Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and Beyond in Pigs

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and Beyond in Pigs microorganisms Review Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs Hanlu Zhang 1,2, Nikkie van der Wielen 1,3, Bart van der Hee 4,5 , Junjun Wang 2 , Wouter Hendriks 1 and Myrthe Gilbert 1,* 1 Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; [email protected] (H.Z.); [email protected] (N.v.d.W.); [email protected] (W.H.) 2 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; [email protected] 3 Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Stippenengm 4, 6708 WE Wageningen, The Netherlands 4 Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; [email protected] 5 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected] Received: 30 September 2020; Accepted: 4 November 2020; Published: 5 November 2020 Abstract: In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated. Keywords: protein fermentation; dietary protein; microbial composition; fermentation metabolites; gut health; pig 1. Introduction Proteins, peptides and amino acids (AA) in the gastrointestinal tract of pigs, either from exogenous or endogenous origin, can be utilised by the inhabitant microbiota. This utilisation first requires the breakdown of larger proteins and peptides by microbiota-derived proteases and peptidases, so-called proteolytic activity [1]. Subsequently, AA and short peptides act as building blocks for microbial protein synthesis or they can be utilised as an energy source, often referred to as protein fermentation [2]. Microorganisms 2020, 8, 1735; doi:10.3390/microorganisms8111735 www.mdpi.com/journal/microorganisms Microorganisms 2020, 8, 1735 2 of 23 This dissimilatory metabolism is less energetically favourable compared to carbohydrate catabolism [3] and leads to a series of metabolites of which several have the potential to negatively affect the gut in vitro [4]. Protein fermentation is thought to occur mostly in the large intestine because of its greater microbial population and slower passage rate compared to the small intestine [5]. Dietary proteins, as well as endogenous proteinaceous material such as digestive enzymes, sloughed epithelial cells, mucins and microbes [6], reach the large intestine when not digested and absorbed in the upper gastrointestinal tract. Approximately 15 to 25% of the dietary proteins in a conventional pig diet reach the large intestine [7], but this can be greatly influenced by the dietary protein level and the digestibility of the included protein source [8,9]. Moreover, the fate of these proteins in the large intestine depends on the quantity and type of dietary fermentable carbohydrates present [10]. High protein diets have been related to decreased faecal consistency and increased incidence of post-weaning diarrhoea in pigs [11,12], with protein fermentation processes suspected as being the underlying cause [4]. The current review focuses on the effects of protein fermentation in vivo by comparing microbial composition, the formation of metabolites and gut health between pigs fed with increased dietary protein levels compared to pigs fed with lower protein levels. 2. Changes in Microbial Composition The intestinal microbiota plays a major role in the modulation of host physiology and metabolism, including nutrient utilisation, bioavailability, energy status and immune system development [13,14]. After birth, the intestinal tract is rapidly colonised by microbiota and its composition changes over time in response to diet, stress and disease state [15,16]. Diet is a large driver of microbial composition in the intestine, especially at a young age, as bacterial composition is still developing and is neither stable nor resilient; microbiota composition in adult pigs is assumed to be relatively stable [17,18]. As such, weaning piglets are expected to be more prone to microbial changes in response to diet, with increased indigestible protein potentially related to unfavourable health outcomes. Multiple studies have investigated the effects of dietary protein on microbial composition and host health [19–21]. However, there are several factors that make comparisons between such studies rather difficult. For example, the methodology used to analyse and report microbial composition varies, e.g., utilising different reference databases for operational taxonomic units (OTU) clustering, different sequencing techniques or genomic regions or depth of analysis. For instance, culture-based studies were only able to identify a few groups of known bacteria that were preselected by researchers. In the majority of these studies, total Coliforms and E. coli are chosen to represent potential harmful species and Lactobacilli are chosen to represent beneficial species [22–24]. Although culture-independent DNA sequencing methods have been developed [25], studies are still limited due to the required probes and incompleteness of the databases to analyse sequenced data. As not all microbes can be identified by OTU clustering methods due to similarity in sequenced gene regions, results on microbial composition and classification should be compared cautiously. Furthermore, sequencing of various regions of the hypervariable region sequencing (V) of the 16S SSU rRNA gene also affects the estimated results, where the V3/V4 region has shown the highest classification accuracy [26], but more recent studies signify the importance of utilising long-read sequencing of the full 16S gene