High-Precision Arithmetic in Mathematical Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Calculation Policy ÷
Mathematics Calculation Policy ÷ Commissioned by The PiXL Club Ltd. June 2016 This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club. It may not be copied, sold nor transferred to a third party or used by the school after membership ceases. Until such time it may be freely used within the member school. All opinions and contributions are those of the authors. The contents of this resource are not connected with nor endorsed by any other company, organisation or institution. © Copyright The PiXL Club Ltd, 2015 About PiXL’s Calculation Policy • The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. • Age stage expectations: The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils. However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have ‘mastered’ a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary. • Choosing a calculation method: Before pupils opt for a written method they should first consider these steps: Should I use a formal Can I do it in my Could I use -
Recent and Future Developments of GNU MPFR
Recent and future developments of GNU MPFR Paul Zimmermann iRRAM/MPFR/MPC workshop, Dagstuhl, April 18, 2018 The GNU MPFR library • a software implementation of binary IEEE-754 • variable/arbitrary precision (up to the limits of your computer) • each variable has its own precision: mpfr_init2 (a, 35) • global user-defined exponent range (might be huge): mpfr_set_emin (-123456789) • mixed-precision operations: a b − c where a has 35 bits, b has 42 bits, c has 17 bits • correctly rounded mathematical functions (exp; log; sin; cos; :::) as in Section 9 of IEEE 754-2008 2 History I 2000: first public version; I 2008: MPFR is used by GCC 4.3.0 for constant folding: double x = sin (3.14); I 2009: MPFR becomes GNU MPFR; I 2016: 4th developer meeting in Toulouse. I Dec 2017: release 4.0.0 I mpfr.org/pub.html mentions 2 books, 27 PhD theses, 63 papers citing MPFR I Apr 2018: iRRAM/MPFR/MPC developer meeting in Dagstuhl 3 MPFR is used by SageMath SageMath version 8.1, Release Date: 2017-12-07 Type "notebook()" for the browser-based notebook interface. Type "help()" for help. sage: x=1/7; a=10^-8; b=2^24 sage: RealIntervalField(24)(x+a*sin(b*x)) [0.142857119 .. 0.142857150] 4 Representation of MPFR numbers (mpfr_t) I precision p ≥ 1 (in bits); I sign (−1 or +1); I exponent (between Emin and Emax), also used to represent special numbers (NaN, ±∞, ±0); I significand (array of dp=64e limbs), defined only for regular numbers (neither NaN, nor ±∞ and ±0, which are singular values). -
Research Statement
D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules. -
Mathematical Methods of Classical Mechanics-Arnold V.I..Djvu
V.I. Arnold Mathematical Methods of Classical Mechanics Second Edition Translated by K. Vogtmann and A. Weinstein With 269 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest V. I. Arnold K. Vogtmann A. Weinstein Department of Department of Department of Mathematics Mathematics Mathematics Steklov Mathematical Cornell University University of California Institute Ithaca, NY 14853 at Berkeley Russian Academy of U.S.A. Berkeley, CA 94720 Sciences U.S.A. Moscow 117966 GSP-1 Russia Editorial Board J. H. Ewing F. W. Gehring P.R. Halmos Department of Department of Department of Mathematics Mathematics Mathematics Indiana University University of Michigan Santa Clara University Bloomington, IN 47405 Ann Arbor, MI 48109 Santa Clara, CA 95053 U.S.A. U.S.A. U.S.A. Mathematics Subject Classifications (1991): 70HXX, 70005, 58-XX Library of Congress Cataloging-in-Publication Data Amol 'd, V.I. (Vladimir Igorevich), 1937- [Matematicheskie melody klassicheskoi mekhaniki. English] Mathematical methods of classical mechanics I V.I. Amol 'd; translated by K. Vogtmann and A. Weinstein.-2nd ed. p. cm.-(Graduate texts in mathematics ; 60) Translation of: Mathematicheskie metody klassicheskoi mekhaniki. Bibliography: p. Includes index. ISBN 0-387-96890-3 I. Mechanics, Analytic. I. Title. II. Series. QA805.A6813 1989 531 '.01 '515-dcl9 88-39823 Title of the Russian Original Edition: M atematicheskie metody klassicheskoi mekhaniki. Nauka, Moscow, 1974. Printed on acid-free paper © 1978, 1989 by Springer-Verlag New York Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. -
An Arbitrary Precision Computation Package David H
ARPREC: An Arbitrary Precision Computation Package David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Draft Date: 2002-10-14 Abstract This paper describes a new software package for performing arithmetic with an arbitrarily high level of numeric precision. It is based on the earlier MPFUN package [2], enhanced with special IEEE floating-point numerical techniques and several new functions. This package is written in C++ code for high performance and broad portability and includes both C++ and Fortran-90 translation modules, so that conventional C++ and Fortran-90 programs can utilize the package with only very minor changes. This paper includes a survey of some of the interesting applications of this package and its predecessors. 1. Introduction For a small but growing sector of the scientific computing world, the 64-bit and 80-bit IEEE floating-point arithmetic formats currently provided in most computer systems are not sufficient. As a single example, the field of climate modeling has been plagued with non-reproducibility, in that climate simulation programs give different results on different computer systems (or even on different numbers of processors), making it very difficult to diagnose bugs. Researchers in the climate modeling community have assumed that this non-reproducibility was an inevitable conse- quence of the chaotic nature of climate simulations. Recently, however, it has been demonstrated that for at least one of the widely used climate modeling programs, much of this variability is due to numerical inaccuracy in a certain inner loop. When some double-double arithmetic rou- tines, developed by the present authors, were incorporated into this program, almost all of this variability disappeared [12]. -
