Reclassification of Borrelia Spp. Isolated in South Korea Using

Total Page:16

File Type:pdf, Size:1020Kb

Reclassification of Borrelia Spp. Isolated in South Korea Using Jpn. J. Infect. Dis., 71, 350–353, 2018 Original Article Reclassification of Borrelia spp. Isolated in South Korea Using Multilocus Sequence Typing Kyung-Hee Park1, Yeon-Joo Choi1,2, Jeoungyeon Kim1,2, Hye-Jin Park1,2, Dayoung Song1,2, and Won-Jong Jang1,2* 1Department of Microbiology and 2Institute of Glocal Disease Control, College of Medicine, Konkuk University, Seoul, Korea SUMMARY: Here, we used multilocus sequence typing (MLST) to evaluate 3 intergenic genes (16S rRNA, ospA, and 5S-23S IGS) in Borrelia isolated from South Korea to analyze the relationships be- tween host, vector, and molecular background. We identified B. afzelii, B. yangtzensis, B. garinii, and B. bavariensis. This study is the first report for the identification of B. yangtzensis using MLST in South Korea. related to B. tanukii and B. valaisiana (23). We postu- INTRODUCTION lated that such reclassifications can be explained by both Lyme disease is a common arthropod-borne epidemic the discovery and addition of new reference species as inflammatory disorder prevalent in Europe and North well as the development of experimental techniques. America (1,2). It is a multi-systemic zoonotic disorder Multilocus sequence typing (MLST) was originally caused by motile, helically-shaped Borrelia spp. bacteria proposed as a tool for the epidemiological study of infec- (3,4). Borrelia spp. is comprised of 2 major clades that tious diseases (24,25). MLST has been shown to be a form a monophyletic group in the Order Spirochetes (5). powerful and pragmatic molecular method for typing The Lyme borreliosis B. burgdorferi (sensu lato), trans- large numbers of microbial strains for population genetic mited by various species of Ixodid ticks, forms one studies, delineation of species, and assignment of strains monophyly. Relapsing fever Borrelia, mostly transmitted to defined bacterial species (26–31). Single-locus ap- by Argasid ticks, a few species of Ixodid ticks, and lice, proaches may result in distorted evolutionary patterns forms the other monophyly (6–11). There are several due to different evolutionary processes on different re- species in the genus Borrelia, all of which are parasites, gions of the genome. In contrast, MLST may more accu- either as specialists or generalists, on one or more verte- rately reflect evolutionary relationships (29,32), and has brate species, and are transmitted between these hosts by been advocated as an alternative method to determine a hematophagous arthropod (12). Borrelia spp. (26) because of its simplicity compared to Cases of Lyme disease have been widely reported in traditional DNA-DNA hybridization. A previous study North America, Europe, and East Asian countries includ- used MLST to define B. bavariensis as a new species ing South Korea (13–19). In South Korea, 4 isolates of that was sufficiently genetically distinct from B. garinii. Borrelia spp. were initially identified as both B. afzelii Another study reported that Japanese isolates of B. and B. garinii using polymerase chain reaction (PCR) valaisiana-like strains were closely related to Chinese analysis (20). Subsequently, 15 more Borrelia spp. isolates of B. yangtzensis, forming a monophyletic group strains were isolated in Korea, which included HN6, (33). HN7, HN8, HN9, HNM14, and HNM19 (21). All of However, MLST has not yet been used to study these strains were identified as B. garinii, except for Korean Borrelia spp. although it has been applied to HN9, which was identified as B. afzelii using PCR Campylobacter spp. and Staphylococcus aureus (34,35). analysis. However, when these isolates were classified In this study, we used an MLST scheme based on bac- by rRNA gene restriction fragment length polymor- terial housekeeping genes as described previously (26) phisms (RFLPs), HN6, HN8, HNM14, and HNM19 in addition to previously studied 16S rRNA, 5S-23S exhibited some degree of variation from the previously intergenic spacer (IGS), and the gene encoding the outer known reference strain, indicating that they may be a surface protein A (ospA) in the first examination of the new strain (22). A UPGMA phylogeny constructed based evolutionary position of Korean Borrelia strain isolates. on 16S rRNA further supported the view that HN6 and The data suggest the reclassification and possible mis- HN8 were clearly separated from B. garinii but closely identification of the previously studied strains. Received March 27, 2018. Accepted May 11, 2018. MATERIALS AND METHODS J-STAGE Advance Publication May 31, 2018. DOI: 10.7883/yoken.JJID.2018.139 Strains and DNA extraction: Three samples (HN7, *Corresponding author: Mailing address: Department of HN9, and KW3) were isolated from Ixodes granulatus, Microbiology, College of Medicine, Konkuk University, and the remaining 4 samples (HN12, HN13, HNM17, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea. and KM4) were separated from Apodemus agrarius and Tel: +82-2-2030-7816, Fax: +82-2-2030-7845, E-mail: named according to the name of the locality where they [email protected] were found. Five Hae Nam strains (HN7, HN9, HN12, 350 Reclassification of Borrelia in South Korea HN13, and HNM17), one Kangwon strain (KW3), and at the Borrelia MLST online <http://www.pubMLST. one Konkuk strain (KM4) isolated in Korea were used org/> under ID 2032–2036. for characterization. Genomic DNA was extracted and Sequence alignment and phylogenetic trees: Multi- purified as described previously (20,36). ple sequence alignment was generated with the ClustalW MLST and sequencing: The Borrelia MLST scheme algorithm and MegAlign software by manual inspection. suggested previously (26) is comprised of 8 housekeep- The alignment was made on the translated amino acid ing genes (clpA, clpX, pepX, pyrG, nifS, recG, rplB, and sequences and then back-translated to nucleotide se- uvrA). The PCR conditions for the housekeeping genes, quences to ensure in frame alignment. except for recG, were as follows: 95°C for 15 min, 94°C To construct the phylogenetic tree, the maximum like- for 30 s, annealing temperature from 55°C to 48°C for lihood method based on the Tamura-Nei model of nucle- 60 s, and an extension step of 72°C for 60 s. An addi- otide substitution was determined. An initial tree was tional 30 cycles were performed at 94°C for 30 s, anneal- obtained by applying the neighbor-joining and BioNJ ing temperature of 48°C for 60 s, and extension at 72°C algorithms to a matrix of pairwise distances estimated for 60 s. After a final extension step for 5 min at 72°C, using the maximum composite likelihood approach, and the samples were kept at 15°C until further analysis. For then selecting the topology with superior log likelihood recG, the PCR conditions for the first set of cycles were value. Evolutionary analyses were conducted in 95°C for 15 min; followed by 30 cycles at 94°C for 30 s, MEGA6, and bootstrap with 1,000 replications was 55°C for 30 s, 72°C for 30 s; and a final extension at performed. 