to overcome inter- and intragenomic variation to more accurately estimate community profiles [27]. In addition, most studies calculate relative abundance from sequenced composition, but it is likely that microbial composition and biological implications are different when expressed in absolute abundance, rather than in relative abundance [28]. Other factors that may lead to differences in microbial composition results between studies [12,19,22] may be related to physiology such as intestinal segment and age or variation in other dietary components, especially fermentable carbohydrate. The microbial composition is known to vary between intestinal segments and factors such as pH and substrate availability in these segments play a role [29]. When increasing protein level, changes in microbial composition also showed segment-dependent changes across the jejunum, caecum, colon and in faeces. For instance, Microorganisms 2020, 8, 1735 3 of 23 the proportions of major phyla were altered by protein level only in the ileum, but not in the colon [30]. In addition, the ileal microbiota structure can show different responses to an increase in dietary protein compared to the colon, especially at the family and genus level [31]. Despite the limitations for comparing studies, effects of dietary protein level on general trends in microbial composition can be summarised and are discussed below. Microbial richness and diversity are important parameters in host–microbe symbiosis. Upon increasing crude protein level in the diet, the microbial richness and diversity, i.e., number and variety of OTUs, was found unaltered in most studies (Table1). Nevertheless, some studies showed a temporary increase in microbial richness and diversity when providing higher dietary protein levels to pigs [31–34]. The richer and more diverse colonic microbiota of weanling piglets reported was possibly related to the enterotoxigenic Escherichia coli challenge and was only observed seven days post-challenge, although no effect on total Coliforms was observed in these piglets [32]. In general, higher microbiota richness and diversity is considered beneficial and protective [35,36]. However, this was not related to an advantageous health outcome and even worse faecal score was observed [32],
Recommended publications
  • Cellular Respiration Process by Which Cells Transfer Energy from Food To
    Cellular Respiration Process by which cells transfer energy from food to ATP Cells rely heavily on Oxygen Can be Aerobic or Anaerobic Brain cells cannot produce energy anaerobicly Heart Cells have a minimal ability to produce energy anaerobicly Glycolysis, Krebs cycle, Electron Transport Carb Metabolism Only food the can create energy through Anaerobic metabolism Preferred food of the body, uses least amount of oxygen Glucose- 6-carbon sugar C6H12O6 Break down= Glucose + Oxygen = Water + Carbon Dioxide + Energy Excess Glucose stored as Glycogen stored in the liver & muscles Stage 1- Glycolysis Prepares glucose to enter the next stage Converts Glucose to Pyruvic Acid (Aerobic) or Lactic Acid (Anaerobic) ATP is produced 2 ATP used in the first steps (Only 1 if glycogen) 2 ATP produced end steps 2 NAD FAD & NAD similar to a taxi (Transport Oxygen) 6 Carbon Glucose broken down to 2 3-carbon cells Lactic Acid- Glycogen (Anaerobic) Pyruvic acid- Glucose (Aerobic) Stage 2- Formation of Acetyl Coenzyme A Converts Pyruvate to Acetyl Coenzyme A No ATP is used or produced 2 NAD (4 NAD) Stage 3- Krebs Cycle Begins & ends with the same substance No ATP is used 2 ATP Made (2 Cells) Hydrogen’s spilt for Electron Transport 6 NAD Stage 4- Electron Transport System Hydrogen taken from FAD & NAD to make water Electrons are dropped off and then pick up- repeats 3 times One ATP for each for each pair of Hydrogen’s Each NAD makes 3ATP Each FAD makes 2 ATP Total Stage 1 – Glycolysis-2 ATP, NAD but can’t be used in skeletal muscle (FAD uses electron in skeletal
    [Show full text]
  • Regulation of Energy Substrate Metabolism in Endurance Exercise
    International Journal of Environmental Research and Public Health Review Regulation of Energy Substrate Metabolism in Endurance Exercise Abdullah F. Alghannam 1,* , Mazen M. Ghaith 2 and Maha H. Alhussain 3 1 Lifestyle and Health Research Center, Health Sciences Research Center, Princess Nourah bInt. Abdulrahman University, Riyadh 84428, Saudi Arabia 2 Faculty of Applied Medical Sciences, Laboratory Medicine Department, Umm Al-Qura University, Al Abdeyah, Makkah 7607, Saudi Arabia; [email protected] 3 Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein. In prolonged moderate to high-intensity exercise, there is a delicate interplay between carbohydrate and fat metabolism, and this bioenergetic process is tightly regulated by numerous physiological, nutritional, and environmental factors such as exercise intensity and du- ration, body mass and feeding state. Carbohydrate metabolism is of critical importance during prolonged endurance-type exercise, reflecting the physiological need to regulate glucose homeostasis, assuring optimal glycogen storage, proper muscle fuelling, and delaying the onset of fatigue. Fat metabolism represents a sustainable source of energy to meet energy demands and preserve the ‘limited’ carbohydrate stores. Coordinated neural, hormonal and circulatory events occur during prolonged endurance-type exercise, facilitating the delivery of fatty acids from adipose tissue to the Citation: Alghannam, A.F.; Ghaith, working muscle for oxidation.