Neural Correlates of Arithmetic Calculation Strategies
Cognitive, Affective, & Behavioral Neuroscience 2009, 9 (3), 270-285 doi:10.3758/CABN.9.3.270 Neural correlates of arithmetic calculation strategies MIRIA M ROSENBERG -LEE Stanford University, Palo Alto, California AND MARSHA C. LOVETT AND JOHN R. ANDERSON Carnegie Mellon University, Pittsburgh, Pennsylvania Recent research into math cognition has identified areas of the brain that are involved in number processing (Dehaene, Piazza, Pinel, & Cohen, 2003) and complex problem solving (Anderson, 2007). Much of this research assumes that participants use a single strategy; yet, behavioral research finds that people use a variety of strate- gies (LeFevre et al., 1996; Siegler, 1987; Siegler & Lemaire, 1997). In the present study, we examined cortical activation as a function of two different calculation strategies for mentally solving multidigit multiplication problems. The school strategy, equivalent to long multiplication, involves working from right to left. The expert strategy, used by “lightning” mental calculators (Staszewski, 1988), proceeds from left to right. The two strate- gies require essentially the same calculations, but have different working memory demands (the school strategy incurs greater demands). The school strategy produced significantly greater early activity in areas involved in attentional aspects of number processing (posterior superior parietal lobule, PSPL) and mental representation (posterior parietal cortex, PPC), but not in a numerical magnitude area (horizontal intraparietal sulcus, HIPS) or a semantic memory retrieval area (lateral inferior prefrontal cortex, LIPFC). An ACT–R model of the task successfully predicted BOLD responses in PPC and LIPFC, as well as in PSPL and HIPS. A central feature of human cognition is the ability to strategy use) and theoretical (parceling out the effects of perform complex tasks that go beyond direct stimulus– strategy-specific activity). -
GNU MPFR the Multiple Precision Floating-Point Reliable Library Edition 4.1.0 July 2020
GNU MPFR The Multiple Precision Floating-Point Reliable Library Edition 4.1.0 July 2020 The MPFR team [email protected] This manual documents how to install and use the Multiple Precision Floating-Point Reliable Library, version 4.1.0. Copyright 1991, 1993-2020 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back- Cover Texts. A copy of the license is included in Appendix A [GNU Free Documentation License], page 59. i Table of Contents MPFR Copying Conditions ::::::::::::::::::::::::::::::::::::::: 1 1 Introduction to MPFR :::::::::::::::::::::::::::::::::::::::: 2 1.1 How to Use This Manual::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2 Installing MPFR ::::::::::::::::::::::::::::::::::::::::::::::: 3 2.1 How to Install ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.2 Other `make' Targets :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 2.3 Build Problems :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 2.4 Getting the Latest Version of MPFR ::::::::::::::::::::::::::::::::::::::::::::::: 4 3 Reporting Bugs::::::::::::::::::::::::::::::::::::::::::::::::: 5 4 MPFR Basics ::::::::::::::::::::::::::::::::::::::::::::::::::: 6 4.1 Headers and Libraries :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6 -
Banner Human Resources and Position Control / User Guide
Banner Human Resources and Position Control User Guide 8.14.1 and 9.3.5 December 2017 Notices Notices © 2014- 2017 Ellucian Ellucian. Contains confidential and proprietary information of Ellucian and its subsidiaries. Use of these materials is limited to Ellucian licensees, and is subject to the terms and conditions of one or more written license agreements between Ellucian and the licensee in question. In preparing and providing this publication, Ellucian is not rendering legal, accounting, or other similar professional services. Ellucian makes no claims that an institution's use of this publication or the software for which it is provided will guarantee compliance with applicable federal or state laws, rules, or regulations. Each organization should seek legal, accounting, and other similar professional services from competent providers of the organization's own choosing. Ellucian 2003 Edmund Halley Drive Reston, VA 20191 United States of America ©1992-2017 Ellucian. Confidential & Proprietary 2 Contents Contents System Overview....................................................................................................................... 22 Application summary................................................................................................................... 22 Department work flow................................................................................................................. 22 Process work flow...................................................................................................................... -