72°C for 5 min. The PCR reactions were performed with a VertiTM 96 well Thermal Cycler (Applied Biosystems, RESULTS Foster City, CA, USA). PCR products of all housekeep- ing genes were sequenced in the forward and reverse Identification of Borrelia isolates: The partial se- directions (Sequencing was performed by Bioneer Co. quence of the 16S rRNA gene (1,482 bp) of the isolates Ltd., Daejeon, South Korea). The obtained sequences was identical to those of B. burgdorferi (HN13), B. val- were compared and aligned with reference Borrelia spp. aisiana (HN7, HN9, HN12, HNM17, and KM4) and B. gene sequences deposited in the GenBank database to garinii (KW3). Different and partial 5S-23S IGS gene identify published sequences with a high degree of simi- (350 bp) sequences were identical to those of B. valaisi- larity using a BLAST search. MLST sequences were ana (HN12), B. garinii (HN13 and KW3), and B. afzelii compared with the described alleles in the B. burgdorferi (HN7, HN9, HNM17, and KM4). In addition, the ospA MLST database <http://borrelia.mlst.net>, and new al- gene (402 bp) sequences were identical to those of B. leles were assigned arbitrary number designations. Al- valaisiana (HN12), B. garinii (HN13 and KW3), and B. lelic profiles already present in the B. burgdorferi MLST afzelii (HN7, HN9, HNM17, and KM4) (Table 1). database were assigned the corresponding sequence type MLST results: In this study, MLST analysis identi- (ST) number. Novel combinations of allele were as- fied 7 samples, 2 distinct STs, and 5 new ST profiles signed ST numbers, and the sequence data are available (Table 2). Briefly, HN7, HN9, HNM17, and KM4 were Table 1. Summary of Borrelia genospecies by MLST and 3 genes typing Strain 16S rRNA1) Genospecies2) ospA1) Genospecies2) IGS1) Genospecies2) MLST type HN7 1 B. afzelii 3 B. afzelii 1 B. afzelii B. afzelii HN9 1 B. afzelii 3 B. afzelii 1 B. afzelii B. afzelii HN12 11 B. burgdorferi 23 B. valaisiana 31 B. valaisiana B. yangtzensis HN13 15 B. garinii 41 B. garinii 13 B. garinii B. garinii HNM17 11 B. burgdorferi 3 B. afzelii 1 B. afzelii B. afzelii KW3 5 B. garinii 11 B. garinii 15 B. garinii B. bavariensis KM4 11 B. burgdorferi 3 B. afzelii 1 B. afzelii B. afzelii 1): Alleles of 16S rRNA, ospA, and 5S–23S IGS were assigned numbers based on Borrelia database. (http://www.pubMLST.org/bburgdorferi/). 2): Result of genospecies based on BLAST based on uploaded references. Table 2. Borrelia MLST sequence types (ST) and 8 allelic profiles Strain Source ST1) clpA clpX nifS pepX pyrG recG rplB uvrA HN7 I. granulatus 7362) 241 202 185 214 220 231 195 215 HN9 I. granulatus 7362) 241 202 185 214 220 231 195 215 HN12 A. agrarius 152 83 61 59 74 69 63 62 65 HN13 A.
Recommended publications
  • New Distributions and an Insight Into Borrelia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 North American Lyme Borreliae: New Distributions and an Insight Into Borrelia bissettii Infection, Immune Response and Transmission in a Murine Model Brian Francis Leydet Jr Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Leydet Jr, Brian Francis, "North American Lyme Borreliae: New Distributions and an Insight Into Borrelia bissettii Infection, Immune Response and Transmission in a Murine Model" (2014). LSU Doctoral Dissertations. 1985. https://digitalcommons.lsu.edu/gradschool_dissertations/1985 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. NORTH AMERICAN LYME BORRELIAE: NEW DISTRIBUTIONS AND AN INSIGHT INTO BORRELIA BISSETTII INFECTION, IMMUNE RESPONSE AND TRANSMISSION IN A MURINE MODEL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Veterinary Medical Sciences by Brian F. Leydet Jr. B.S.H.S., Old Dominion University, 2007 M.P.H., University of North Florida, 2009 August 2014 ACKNOWLEDGEMENTS I dedicate this dissertation to my family. To my wife-to-be, Karine, who was there for me during some of the hardest moments of my work and who essentially takes care of me, as I seem to have the hardest time doing even the simplest tasks (laundry), je t’aime.
