Mathematical Aspects of Quantum Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Aspects of Quantum Field Theory perform renormalized perturbation theory in quantum gauge field theories with mass generation a` la Higgs. Mathematical Aspects The fundamental importance of QFT as a framework for modern physics was further underlined when it was found in of Quantum Field Theory the 1960s that large parts of condensed matter physics could by Edson de Faria and Welington de Melo profitably be formulated in the language of QFT (albeit in its nonrelativistic version and with far less emphasis on infinities NEW YORK: CAMBRIDGE UNIVERSITY PRESS, 2010, XIII + 298 and renormalization) [2], a trend that has continued ever since PP., £ 43 HARDBACK, ISBN-13: 9780521115773 [23]. Furthermore, in the 1970s phase transitions in classical (!) REVIEWED BY N. P. (KLAAS) LANDSMAN nonrelativistic (!) statistical mechanics were spectacularly brought within the scope of relativistic quantum field theory [13]. From a mathematical point of view, however, the successes he discovery of the Higgs boson at CERN in 2012 of QFT and especially the Standard Model are rather puzzling. (made public on July 4th) put the finishing touch on The point is that practically all successful (i.e., empirically TTthe so-called Standard Model of high-energy physics. validated) predictions of QFT are based on renormalized This model describes all (known) elementary particles and perturbation theory, which is a recipe (i.e., a set of rules) rather their interactions (except gravity), and is an extension of the than a theory. What is more, one may validly doubt whether theory of quantum electrodynamics, the quantum theory of the Standard Model actually has a formulation as a mathe- light and electrically charged particles. Apart from those, the matical theory! Hence, as is often remarked, insistence on Standard Model also incorporates the weak and strong nuclear mathematical rigour during the development of QFT would forces through which subatomic particles such as quarks and probably have blocked all progress; in this sense it is almost gluons interact. When the model reached its present form in fortunate that the subject was largely developed precisely the early 1970s, it successfully retrodicted the outcomes of all during a period (approximately 1945–1975) when the cross- relevant past experiments, and it made a number of highly fertilisation of mathematics and physics, which had enriched nontrivial predictions (such as the existence of neutral science during the 250-year time span between say Newton currents, the W ± and Z bosons, the top quark, and the and Einstein, had subsided. Yet it can hardly be overstated Higgs boson), all of which were subsequently verified how strange and novel it is to have an incredibly successful experimentally. Thus the Standard Model is an undisputed physical ‘‘theory’’ without an apparent mathematical founda- triumph of modern science (see [25]forasuperbphysics tion; all other great theories of physics have meanwhile been textbook by one of its creators and [14] for history). (re)formulated with utmost mathematical clarity and rigour, The Standard Model is formulated in the framework of including classical mechanics[1], classical statistical mechanics quantum field theory (QFT), whose beginnings may be [18], general relativity [4], quantum mechanics [16, 17], and traced back to papers by Dirac, Heisenberg, Jordan, Pauli, quantum statistical mechanics [3]. and a few others during 1926–1928, that is, immediately This peculiar situation has not gone unnoticed. One atti- after the birth of quantum mechanics. Unfortunately, pro- tude, held by Nobel Laureate Veltman [24], is to claim that QFT gress was almost immediately blocked by multitudes of simply is the set of rules for renormalized perturbation theory, infinities that were encountered if one tried naively to or, in other words, that the theory coincides with the recipe. adapt the perturbation methods of quantum mechanics to This extreme stance is exceptional even among physicists; the relativistic field theories, which are systems with an infinite more typical attitude, represented throughout the physics lit- number of degrees of freedom compatible with Einstein’s erature, is to start from a classical field theory and attempt theory of special relativity from 1905. These problems were to construct ‘‘the corresponding quantum theory’’ (scare only overcome about two decades later, through the quotes). In complicated (gauge) theories such as the Standard development of renormalized perturbation theory by Model, this can only be done in practice using Feynman’s path Feynman, Schwinger, and Tomonaga in the late 1940s (see integral, supplemented with some method for dealing with [21] for a delightful history of this era). gauge invariance (e.g., the so-called Faddeev–Popov trick or This technique combined a systematic way of doing cal- the BRST formalism). Somewhere along the way, mathemat- culations (since then usually formulated in the language of ical rigour (if not mere describability) turns out to get lost, but so-called Feynman diagrams) with a method of removing the at the end