids produced by the amaryllid alkaloid compounds. Flower x Amarine. countless million in South Africa and buds emerge from February to April Some of the most successful crosses in many other countries, continue to be and the stout, purplish-green, slightly have been officially recognised and sold under the incorrect, but universal­ compressed flower stems elongate rap­ named, such as x Amarygia bidwellii ly entrenched name of 'gardener's idly, reaching up to 850 cm high. (A. belladonna x Brunsvigia orientalis), amaryllis', and doubtless will be known A. belladonna is easily recognized by raised by the Australian horticulturist as such for decades to come. its long sub-erect, strap-shaped leaves Bidwell in 1870, that produced spec­ The recent discovery of a second and large trumpet-shaped flowers that tacular radial heads of up to forty flow­ species in the genus Amaryllis, A. para­ are usually strongly oriented to one ers. In Australia this hybrid was later disicola, brought about great surprise side. The foliage of A. paradisicola is back-crossed onto A. belladonna, the and excitement in horticultural and broader, shorter and spreading, and progeny of which became known as botanical circles. First discovered in a distinctly oval-shaped, with the leaf Amaryllis 'Multiflora', that produced up leafing state by John Lavranos in a margins curiously wavy, and in both to twenty widely flaring trumpets, remote gorge in the Richtersveld in species the foliage has a prominent including some excellent white-flow­ 1972, hundreds of kilometres north midrib. Flower colour in A. belladonna ered forms with yellowish throats. west of the most northerly known local­ varies in many shades of pink to deep One of the most successful of the x ity for A. belladonna, material of the rose-pink or almost burgundy, rarely Amarcrinum crosses was achieved with mystery bulb could not be accurately pure white, always with a creamy-yel­ A. belladonna x Crinum moorei, that identified due to the absence of flowers. low throat. became known as x Amarcrinum memo­ Leafing bulbs of the plant were sub­ In both species flower colour darkens ria-corsii, and in x Amarine the most sequently found by several more collec­ with age and A. belladonna emits an notable cross was x Amarine tubergenii tors, but were never seen in bloom overwhelming, fruity-sweet fragrance 'Zwanenburg', raised in The until 1995, when Richtersveld National that intensifies at night, attracting the Netherlands in 1940 between A. bel­ Park ranger Johannes Domroch moths that visit them. Flower fragrance ladonna and Nerine bowdenii, and a pressed a single flower he had collect­ is much less intense in A. paradisicola. popular flower bulb crop to this day. ed, and presented it to Dr G. The west coast forms of A. belladonna The uniformly pink flowers of A. par­ Williamson who was conducting a have somewhat smaller flowers with adisicola without the creamy-yellow floristic survey of the Richtersveld at prominently contrasting tepal veins throat typical of A. belladonna, and its the time, but who could not place it in compared to the typical forms, and the generally more floriferous flower head any particular genus with certainty. bulbs tend not to produce offsets as and unusual foliage will provide an Then in the autumn of 1997, Dr readily as their counterparts in the exciting new source of genetic material Williamson and his wife were rewarded fynbos. in amaryllid breeding. when, quite by chance, they came The flowers of A. paradisicola are a Cultivation across a sizeable stand of the magnifi­ clear pale pink to deep rose-pink, with­ While A. belladonna thrives on cent plant in full bloom. out creamy-yellow throats, and gener­ benign neglect, the complaint is often Specimens were collected and ally carry more flowers per inflores­ heard from frustrated gardeners that brought back to the Compton cence than A. belladonna does, and its their bulbs have either never flowered, Herbarium at Kirstenbosch and follow­ flower stalks spread in all directions. or flower very erratically. ing a systematic study of the popula­ The fleshy rounded seeds are creamy­ As is the case with the 'George lily' tion, the plant was finally described as white to pink and are shed in early (Cyrtanthus elatus, previously known new by Dr D. Snijman in 1998. April to coincide with the onset of win­ Both Amaryllis species are restricted ter rains. In nature, A. belladonna is to the winter rainfall zone of South only to be seen flowering in open Africa and are distinctly deciduous, aspects and is adapted to profuse flow­ undergoing a completely dry summer ering following summer bush fires that dormant period. A. belladonna occurs periodically rage across its mountain The recent discovery of in the Fynbos Biome of the Western habitat. Unlike the fynbos amaryllid Cape extending from Clanwilliam in the Cyrtanthus ventricosus that is wholly a second species in the Olifants River Valley to George in the dependent on fire for flowering to sou'thern Cape, primarily in fynbos of occur, this is not the case with A. bel­ genus Amaryllis, lower mountain slopes, but also in ladonna, although flowering is greatly renosterveld of low-lying granite hills enhanced by it, clearing away thick A. paradisicola, brought along the west coast. bush cover that prevents the foliage A. paradisicola is endemic to the arid from getting enough sun. about great surprise Richtersveld in the far north-western A. belladonna, also sometimes corner of the Northern Cape, in the known as 'naked lady' due to the flower and excitement in Succulent Karoo Biome. Both species stems appearing without any foliage, are hysteranthous, producing their has acquired numerous named culti­ horticultural and flowers in early autumn before the vars over the years, and it has been leaves develop in May following the used extensively in the development of botanical circles. onset of winter rains. The large egg­ striking intergeneric crosses, notably shaped bulbs develop hard outer with Brunsvigia, Crinum and Nerine, December 2004 Veld&Flora 143 as Vallota speciosa), there can be no at the expense of flowers. A. belladonna bright light for as much of the day as doubt that there are certain forms of A. easily adapts to a wide variety of soils, possible when grown under cover. belladonna that are naturally free-flow­ growing best in sandy loam, and is Flowering in A. belladonna diminish­ ering and others that are not. Even remarkably resilient to general garden es markedly once surrounding vegeta­ with free-flowering forms, not every watering during its summer dormant tion becomes too thick and regular bulb flowers every year.