Mathematical Foundations of Supersymmetry
MATHEMATICAL FOUNDATIONS OF SUPERSYMMETRY Lauren Caston and Rita Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5 40126 Bologna, Italia e-mail: [email protected], fi[email protected] 1Investigation supported by the University of Bologna 1 Introduction Supersymmetry (SUSY) is the machinery mathematicians and physicists have developed to treat two types of elementary particles, bosons and fermions, on the same footing. Supergeometry is the geometric basis for supersymmetry; it was first discovered and studied by physicists Wess, Zumino [25], Salam and Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an important role in high energy physics. The objects in super geometry generalize the concept of smooth manifolds and algebraic schemes to include anticommuting coordinates. As a result, we employ the techniques from algebraic geometry to study such objects, namely A. Grothendiek’s theory of schemes. Fermions include all of the material world; they are the building blocks of atoms. Fermions do not like each other. This is in essence the Pauli exclusion principle which states that two electrons cannot occupy the same quantum me- chanical state at the same time. Bosons, on the other hand, can occupy the same state at the same time. Instead of looking at equations which just describe either bosons or fermions separately, supersymmetry seeks out a description of both simultaneously. Tran- sitions between fermions and bosons require that we allow transformations be- tween the commuting and anticommuting coordinates. Such transitions are called supersymmetries. In classical Minkowski space, physicists classify elementary particles by their mass and spin. -
This PDF Is Provided for Academic Purposes
This PDF is provided for academic purposes. If you want this document for commercial purposes, please get this article from IEEE. FLiT: Cross-Platform Floating-Point Result-Consistency Tester and Workload Geof Sawaya∗, Michael Bentley∗, Ian Briggs∗, Ganesh Gopalakrishnan∗, Dong H. Ahny ∗University of Utah, yLaurence Livermore National Laboratory Abstract—Understanding the extent to which computational much performance gain to pass up, and so one must embrace results can change across platforms, compilers, and compiler flags result-changes in practice. However, exploiting such compiler can go a long way toward supporting reproducible experiments. flags is fraught with many dangers. A scientist publishing In this work, we offer the first automated testing aid called FLiT (Floating-point Litmus Tester) that can show how much these a piece of code with these flags used in the build may not results can vary for any user-given collection of computational really understand the extent to which the results would change kernels. Our approach is to take a collection of these kernels, across inputs, platforms, and other compilers. For example, the disperse them across a collection of compute nodes (each with optimization flag -O3 does not hold equal meanings across a different architecture), have them compiled and run, and compilers. Also, some flags are exclusive to certain compilers; bring the results to a central SQL database for deeper analysis. Properly conducting these activities requires a careful selection in those cases, a user who is forced to use a different compiler (or design) of these kernels, input generation methods for them, does not know which substitute flags to use. -
Renormalization and Effective Field Theory
Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Ball Green Primary School Maths Calculation Policy 2018-2019
Ball Green Primary School Maths Calculation Policy 2018-2019 Contents Page Contents Page Rationale 1 How do I use this calculation policy? 2 Early Years Foundation Stage 3 Year 1 5 Year 2 8 Year 3 11 Year 4 14 Year 5 17 Year 6 20 Useful links 23 1 Maths Calculation Policy 2018– 2019 Rationale: This policy is intended to demonstrate how we teach different forms of calculation at Ball Green Primary School. It is organised by year groups and designed to ensure progression for each operation in order to ensure smooth transition from one year group to the next. It also includes an overview of mental strategies required for each year group [Year 1-Year 6]. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. base ten, apparatus), then pictorial (e.g. array, place value counters) to then facilitate abstract working (e.g. columnar addition, long multiplication). It is important that conceptual understanding, supported by the use of representation, is secure for procedures and if at any point a pupil is struggling with a procedure, they should revert to concrete and/or pictorial resources and representations to solidify understanding or revisit the previous year’s strategy. This policy is designed to help teachers and staff members at our school ensure that calculation is taught consistently across the school and to aid them in helping children who may need extra support or challenges. This policy is also designed to help parents, carers and other family members support children’s learning by letting them know the expectations for their child’s year group and by providing an explanation of the methods used in our school.