of the day one does arrive at the recipe. By itself, the infinities that plagued the earlier work, and in due course latter is completely rigorous and as such has been the subject made quantum electrodynamics the experimentally best ver- of satisfactory mathematical treatments such as [5, 19, 20]. ified theory in all of science (its precision has meanwhile In mathematical physics, three large research programs reached twelve decimals, cf. [26]). During the 1950s and 1960s, attempting to provide a mathematical foundation of QFT Feynman, Schwinger, Gell-Mann, Yang and Mills, Higgs, should be mentioned (with their leaders and authoritative Glashow, Weinberg, Salam, and others gradually understood monographs). In historical order, these were axiomatic QFT how the weak and strong nuclear forces could be described in (Wightman [22]), algebraic QFT, later renamed as local an analogous way using so-called gauge field theories (based quantum physics (Haag [11]), and constructive QFT (Glimm on an idea of Weyl from the 1920s, originally proposed and Jaffe [10]). The first two programs revolved around axioms however in the context of gravity), on which ’t Hooft and (whose models were supposed to be quantum field theories) Veltman completed the Standard Model by showing how to and their consequences (thought of as properties any QFT Ó 2013 Springer Science+Business Media New York, Volume 35, Number 3, 2013 85 DOI 10.1007/s00283-013-9392-6 ought to possess). The former uses the language of (unboun- to discretize the (mathematically undefined) ‘‘path integral’’ of ded) operator-valued distributions, whereas the latter employs the physicists and proceed to derive the ‘‘recipe.’’ This operator algebras (i.e., C*-algebras and von Neumann alge- approach sidesteps the problem of defining an interacting bras). The third program, then, had the outspoken goal of QFT (in the continuum, that is), but otherwise it is a remark- constructing physically relevant models for the axioms. ably efficient way of deriving the Feynman rules, also for The legacy of these programs (of which the first is no longer gauge theories (which are treated essentially using the Fad- active) is controversial. Physicists simply ignored them, partly deev–Popov gauge-fixing trick of the physicists, with a brief because of a lack of interest in the problem of mathematically addendum on the BRST technique). From this point onward, it justifying physics per se, and partly because each program had would have been possible to provide a complete and rigorous difficulties precisely with realistic theories such as the Stan- account of renormalization theory, but the corresponding dard Model (and more generally, with gauge theories in chapter is disappointingly brief, restricting itself to an expla- space–time dimension four). Indeed, the construction of pure nation of Zimmermann’s famous ‘‘forest formula’’ and some SU(3) Yang–Mills theory in d = 4 (which is the theory of the comments on modern proofs of renormalizability using flow strong interaction without quarks) is one of the million-dollar equations (see [20] for a detailed treatment). Instead, the last Clay Millennium Problems! Consequently, constructive field chapter provides a reasonably detailed treatment of the theorists turned their attention toward the easier (yet still Standard Model, alas only as a classical field theory, so that the challenging) problems of condensed matter physics, whereas problem of the perturbative renormalization of spontaneously local quantum physics has became a research field by itself, broken gauge theories (whose historical solution by ’t Hooft in with its own goals and results (meanwhile somewhat decou- the early 1970s really launched the Standard Model) is not pled from the initial aim of clarifying the heuristic QFT models even mentioned. The book ends with two appendices on of the physicists). Mathematicians showed more interest; in Hilbert spaces and C*-algebras (which are hardly used in the the past complex analysis, operator algebras, and infinite- book). dimensional (stochastic) analysis fruitfully interacted with Overall, this book provides a brief but careful, reasonably axiomatic, algebraic, and constructive QFT, respectively. balanced, and representative introduction for mathematicians More recently, mathematical disciplines such as Monstrous to QFT as it is used in physics. It does not live up to its title and Moonshine [9] and algebraic topology [15] received specta- even within its scope has some gaps (a few of which have cular and completely unexpected inspiration from various been mentioned), but it does a good job of preparing readers mathematical approaches to QFT (viz. conformal QFT and who want more for either mathematical physics books like [10, topological QFT, respectively). 11, 22] or theoretical physics books such as [25] (they should We now turn to the book under review. Despite its really read both). promising title, it is not intended to introduce its readers to Among its competitors, one should mention Folland [8] these mathematical programs, although a few comments are (which is quite similar in its goal as well as in its choice of made about each of them.