    [Show full text]
  • The Role of Amino Acids in Liver Protein Metabolism Under a High Protein Diet
    The role of amino acids in liver protein metabolism under a high protein diet : identification of amino acids signal and associated transduction pathways Nattida Chotechuang To cite this version: Nattida Chotechuang. The role of amino acids in liver protein metabolism under a high protein diet : identification of amino acids signal and associated transduction pathways. Food and Nutrition. AgroParisTech, 2010. English. NNT : 2010AGPT0026. pastel-00610998 HAL Id: pastel-00610998 https://pastel.archives-ouvertes.fr/pastel-00610998 Submitted on 25 Jul 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° /__/__/__/__/__/__/__/__/__/__/ T H E S I S submitted to obtain the degree of Doctor of Philosophy at L’Institut des Sciences et Industries du Vivant et de l’Environnement (AgroParisTech) Speciality: Nutrition Science Presented and defended in public by Nattida CHOTECHUANG on 22nd March 2010 THE ROLE OF AMINO ACIDS IN LIVER PROTEIN METABOLISM UNDER A HIGH PROTEIN DIET: IDENTIFICATION OF AMINO ACIDS SIGNAL AND ASSOCIATED TRANSDUCTION PATHWAYS Thesis director: Daniel TOMÉ Thesis co-director: Dalila AZZOUT-MARNICHE AgroParisTech, UMR914 Nutrition Physiology and Ingestive Behaviour, F-75005 Paris to the jury: Mr.
    [Show full text]
  • Protein Degradation in the Large Intestine: Relevance to Colorectal Cancer
    Curr. Issues Intest. Microbiol. (2000) 1(2): 51-58. Colonic Protein Metabolism and Colorectal Cancer 51 Protein Degradation in the Large Intestine: Relevance to Colorectal Cancer R. Hughes1,*, E.A.M. Magee2 and S. Bingham3 metabolites from dietary protein precursors such as N-nitroso compounds and sulphides are also formed. 1School of Biomedical Sciences, University of Ulster, Recent work has shown that diets high in meat, fat Coleraine, N. Ireland BT52 1SA, UK and low in fibre increase human faecal water 2University of Dundee, Ninewells Hospital and Medical genotoxicity. It is likely that metabolites from colonic School, Dundee, Scotland DD1 9SY, UK protein metabolism contribute to this increase in 3Medical Research Council, Dunn Human Nutrition Unit, genotoxicity during high meat intakes. Welcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY, UK Introduction Colorectal cancer is the second most common cause of Abstract death from cancer in Western countries (Potter, 1996). In high incidence populations, the majority of colorectal cancer Colorectal cancer is the second most common form cases tend to be sporadic hence implying a role for of cancer death in Western countries. Diet has been environmental factors. Most specifically, diet is thought to implicated in the aetiology of this disease. be an important factor as 80% of colorectal cancer cases Epidemiological evidence suggests that diets high in have been attributed to dietary factors (Willett, 1995). meat and fat and low in fermentable carbohydrate Evidence from epidemiological studies show high rates of increase colorectal cancer risk. One mechanism that colorectal cancer in populations consuming diets high in could explain the association with meat is increased meat and fat and low in starch, NSP (non-starch colonic protein metabolism due to increased protein polysaccharides, fibre) and vegetables.