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • Amaryllis – Hardy Scientific Name: Hippeastrum Johnsoni Common
    Name: Amaryllis – Hardy Scientific name: Hippeastrum johnsoni Common Names: Cluster Amaryllis, Hurricane Lily, Magic Lily, Spider Lily, Stone Garlic. Life Cycle: Hardy bulb. Height: 12 to 36 inches (30 to 90 cm). Native: Asia. Growing Region: Zones 7 to 10. Flowers: Late summer through to autumn. Flower Details: White, red, pink, orange, yellow. Lily- like. Umbel; four to eight flowers. Foliage: Slender. Long. Grow Outside: Usually grown from bulbs or vegetatively propagated plants as seed grown plants can take up to 12 years to bloom. Bulbs: 3 to 8 inches (8 to 20 cm) depending upon species. End of summer Requirements and care: Full sunlight or partial shade. Good drainage. Acidic to neutral soil. Rich soil, moist soil. Regular watering to maintain soil moisture. Requires a feed every two years; do this during the growing season. Propagate: by planting bulblets once blooming has finished. Source: http://www.plant-biology.com/Lycoris-Hardy-Amaryllis.php http://www.brecksbulbs.ca/product/Hardy-Amaryllis-Mixture/Summer_Bulbs Extension programs service people of all ages regardless of socioeconomic level, race, color, sex, religion, disability, or national origin. The Texas A&M University System, U.S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating A member of The Texas A&M University System and its statewide Agriculture Program. Common Name: Artemesia - Powis Castle Botanical name: Artemesiax Powis Castle Plant Type: Perennial Light Requirement: High Water Requirement: Low Hardiness/Zone: 4 - 8 Heat/Drought Tolerance: High Height: 3 ft Width/Spacing: 3ft Flower Color: Yellow Blooming Period: Rarely flowers Plant Form or Habit: Evergreen woody perennial, or shrub Foliage Color and Texture: Leaves are finely dissected like filigreed silver lacework.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Sell Cut Flowers from Perennial Summer-Flowering Bulbs
    SELL CUT FLOWERS FROM PERENNIAL SUMMER-FLOWERING BULBS Andy Hankins Extension Specialist-Alternative Agriculture, Virginia State University Reviewed by Chris Mullins, Virginia State University 2018 Commercial producers of field-grown flower cut flowers generally have a wide selection of crops to sell in April, May and June. Many species of annual and especially perennial cut flowers bloom during these three months. Many flower crops are sensitive to day length. Crops that bloom during long days such as larkspur, yarrow, peonies and gypsophila cannot be made to bloom after the summer equinox on June 21st. Other crops such as snapdragons may be day length neutral but they are adversely affected by the very warm days and nights of mid-summer. It is much more challenging for Virginia cut flower growers to have a diverse selection of flower crops for marketing from July to September when day length is getting shorter and day temperatures are getting hotter. Quite a few growers offer the same inventory of sunflowers, zinnias, celosia and gladiolas during the middle of the summer because everything else has come and gone. A group of plants that may offer new opportunities for sales of cut flowers during mid-summer are summer-flowering bulbs. Many of these summer-flowering bulbs are tropical plants that have only become available in the United States during the last few years. The first question that growers should ask about any tropical plant recommended for field planting is, " Will this species be winter hardy in Virginia?" Many of the bulb species described in this article are not very winter hardy.
    [Show full text]
  • Narcissus Pests
    Bulletin 51 HMSO 13s Od [65p] net Narcissus Pests Ministry of Agriculture, Fisheries and Food MINISTRY OF AGRICULTURE, FISHERIES AND FOOD Narcissus Pests Bulletin 51 LONDON HER MAJESTY'S STATIONERY OFFICE 197o First published June 1932 Sixth edition 197o The Ministry does not accept responsibility for any of the private or trade advertisements included in this publication. SBN 11 240351 4 Foreword THE growers of Narcissus have been very fortunate in that the pests of this valuable crop have received specialist attention for nearly forty years. Names like W. E. H. Hodson and L. N. Staniland, both past authors of this Bulletin, rank high in the list of pioneer researchers on bulb pests in this country. They have been followed with no less enthusiasm by the con- tributors to this sixth edition which brings up-to-date our knowledge of the important pests of the crop and tested and practical methods of control. Although the present Bulletin mainly follows the pattern laid down by Mr. Hodson in 1932 many sections have been extensively rewritten. Mr. H. C. Woodville has dealt with narcissus flies as he did in 1958, and Mr. H. G. Morgan with detection of pests in the field, stem and other eelworms and their control. Mr. A. L. Winfield covered bulb scale mite and the general problem of hot-water treatment of bulbs, and chemical dips to control stem eelworm, and also contributed the notes on miscellaneous pests. Mr. P. Aitkenhead dealt with bulb mites. Mr. J. F. Southey provided the section dealing with eelworms as vectors of virus diseases of the crop.