Recommended publications
  • Research Statement
    D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules.
    [Show full text]
  • Mathematical Methods of Classical Mechanics-Arnold V.I..Djvu
    V.I. Arnold Mathematical Methods of Classical Mechanics Second Edition Translated by K. Vogtmann and A. Weinstein With 269 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest V. I. Arnold K. Vogtmann A. Weinstein Department of Department of Department of Mathematics Mathematics Mathematics Steklov Mathematical Cornell University University of California Institute Ithaca, NY 14853 at Berkeley Russian Academy of U.S.A. Berkeley, CA 94720 Sciences U.S.A. Moscow 117966 GSP-1 Russia Editorial Board J. H. Ewing F. W. Gehring P.R. Halmos Department of Department of Department of Mathematics Mathematics Mathematics Indiana University University of Michigan Santa Clara University Bloomington, IN 47405 Ann Arbor, MI 48109 Santa Clara, CA 95053 U.S.A. U.S.A. U.S.A. Mathematics Subject Classifications (1991): 70HXX, 70005, 58-XX Library of Congress Cataloging-in-Publication Data Amol 'd, V.I. (Vladimir Igorevich), 1937- [Matematicheskie melody klassicheskoi mekhaniki. English] Mathematical methods of classical mechanics I V.I. Amol 'd; translated by K. Vogtmann and A. Weinstein.-2nd ed. p. cm.-(Graduate texts in mathematics ; 60) Translation of: Mathematicheskie metody klassicheskoi mekhaniki. Bibliography: p. Includes index. ISBN 0-387-96890-3 I. Mechanics, Analytic. I. Title. II. Series. QA805.A6813 1989 531 '.01 '515-dcl9 88-39823 Title of the Russian Original Edition: M atematicheskie metody klassicheskoi mekhaniki. Nauka, Moscow, 1974. Printed on acid-free paper © 1978, 1989 by Springer-Verlag New York Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Mathematical Foundations of Supersymmetry
    MATHEMATICAL FOUNDATIONS OF SUPERSYMMETRY Lauren Caston and Rita Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5 40126 Bologna, Italia e-mail: [email protected], fi[email protected] 1Investigation supported by the University of Bologna 1 Introduction Supersymmetry (SUSY) is the machinery mathematicians and physicists have developed to treat two types of elementary particles, bosons and fermions, on the same footing. Supergeometry is the geometric basis for supersymmetry; it was first discovered and studied by physicists Wess, Zumino [25], Salam and Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an important role in high energy physics. The objects in super geometry generalize the concept of smooth manifolds and algebraic schemes to include anticommuting coordinates. As a result, we employ the techniques from algebraic geometry to study such objects, namely A. Grothendiek’s theory of schemes. Fermions include all of the material world; they are the building blocks of atoms. Fermions do not like each other. This is in essence the Pauli exclusion principle which states that two electrons cannot occupy the same quantum me- chanical state at the same time. Bosons, on the other hand, can occupy the same state at the same time. Instead of looking at equations which just describe either bosons or fermions separately, supersymmetry seeks out a description of both simultaneously. Tran- sitions between fermions and bosons require that we allow transformations be- tween the commuting and anticommuting coordinates. Such transitions are called supersymmetries. In classical Minkowski space, physicists classify elementary particles by their mass and spin.