    [Show full text]
  • REVIEW ARTICLES AAEM Ann Agric Environ Med 2005, 12, 165–172
    REVIEW ARTICLES AAEM Ann Agric Environ Med 2005, 12, 165–172 ASSOCIATION OF GENETIC VARIABILITY WITHIN THE BORRELIA BURGDORFERI SENSU LATO WITH THE ECOLOGY, EPIDEMIOLOGY OF LYME BORRELIOSIS IN EUROPE 1, 2 1 Markéta Derdáková 'DQLHOD/HQþiNRYi 1Parasitological Institute, Slovak Academy of Sciences, Košice, Slovakia 2Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia 'HUGiNRYi 0 /HQþiNRYi ' $VVRFLDWLRQ RI JHQHWLF YDULDELOLW\ ZLWKLQ WKH Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. Ann Agric Environ Med 2005, 12, 165–172. Abstract: Lyme borreliosis (LB) represents the most common vector-borne zoonotic disease in the Northern Hemisphere. The infection is caused by the spirochetes of the Borrelia burgdorferi sensu lato (s.l.) complex which circulate between tick vectors and vertebrate reservoir hosts. The complex of Borrelia burgdorferi s.l. encompasses at least 12 species. Genetic variability within and between each species has a considerable impact on pathogenicity, clinical picture, diagnostic methods, transmission mechanisms and its ecology. The distribution of distinct genospecies varies with the different geographic area and over a time. In recent years, new molecular assays have been developed for direct detection and classification of different Borrelia strains. Profound studies of strain heterogeneity initiated a new approach to vaccine development and routine diagnosis of Lyme borreliosis in Europe. Although great progress has been made in characterization of the organism, the present knowledge of ecology and epidemiology of B. burgdorferi s.l. is still incomplete. Further information on the distribution of different Borrelia species and subspecies in their natural reservoir hosts and vectors is needed. Address for correspondence: MVDr.
    [Show full text]
  • Multilocus Sequence Typing Von Borrelia Burgdorferi Sensu Stricto
    Multilocus Sequence Typing von Borrelia burgdorferi sensu stricto und Borrelia afzelii Stämmen aus Europa und den USA: Populationsstruktur, Pathogenität und Patientensymptomatik Sabrina Jungnick München 2018 Aus dem Nationalen Referenzzentrum für Borrelien am Bayrischen Landesamt für Gesundheit und Lebensmittelsicherheit in Oberschleißheim Präsident: Dr. med. Andreas Zapf Multilocus Sequence Typing von Borrelia burgdorferi sensu stricto und Borrelia afzelii Stämmen aus Europa und den USA: Populationsstruktur, Pathogenität und Patientensymptomatik Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Sabrina Jungnick aus Ansbach 2018 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. med. Dr. phil. Andreas Sing Mitberichterstatter: Prof. Dr. Sebastian Suerbaum Prof. Dr. Michael Hoelscher Prof. Dr. Hans – Walter Pfister Mitbetreuung durch den promovierten Mitarbeiter: Dr. med. Volker Fingerle Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 26.04.2018 Teile dieser Arbeit wurden in folgenden Originalartikeln veröffentlicht: 1. Jungnick S, Margos G, Rieger M, Dzaferovic E, Bent SJ, Overzier E, Silaghi C, Walder G, Wex F, Koloczek J, Sing A und Fingerle V. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity. International Journal of Medical Microbiology. 2015. 2. Wang G, Liveris D, Mukherjee P, Jungnick S, Margos G und Schwartz I. Molecular Typing of Borrelia burgdorferi. Current protocols in microbiology. 2014:12C. 5.1-C. 5.31. 3. Castillo-Ramírez S, Fingerle V. Jungnick S, Straubinger RK, Krebs S, Blum H, Meinel DM, Hofmann H, Guertler P, Sing A und Margos G. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto.