    [Show full text]
  • Dietary Protein Level Alters Oxidative Phosphorylation in Heart and Liver
    Downloaded from British Journal (If Nutrition (1 992), 68, 89-99 89 https://www.cambridge.org/core Dietary protein level alters oxidative phosphorylation in heart and liver mitochondria of chicks BY MASAAKI TOYOMIZU*, DAISUKE KIRIHARA, MASAHIRO TANAKA*, KUNIOKI HAYASHI AND YUICHTRO TOMITA Animal Nutrition, Department of Animal Science, Kagoshima University, Korimoto, . IP address: Kagoshima 890, Japan (Received I February I991 - Accepted 5 July 1991) 170.106.35.220 To determine the effects of dietary protein level on cardiac and hepatic mitochondrial oxidative phosphorylation, chicks were fed on semi-purified diets of different protein levels (7, 25, 43 and 61 % of , on metabolizable energy content) for 7, 14 and 21 d. All diets were formulated to contain equivalent fat, 03 Oct 2021 at 22:27:37 mineral and vitamin contents on a gross energy basis. Cardiac and hepatic mitochondrial oxidative phosphorylation rates were assessed polarographically with pyruvate and malate as substrates. Cardiac mitochondria isolated from chicks fed on a 43 or 61 YOprotein-energy diet for 7 d exhibited significantly reduced ADP:oxygen (ADP: 0) ratios when compared with mitochondria isolated from chicks fed on a lower-protein-energy diet. Feeding low- (7%) protein-energy diets for 14 d resulted in a relatively increased ADP: 0 ratio in the heart. Responses of ADP:O ratios to protein level in hepatic mitochondria , subject to the Cambridge Core terms of use, available at showed more dependency on protein level than in heart muscle; at all feeding periods the ADP:O ratio decreased with an increase in protein level. As a result, ATP synthesized in the liver, expressed as nmol/mg mitochondrial protein per min, significantly decreased with increased dietary protein level.
    [Show full text]
  • During Senescence' Daphne J
    Effect of Kinetin on Protein & Nucleic Acid Metabolism in Xanthium Leaves During Senescence' Daphne J. Osborne 2 Division of Biology, California Institute of Technology, Pasadena, California The chemical changes that occur in leaves as they demonstrated that both chlorophyll degradation and grow old have been well characterized for many protein loss in detached wheat leaves are retarded species. The endogenous factors which control and if the blades are floated on solutions of benzimidazole regulate these changes in plant cells remain, to a at 50 mg/liter. In the same year, Richmond and great extent, obscure, and the problem of why the Lang (12) showed that similar effects could be ob- cell eventually dies is yet unsolved. A normal fea- tained if excised leaves of Xanthium are kept with ture of the ageing leaf blade is a continuous decline their petioles dipping into solutions of kinetin at 5 in protein level (1). The most rapid fall occurs mg/liter. Mothes and Engelbrecht (5) sprayed so- during senescence and is associated with irreversible lutions of kinetin directly onto leaves of Nicotiana yellowing, loss of chlorophyll, and the eventual death and reported (1959) that the retention of chlorophyll of the organ. When a mature leaf is excised from is localized to the areas of the blade to which kinetin the plant and the petiole kept in water, these same is supplied. They found that labelled amino acids symptoms of senescence occur and, provided the migrate to, and accumulate in, the treated parts of petiole does not form roots, the protein content of the tobacco leaves, and they suggest that kinetin retards blade may fall to less than half the original value leaf senescence by causing the treated areas to act within a few days.
    [Show full text]
  • Nutrient Digestion and Nitrogen Metabolism Of
    NUTRIENT DIGESTION AND NITROGEN METABOLISM OF DRIED FERMENTATION BIOMASS AND VARIOUS FRACTIONS OF RUMEN MICROBES A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Abigail Joy Carpenter IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Marshall D. Stern, advisor August, 2012 © Abigail Carpenter 2012 ACKNOWLEDGEMENTS I would not have made it to the end of my Master’s degree without the help and support of many people. First, I am forever grateful to my advisor, Dr. Marshall Stern, for the opportunities that he has given me at the University of Minnesota. Thanks also to my committee members, Dr. Marcia Endres and Dr. Douglas Mashek, for their knowledge, support, and especially for their flexibility! Other faculty members deserve thanks also, particularly Dr. Brian Crooker for technical assistance and Drs. Alfredo DiCostanzo and Grant Crawford for adopting me as an honorary member of the Beef Team. Thank you to the graduate students who came before me, Martin Ruiz-Moreno and Elizabeth (Liz) Binversie, for your experience and teaching in the lab. Special thanks to my fellow Master’s student, Sam Fessenden, for your help and lab expertise and (seemingly) infinite patience over the past year. My family has been a source of strength and encouragement to me for as long as I can remember, and has continued to be so over the past two years. Thank you to my parents, Dan and Sandy Carpenter, for nurturing my excitement for science and learning from a young age, and to my “little” brothers, Mitch and Enoch, for being geeky enough that I don’t feel like I’m the weird one.