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Supersymmetric Methods in Quantum and Statistical Physics Series: Theoretical and Mathematical Physics
    springer.com Georg Junker Supersymmetric Methods in Quantum and Statistical Physics Series: Theoretical and Mathematical Physics The idea of supersymmetry was originally introduced in relativistic quantum field theories as a generalization of Poincare symmetry. In 1976 Nicolai sug• gested an analogous generalization for non-relativistic quantum mechanics. With the one-dimensional model introduced by Witten in 1981, supersym• metry became a major tool in quantum mechanics and mathematical, sta• tistical, and condensed-IIll;l. tter physics. Supersymmetry is also a successful concept in nuclear and atomic physics. An underlying supersymmetry of a given quantum-mechanical system can be utilized to analyze the properties of the system in an elegant and effective way. It is even possible to obtain exact results thanks to supersymmetry. The purpose of this book is to give an introduction to supersymmet• ric quantum mechanics and review some of the Softcover reprint of the original 1st ed. recent developments of vari• ous supersymmetric methods in quantum and statistical physics. 1996, XIII, 172 p. Thereby we will touch upon some topics related to mathematical and condensed-matter physics. A discussion of supersymmetry in atomic and nuclear physics is omit• ted. However, Printed book the reader will find some references in Chap. 9. Similarly, super• symmetric field theories and Softcover supergravity are not considered in this book. In fact, there exist already many excellent 89,99 € | £79.99 | $109.99 textbooks and monographs on these topics. A list may be found in Chap. 9. Yet, it is hoped that [1]96,29 € (D) | 98,99 € (A) | CHF this book may be useful in preparing a footing for a study of supersymmetric theories in 106,50 atomic, nuclear, and particle physics.
    [Show full text]
  • Arxiv:2012.09211V1 [Math-Ph] 16 Dec 2020
    Supersymmetry and Representation Theory in Low Dimensions Mathew Calkins1a;b, S. James Gates, Jr.2c;d, and Caroline Klivans3c;e;f aGoogle Search, 111 8th Ave, New York, NY 10011, USA, bCourant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA cBrown Theoretical Physics Center, Box S, 340 Brook Street, Barus Hall, Providence, RI 02912, USA dDepartment of Physics, Brown University, Box 1843, 182 Hope Street, Barus & Holley, Providence, RI 02912, USA eDivision of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02906, USA and f Institute for Computational & Experimental Research in Mathematics, Brown University, 121 South Main Street Providence, RI 02903, USA ABSTRACT Beginning from a discussion of the known most fundamental dynamical structures of the Standard Model of physics, extended into the realms of math- ematics and theory by the concept of \supersymmetry" or \SUSY," an introduc- tion to efforts to develop a complete representation theory is given. Techniques drawing from graph theory, coding theory, Coxeter Groups, Riemann surfaces, arXiv:2012.09211v1 [math-ph] 16 Dec 2020 and computational approaches to the study of algebraic varieties are briefly highlighted as pathways for future exploration and progress. PACS: 11.30.Pb, 12.60.Jv Keywords: algorithms, off-shell, optimization, supermultiplets, supersymmetry 1 [email protected] 2 sylvester−[email protected] 3 Caroline−[email protected] 1 Supersymmetry and the Standard Model As far as experiments in elementary particle physics reveal, the basic constituents of matter and interactions (i.e. forces excluding gravity) in our universe can be summarized in the list of particles shown in the table indicated in Fig.