    [Show full text]
  • Pär Comstedt
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 1161 ISSN 0346-6612 ISBN 978-91-7264-521-9 Editor: The Dean of the Faculty of Medicine Biology of Borrelia garinii Spirochetes Pär Comstedt Department of Molecular Biology Laboratory for Molecular Infection Medicine Sweden (MIMS) Umeå University, Sweden 2008 To Erik Bengtsson Copyright © Pär Comstedt Printed by Print & Media 2008 Design: Anna Bolin Table of contents ABSTRACT.................................................................................................................1 Papers in this thesis.....................................................................................................2 Papers not included in this thesis...............................................................................3 Abbreviations and terms ............................................................................................4 INTRODUCTION.........................................................................5 The history of Lyme borreliosis .................................................................................5 Zoonoses.......................................................................................................................6 Vector-borne diseases .................................................................................................7 Birds as reservoirs for zoonoses.................................................................................8 Classification................................................................................................................9
    [Show full text]
  • Lyme Disease and Relapsing Fever Spirochetes
    Chapter from: LYME DISEASE AND RELAPSING FEVER SPIROCHETES Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis Editors: Justin D. Radolf Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genome Sciences, and Immunology UConn Health 263 Farmington Avenue Farmington, CT 06030-3715 USA D. Scott Samuels Division of Biological Sciences University of Montana 32 Campus Dr Missoula MT 59812-4824 USA Caister Academic Press www.caister.com Chapter 19 Human and Veterinary Vaccines for Lyme Disease Nathaniel S. O’Bier, Amanda L. Hatke, Andrew C. Camire and Richard T. Marconi* Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA *Corresponding author: [email protected] DOI: https://doi.org/10.21775/9781913652616.19 Abstract DNA molecule. As a consequence of extensive Lyme disease (LD) is an emerging zoonotic infection complementarity, the single-stranded DNA molecules that is increasing in incidence in North America, can reanneal upon themselves to form double- Europe, and Asia. With the development of safe and stranded linear DNA with covalently closed hairpin efficacious vaccines, LD can potentially be termini (Barbour and Garon, 1987). While linear DNA prevented. Vaccination offers a cost-effective and is rare in bacteria, genetic elements with similar safe approach for decreasing the risk of infection. structure are found in some viruses including the While LD vaccines have been widely used in African Swine Fever Virus, an arbovirus (Ndlovu et veterinary medicine, they are not available as a al., 2020). B. burgdorferi and the TBRF Borrelia have preventive tool for humans. Central to the a similar spiral ultrastructure, unique mode of motility development of effective vaccines is an and similar nutritional requirements (Barbour, 1984; understanding of the enzootic cycle of LD, differential Asbrink and Hovmark, 1985).
    [Show full text]
  • The Genus Borrelia Reloaded
    RESEARCH ARTICLE The genus Borrelia reloaded 1☯ 2☯ 3 1 Gabriele MargosID *, Alex Gofton , Daniel Wibberg , Alexandra Dangel , 1 2 2 1 Durdica Marosevic , Siew-May Loh , Charlotte OskamID , Volker Fingerle 1 Bavarian Health and Food Safety Authority and National Reference Center for Borrelia, Oberschleissheim, Germany, 2 Vector & Waterborne Pathogens Research Group, School of Veterinary & Life Sciences, Murdoch University, South St, Murdoch, Australia, 3 Cebitec, University of Bielefeld, Bielefeld, Germany ☯ These authors contributed equally to this work. * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 The genus Borrelia, originally described by Swellengrebel in 1907, contains tick- or louse- a1111111111 transmitted spirochetes belonging to the relapsing fever (RF) group of spirochetes, the Lyme borreliosis (LB) group of spirochetes and spirochetes that form intermittent clades. In 2014 it was proposed that the genus Borrelia should be separated into two genera; Borrelia Swellengrebel 1907 emend. Adeolu and Gupta 2014 containing RF spirochetes and Borre- OPEN ACCESS liella Adeolu and Gupta 2014 containing LB group of spirochetes. In this study we conducted Citation: Margos G, Gofton A, Wibberg D, Dangel an analysis based on a method that is suitable for bacterial genus demarcation, the percent- A, Marosevic D, Loh S-M, et al. (2018) The genus Borrelia reloaded. PLoS ONE 13(12): e0208432. age of conserved proteins (POCP). We included RF group species, LB group species and https://doi.org/10.1371/journal.pone.0208432 two species belonging to intermittent clades, Borrelia turcica GuÈner et al. 2004 and Candida- Editor: Sven BergstroÈm, Umeå University, tus Borrelia tachyglossi Loh et al. 2017. These analyses convincingly showed that all groups SWEDEN of spirochetes belong into one genus and we propose to emend, and re-unite all groups in, Received: May 4, 2018 the genus Borrelia.