    [Show full text]
  • (Tribe Haemantheae) Inferred from Plastid and Nuclear Non-Coding DNA Sequences
    Plant Syst. Evol. 244: 141–155 (2004) DOI 10.1007/s00606-003-0085-z Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences A. W. Meerow1, 2 and J. R. Clayton1 1 USDA-ARS-SHRS, National Germplasm Repository, Miami, Florida, USA 2 Fairchild Tropical Garden, Miami, Florida, USA Received October 22, 2002; accepted September 3, 2003 Published online: February 12, 2004 Ó Springer-Verlag 2004 Abstract. Using sequences from the plastid trnL-F Key words: Amaryllidaceae, Haemantheae, geo- region and nrDNA ITS, we investigated the phy- phytes, South Africa, monocotyledons, DNA, logeny of the fleshy-fruited African tribe Haeman- phylogenetics, systematics. theae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a Baccate fruits have evolved only once in the combined matrix produce the most resolute and Amaryllidaceae (Meerow et al. 1999), and well-supported tree with parsimony analysis. Two solely in Africa, but the genera possessing main clades are resolved, one comprising the them have not always been recognized as a monophyletic rhizomatous genera Clivia and Cryp- monophyletic group. Haemanthus L. and tostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Gethyllis L. were the first two genera of the Apodolirion/Gethyllis subclade. One of four group to be described (Linneaus 1753). Her- included Gethyllis species, G. lanuginosa, resolves bert (1837) placed Haemanthus (including as sister to Apodolirion with ITS. Relationships Scadoxus Raf.) and Clivia Lindl. in the tribe among the Clivia species are not in agreement with Amaryllidiformes, while Gethyllis was classi- a previous published phylogeny.
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Hippeastrum Reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking
    molecules Article Hippeastrum reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking Luciana R. Tallini 1 ID , Edison H. Osorio 2, Vanessa Dias dos Santos 3, Warley de Souza Borges 3, Marcel Kaiser 4,5, Francesc Viladomat 1, José Angelo S. Zuanazzi 6 ID and Jaume Bastida 1,* 1 Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain; [email protected] (L.R.T.); [email protected] (F.V.) 2 Department of Basic Sciences, Catholic University Luis Amigó, SISCO, Transversal 51 A No. 67B-90, Medellín, Colombia; [email protected] 3 Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari 514, 29075-915 Vitória ES, Brazil; [email protected] (V.D.d.S.); [email protected] (W.d.S.B.) 4 Medicinal Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, 4051 Basel, Switzerland; [email protected] 5 University of Basel, Petersplatz 1, 4001 Basel, Switzerland 6 Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +34-934-020-268 Received: 24 October 2017; Accepted: 7 December 2017; Published: 9 December 2017 Abstract: The Amaryllidaceae family has proven to be a rich source of active compounds, which are characterized by unique skeleton arrangements and a broad spectrum of biological activities. The aim of this work was to perform the first detailed study of the alkaloid constituents of Hippeastrum reticulatum (Amaryllidaceae) and to determine the anti-parasitological and cholinesterase (AChE and BuChE) inhibitory activities of the epimers (6α-hydroxymaritidine and 6β-hydroxymaritidine).
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • Garden Plants Poisonous to People
    N NO V E M B E R 2 0 0 6 P R I M E F A C T 3 5 9 ( R E P L A C E S A G F A C T P 7 . 1 . 1 P O I S O N O U S P L A N T S I N T H E G A R D E N) Garden plants poisonous to people Annie Johnson Table 1. Toxicity rating for Tables 2−7. Weeds Project Officer Rating Toxicity Stephen Johnson Mildly toxic. Mild symptoms may occur if large * Weed Ecologist quantities are eaten. Toxic. Causes discomfort and irritation but not Weeds Unit, Biosecurity Compliance and Mine ** Safety, Orange dangerous to life. Highly toxic. Capable of causing serious illness *** or death. Introduction There are a range of garden plants that are considered poisonous. Poisonings and deaths from garden plants Poisoning are rare as most poisonous plants taste unpleasant Poisoning from plants may occur from ingesting, and are seldom swallowed (see toxicity). However, it is inhalation or direct contact. best to know which plants are potentially toxic. Symptoms from ingestion include gastroenteritis, It is important to remember that small children are diarrhoea, vomiting, nervous symptoms and in serious often at risk from coloured berries, petals and leaves cases, respiratory and cardiac distress. Poisoning that look succulent. This does not mean that all these by inhalation of pollen, dust or fumes from burning poisonous plants should be avoided or removed from plants can cause symptoms similar to hay fever or the garden. It is best to teach children never to eat asthma.
    [Show full text]