    [Show full text]
  • Two Problems in the Theory of Differential Equations
    TWO PROBLEMS IN THE THEORY OF DIFFERENTIAL EQUATIONS D. LEITES Abstract. 1) The differential equation considered in terms of exterior differential forms, as E.Cartan´ did, singles out a differential ideal in the supercommutative superalgebra of differential forms, hence an affine supervariety. In view of this observation, it is evident that every differential equation has a supersymmetry (perhaps trivial). Superymmetries of which (systems of) classical differential equations are missed yet? 2) Why criteria of formal integrability of differential equations are never used in practice? To the memory of Ludvig Dmitrievich Faddeev 1. Introduction While the Large Hadron Collider is busy testing (among other things) the existence of supersymmetry in the high energy physics (more correctly, supersymmetry’s applicability to the models), the existence of supersymmetry in the solid body theory (more correctly, its usefulness for describing the models) is proved beyond any doubt, see the excitatory book [Ef], and later works by K. Efetov. Nonholonomic nature of our space-time, suggested in models due to Kaluza–Klein (and seldom remembered Mandel) was usually considered seperately from its super nature. In this note I give examples where the supersymmetry and non-holonomicity manifest themselves in various, sometimes unexpected, instances. In the models of super space-time, and super strings, as well as in the problems spoken about in this note, these notions appear together and interact. L.D. Faddeev would have liked these topics, each of them being related to what used to be of interest to him. Many examples will be only mentioned in passing. 1.1. History: Faddeev–Popov ghosts as analogs of momenta in “odd” mechanics.
    [Show full text]
  • Mathematical Physics – Online Course
    Professor: Luis A. Anchordoqui PHY-307 Physics-307: Mathematical Physics – Online course. General Information: This course is classified as "Zero Textbook Cost." The material for the course is available at the course website https://www.lehman.edu/faculty/anchordoqui/307.html I will be posting weekly announcements on blackboard. Each week the same relevant information you would find on the course website will also be posted on blackboard. The course consists of 12 modules. Each module has a synchronous lecture (Thursday from 4:00 to 5:40) and a session of group discussion (Tuesday from 4:00 to 5:40). Asynchronous participation in the discussion board forum is highly recommended. There will be 3 midterm exams (10/01/2020; 11/24/2020; 12/08/2020) and a comprehensive final exam (12/15/2020). At the end of each lecture we will have a quiz related to the material of the previous module. The layout of the document is as follows. We first present the online course development plan. After that we describe the methodology for assessment of student coursework. Finally, we provide some guidelines on how to be successful in the course, and a summary calendar. Contact information: [email protected] Professor: Luis A. Anchordoqui PHY-307 Course Development Plan Module 1 (Online) Date: 08/27/2020 (Lecture) & 09/01/2020 (Group discussion) Topic: Analytic Functions Description: Complex Analysis I: Complex Algebra. Functions of a Complex Variable. Learning Objectives: 1.The educational methodology of this subject proposes to integrate the domain of concepts and knowledge from mathematics into practical application of physics phenomena, and the development of abilities and skills to solve example problems.
    [Show full text]
  • Quantum Field Theory a Tourist Guide for Mathematicians
    Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society http://dx.doi.org/10.1090/surv/149 Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen Benjamin Sudakov J. T. Stafford, Chair 2010 Mathematics Subject Classification. Primary 81-01; Secondary 81T13, 81T15, 81U20, 81V10. For additional information and updates on this book, visit www.ams.org/bookpages/surv-149 Library of Congress Cataloging-in-Publication Data Folland, G. B. Quantum field theory : a tourist guide for mathematicians / Gerald B. Folland. p. cm. — (Mathematical surveys and monographs ; v. 149) Includes bibliographical references and index. ISBN 978-0-8218-4705-3 (alk. paper) 1. Quantum electrodynamics–Mathematics. 2. Quantum field theory–Mathematics. I. Title. QC680.F65 2008 530.1430151—dc22 2008021019 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected].
    [Show full text]
  • The Status of Scaling Limits As Approximations in Quantum Theories
    The Status of Scaling Limits as Approximations in Quantum Theories Benjamin H. Feintzeig [email protected] (206)543-5094 Department of Philosophy Savery Hall Box 353350 University of Washington Abstract This paper attempts to make sense of a notion of \approxi- mation on certain scales" in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approx- imation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools to make a notion of \approximation on certain scales" pre- cise in extant mathematical formulations of effective field theo- ries. This provides guidance on the kind of further work that is needed for an adequate interpretation of quantum field theory. 1 Introduction This paper attempts to make sense of a notion of \approximation on certain scales" in physical theories. This broad notion has at least two 1 potential applications. First, this notion plays a role in understand- ing the way that quantum mechanics explains the success of classical physics through the classical limit, in which one purports to show that classical behavior is reproduced by quantum systems \approximately on certain scales." Second, this notion is required for making sense of effective field theory interpretations of quantum field theories, on which one claims that certain quantum field theories represent the world only \approximately on certain scales." In fact, the mathematics involved in both applications appears similar, although further work is needed to bring them together.