    [Show full text]
  • Das Komplementsystem
    Die Bedeutung verschiedener CRASP-Proteine für die Komplementresistenz von Borrelia burgdorferi s.s. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biowissenschaften der Johann Wolfgang Goethe - Universität in Frankfurt am Main von Corinna Siegel aus Sebnitz Frankfurt 2010 (D 30) vom Fachbereich Biowissenschaften der Johann Wolfgang Goethe - Universität als Dissertation angenommen. Dekan: Prof. Dr. A. Starzinski-Powitz Gutachter: Prof. Dr. V. Müller Prof. Dr. P. Kraiczy Datum der Disputation: Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis ..................................................................................................... I Abkürzungsverzeichnis ........................................................................................ VIII I. Einleitung ........................................................................................................... 1 1 Die Multisystemkrankheit Lyme-Borreliose ........................................................... 1 2 Der Überträger Ixodes spp. ................................................................................... 2 3 Charakteristika des Erregers B. burgdorferi s.l. .................................................... 3 3. 1 Taxonomie und Morphologie ......................................................................... 4 3. 2 Das Genom ................................................................................................... 6 3. 3 Genetische Manipulation von B. burgdorferi s.l. ...........................................
    [Show full text]
  • Prevalence of Borrelia Burgdorferi Sensu Lato in Ixodes Ricinus Ticks in Scandinavia
    Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Scandinavia Rikke Rollum Thesis for the Master’s degree in Molecular Biosciences 60 study points Department of Molecular Biosciences Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO 2014 II © Rikke Rollum 2014 Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Scandinavia Supervisors: Vivian Kjelland (UiA), Hans Petter Leinås (UiO), Audun Slettan (UiA) http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo III IV Acknowledgements This master thesis was partly funded by the ScandTick project, which is a transnational project in Scandinavia devoted to ticks and tick-borne diseases. The laboratory work was conducted at the Department of Natural Sciences at the University of Agder (UiA) as an external thesis from the University of Oslo (UiO). I want to acknowledge all the people at UiO and UiA who have guided and helped me during my thesis. Vivian Kjelland (UiA), my supervisor, who gave me the opportunity to use her lab and for always being helpful, thorough and positive, which I really appreciate. You have inspired me to explore my opportunities, build connections and to be more confident and independent – Thank you! Audun Slettan (UiA), my co-supervisor, for always having a cheerful attitude and keeping my courage up when things did not go exactly as planned. I am also grateful to Hans Petter Leinaas (UiO), my co-supervisor, who have guided me in the writing process and for not letting me get carried away in fun facts. I would also like to thank Lars Korslund (UiA), who have helped me to understand and interpret the value of my results from a statistical point of view.
    [Show full text]
  • Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective Publication: Gupta, Mahmood and Adeolu 2015, 15), Emend
    Bergey’s Manual of Systematics of Archaea and Bacteria Family Spirochaetes/Spirochaetia/Spirochaetales Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective publication: Gupta, Mahmood and Adeolu 2015, 15), emend. Adeolu and Gupta 2014, 1064 Alan G. Barbour Departments of Microbiology and Molecular Genetics, Medicine, and Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, U.S.A. Bor.rel.i.a'ce.ae. N.L. fem. n. Borrelia type genus of the family; suff. -aceae ending to denote a family; N.L. fem. pl. n. Borreliaceae, the family of Borrelia. Cells are helical with regular or irregular coils. 0.2-0.3 µm in diameter and 10-40 µm in length. Cells do not have hooked ends. Motile. Inner and outer membrane with periplasmic flagella with 7 to 20 subterminal insertion points. Aniline-stain-positive. Microaerophilic. Most members of the family cultivable in complex media that includes N-acetylglucosamine. Optimum growth between 33 and 38° C. Diamino acid of peptidoglycan is ornithine. Lacks a lipopolysaccharide. Linear chromosome and plasmids with hairpin telomeres. The family currently accommodates the genera Borrelia and Borreliella. Members of the family are host-associated organisms that are transmitted between vertebrate reservoirs by a hematophagous arthropod, in all but one case, a tick. Members include the agents of relapsing fever, Lyme disease, and avian spirochetosis. DNA G+C content (mol%): 26-30 Type genus: Borrelia Swellengrebel 1907, 562AL ............................................................................................................................................................ Cells are helical, 0.2–0.3 µm in diameter and 10–40 µm in length. The coils, which usually are observed as flat waves, vary in amplitude and are either regular or irregular in spacing, depending on phase of growth and environment.