    [Show full text]
  • The Action of Steroid Hormones at the Cellular Level P
    POSTGRAD. MED. J. (1964), 40, 448 Postgrad Med J: first published as 10.1136/pgmj.40.466.448 on 1 August 1964. Downloaded from THE ACTION OF STEROID HORMONES AT THE CELLULAR LEVEL P. F. DIXON, B.A., M.B., B.Chir., A.R.I.C., C. H. GRAY, M.D., D.Sc., F.R.C.P., F.R.I.C., R. V. QUINCEY, B.A. Department of Chemical Pathology, King's College Hospital Medical School, London, S.E.5. Although the complex series of events which oestrogens and related compounds and showed occur when a steroid hormone is administered by viscometry and electrophoresis structural to a human subject or to an intact animal changes in the enzyme, without a change in might reflect a series of completely unre!lated molecular weight. Yielding and Tomkins activities, they are more likely to be secondary (1962) have reported a steroid-hormone induced to a few fundamental actions on the celils of loss of activity of crystalline glutamic dehydro- the body and it is with this second concept genase due to disaggregation into subunits that research in this field has been directed. functioning as alanine dehydrogenase with an There are two particular features of steroids uncovering of pyridine-nucleotide binding sites. which may be important in determining their These authors have been more concerned to mode of action. Firstly, they have oxygen show the possibility of such changes rather substituents at certain typical positions which than to attach great physiological significance readily undergo enzymatic oxido-reduction and to them. Chemical changes in receptor mole- could, therefore, act as coenzymes or pros- cules after association could account for Protected by copyright.
    [Show full text]
  • Rescue of TCA Cycle Dysfunction for Cancer Therapy
    Journal of Clinical Medicine Review Rescue of TCA Cycle Dysfunction for Cancer Therapy 1, 2, 1 2,3 Jubert Marquez y, Jessa Flores y, Amy Hyein Kim , Bayalagmaa Nyamaa , Anh Thi Tuyet Nguyen 2, Nammi Park 4 and Jin Han 1,2,4,* 1 Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea; [email protected] (J.M.); [email protected] (A.H.K.) 2 Department of Physiology, College of Medicine, Inje University, Busan 47392, Korea; jefl[email protected] (J.F.); [email protected] (B.N.); [email protected] (A.T.T.N.) 3 Department of Hematology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia 4 Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan 47392, Korea; [email protected] * Correspondence: [email protected]; Tel.: +8251-890-8748 Authors contributed equally. y Received: 10 November 2019; Accepted: 4 December 2019; Published: 6 December 2019 Abstract: Mitochondrion, a maternally hereditary, subcellular organelle, is the site of the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and oxidative phosphorylation (OXPHOS)—the basic processes of ATP production. Mitochondrial function plays a pivotal role in the development and pathology of different cancers. Disruption in its activity, like mutations in its TCA cycle enzymes, leads to physiological imbalances and metabolic shifts of the cell, which contributes to the progression of cancer. In this review, we explored the different significant mutations in the mitochondrial enzymes participating in the TCA cycle and the diseases, especially cancer types, that these malfunctions are closely associated with. In addition, this paper also discussed the different therapeutic approaches which are currently being developed to address these diseases caused by mitochondrial enzyme malfunction.