    [Show full text]
  • Mathematical Physics Syllabus, Spring 2017 Frank A. Moscatelli Physics NYU
    Mathematical Physics Syllabus, Spring 2017 Frank A. Moscatelli Physics NYU General Description The course introduces important topics and methods in mathematics that are relevant to physics and engineering. Emphasis is on the use oF the methods rather than on prooFs and derivations. The assumed prior knowledge is three semesters oF calculus or intensive calculus and at least one year oF physics. Instructor Prof. Frank Moscatelli E-mail: [email protected] Telephone: 212-998-7907 OfFice Hours: Monday, Tuesday 2:00 onward. Appointments please. OfFice: 726 Broadway room 838 Teaching Assistant Marc Williamson E-mail: [email protected] OfFice Hours: TBA OfFice Meyer 639 Meeting Times & Places Lectures: Tuesday Thursday 12:30 – 1:45 Meyer 102 Recitation: Tuesday 2:00 – 3:15 Meyer 264 Recitation: Thursday 2:00 – 3:15 Meyer 264 Texts The required text is: B. Kusse and E. Westwig, Mathematical Physics, 2006 (2nd ed), John Wiley & Sons Other useFul texts include: George ArFken, Mathematical Methods for Physics Mary Boas, Mathematical Methods in the Physical Sciences, 3rd Edition . Weekly Problem Sets Problem sets will be assigned about once a week and posted on NYU Classes. They are due Friday at 5:00PM in the (present) Physics office, Meyer 424. We require that your homework by typed (with special exemptions upon request) LaTeX is an essential skill in contemporary physics. The First recitation week will include LaTeX tutorials, as well as an uploaded example LaTeX Files on NYU classes to help students transition From hand writing. Exams There will be two midterm exams and a Final exam. The midterms will be announced well in advance.
    [Show full text]
  • Frederic Paugam: “Towards the Mathematics of Quantum Field Theory” Ergebnisse Der Mathematik Und Ihrer Grenzgebiete
    Jahresber Dtsch Math-Ver DOI 10.1365/s13291-015-0120-3 BOOK REVIEW Frederic Paugam: “Towards the Mathematics of Quantum Field Theory” Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, Vol. 59, Springer-Verlag, 2014, 487 pp. Walter D. van Suijlekom1 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Quantum field theory can be considered as one of the cornerstones of modern physics. Historically, it origi- nates from the problem of quantizing the electromagnetic field, dating back to shortly after the advent of quantum mechanics. This amounts to understanding the quantiza- tion of a system with infinitely many degrees of free- dom, namely, the values of the electromagnetic field at all spacetime points. It turned out that precisely this property would form the main obstacle in the search for a mathe- matical formalism for quantum field theories. In the 1950s this led to a separation of the field. On the one hand perturbation theory led to a computationally yet undefeated approach, where in particular Feynman’s graphical method stream- lined the analysis of physical probability amplitudes. On the other hand, an elegant axiomatic approach to quantum fields emerged through the work of Haag, Kastler, Wightman and others, leading to the subject known as algebraic quantum field theory. For a historical account we refer to [7]. Even though the two approaches ought to be complementary, it turned out that the separation only became larger and larger to- wards the end of the last century. This was mainly due to the fact that physically relevant interacting quantum fields were found difficult to be included in the strict algebraic formulation, while at the same time the computational approach of Feyn- man amplitudes mistified the mathematical structure behind this successful branch of physics.
    [Show full text]