    [Show full text]
  • Corticosteroids Increase Protein Breakdown and Loss in Newly Diagnosed Pediatric Crohn Disease
    0031-3998/11/7005-0484 Vol. 70, No. 5, 2011 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2011 International Pediatric Research Foundation, Inc. Corticosteroids Increase Protein Breakdown and Loss in Newly Diagnosed Pediatric Crohn Disease STEVEN J. STEINER, JOSHUA D. NOE, AND SCOTT C. DENNE Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana 46202 ABSTRACT: Children with Crohn disease have altered growth and ing in significant and important improvements in lean body mass body composition. Previous studies have demonstrated decreased in these patients. protein breakdown after either corticosteroid or anti-TNF-␣ therapy. Both malnutrition and inflammation may be observed in The aim of this study was to evaluate whole body protein metabolism pediatric patients with Crohn disease, and they may have during corticosteroid therapy in children with newly diagnosed opposing effects on substrate metabolism. In patients with Crohn disease. Children with suspected Crohn disease and children chronic malnutrition, there are marked reductions in whole with abdominal symptoms not consistent with Crohn disease under- body protein turnover (4), including protein synthesis and went outpatient metabolic assessment. Patients diagnosed with Crohn disease and prescribed corticosteroid therapy returned in 2 wk for breakdown, and in urea excretion, a marker of protein loss (5). repeat metabolic assessment. Using the stable isotopes [d5] phenyl- In these patients, adaptations to reduction in protein intake 13 15 result in minimization of protein loss. However, inflammation alanine, [1- C] leucine, and [ N2] urea, protein kinetics were determined in the fasting state. Thirty-one children (18 controls and leads to increased whole body protein metabolism.
    [Show full text]
  • Uia29-An-Overview-Of-Metabolism.Pdf
    An overview of metabolism Tom Knight, Louise Cossey*, Bruce McCormick *Correspondence email: [email protected] INTRODUCTION A key metabolic process within the body is the Metabolism is defined as the chemical processes by liberation of energy by the breakdown of substances which cells produce the substances and energy needed ingested as food. The major constituents of a normal Clinical Overview Articles to sustain life. It is subdivided into: diet are carbohydrates, protein and fat. Anabolism - the phase of metabolism in which OVERVIEW OF METABOLISM complex molecules, such as the proteins and fats that Figure 1 is an overview of the pathways by which Summary make up body tissue, are formed from simpler ones. the three major energy sources (fat, carbohydrate The metabolic processes Catabolism - the metabolic breakdown of complex and protein) can be used to produce ATP, the described in this article molecules into simpler ones, often resulting in a main unit of energy within the body. Glucose is are essential for life and release of energy. are subject to massive predominantly metabolized via glycolysis, free fatty variation depending on the The process of metabolism within the body changes acids via β-oxidation and proteins via deamination. individual’s environment, as a result of surgery or acute illness and so is an The common endpoint for all three pathways is acetyl nutritional state and important area of knowledge for anaesthetists and coenzyme A (acetyl coA), which can be used as a level of exercise or stress. intensivists. substrate for very efficient production of ATP via the The clinical relevance becomes clear when considering performing major surgery on a fasted patient.
    [Show full text]
  • The Biochemistry and Physiology of Protein and Amino Acid Metabolism, with Reference to Protein Nutrition
    Protein Metabolism During Infancy, edited by Niels C. R. Raiha. Nestle Nutrition Workshop Series, Vol. 33. Nestec Ltd., Vevey/ Raven Press, Ltd., New York © 1994. The Biochemistry and Physiology of Protein and Amino Acid Metabolism, with Reference to Protein Nutrition Vernon R. Young, Antoine E. El-Khoury, Melchor Sanchez, and Leticia Castillo Laboratory of Human Nutrition, School of Science and Clinical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA All of the relevant topics that could be included under the title of this chapter would cover an extraordinary range of biological knowledge; more than is possible to include in an article of restricted length. Because of this and because of our own limited area of understanding, we have adopted the strategy of covering a few selected areas without attempting to be comprehensive; further elaboration of some of these areas will be made in later chapters. The emphasis to be given here is toward physiol- ogy rather than biochemistry, since our own interests relate to the flows of metabo- lites through pathways and the impact of nutritional and other factors that affect these, as well as the in vivo mechanisms involved. A particular biochemical focus would involve giving more attention to the detailed cellular and subcellular pathways responsible for the formation of proteins and amino acids, their movement to particu- lar sites, and their interconversion and degradation, together with details of the molec- ular mechanisms by which these processes take place. Our objective is to attempt to provide a better understanding of the metabolic basis of the protein and amino acid requirements under various pathophysiological conditions.
    [Show full text]