    [Show full text]
  • Untersuchung Zum Vorkommen Von Frühsommermeningoenzephalitis
    Aus der Abteilung Medizinische Mikrobiologie (Prof. Dr. med. U. Groß) im Zentrum Hygiene und Humangenetik der Medizinischen Fakultät der Universität Göttingen Untersuchung zum Vorkommen von Frühsommermeningoenzephalitis- Viren, Borrelia burgdorferi sensu lato, Anaplasma phagozytophilum in Zeckenpopulationen und Untersuchung zur Antikörperprävalenz gegen Frühsommermeningoenzephalitis- Viren in der Bevölkerung der Region Wingst/Cuxhaven INAUGURAL- DISSERTATION zur Erlangung des Doktorgrades der Medizinischen Fakultät der Georg- August- Universität zu Göttingen vorgelegt von Christiane Timmerberg aus Münster Göttingen 2011 Dekan: Prof. Dr. med. C. Frömmel 1. Berichterstatter: Prof. Dr. med. Dr. rer. nat. H. Eiffert 2. Berichterstatter: PD Dr. med. H. Schmidt Tag der mündlichen Prüfung: 14. November 2011 II 1 Einleitung und Zielsetzung 1 1.1 Frühsommermeningoenzephalitis 3 1.1.1 Das Krankheitsbild der Frühsommermeningoenzephalitis 3 1.1.2 Diagnostik, Therapie und Prognose der Frühsommermeningoenzephalitis 4 1.1.3 Epidemiologie der Frühsommermeningoenzephalitis 5 1.1.4 Systematik, Morphologie und Genom von Frühsommermeningoenzephalitis- Viren 8 1.2 Der Vektor Ixodes ricinus 9 1.3 Weitere durch Ixodes ricinus übertragene Erkrankungen 12 1.3.1 Humane Granulozytäre Anaplasmose 12 1.3.1.1 Krankheitsbild, Diagnostik und Therapie der humanen granulozytären Anaplasmose 12 1.3.1.2 Epidemiologie der humanen granulozytären Anaplasmose und Anaplasma phagozytophilum 14 1.3.1.3 Systematik und Morphologie 15 1.3.1.4 Wirtsspektrum und Vektoren von Anaplasma
    [Show full text]
  • A Patient Perspective
    A patient perspective Submission to the Senate Inquiry on the Growing Evidence of an emerging tick-borne disease that causes a Lyme-like illness for many Australian patients Lyme Disease Association of Australia March 2016 “In the fullness of time, the mainstream handling of chronic Lyme disease will be viewed as one of the most shameful episodes in the history of medicine because elements of academic medicine, elements of government and virtually the entire insurance industry have colluded to deny a disease. This has resulted in needless suffering of many individuals who deteriorate and sometimes die for lack of timely application of treatment or denial of treatment beyond some arbitrary duration”. Dr Kenneth B. Leigner Table of Contents Background ................................................................................................................................. 4 Introduction ................................................................................................................................ 4 What’s in a name? .............................................................................................................................. 5 Executive summary ...................................................................................................................... 6 Recommendations .............................................................................................................................. 8 (A) ToR the prevalence and geographic distribution of Lyme-like illness in Australia ...................
    [Show full text]
  • MLST of Housekeeping Genes Captures Geographic Population Structure and Suggests a European Origin of Borrelia Burgdorferi
    MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi Gabriele Margosa,b, Anne G. Gatewoodc, David M. Aanensend, Kla´ ra Hanincova´ e, Darya Terekhovae, Stephanie A. Vollmera, Muriel Cornetf, Joseph Piesmang, Michael Donaghyh, Antra Bormanei, Merrilee A. Hurnj, Edward J. Feila, Durland Fishc, Sherwood Casjensk, Gary P. Wormserl, Ira Schwartze, and Klaus Kurtenbacha Departments of aBiology and Biochemistry and jMathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom; cDepartment of Epidemiology and Public Health, Yale School of Medicine, Yale University, New Haven, CT 06520; dDepartment of Infectious Disease Epidemiology, Imperial College London, St. Mary’s Hospital, London W2 1PG, United Kingdom; eDepartment of Microbiology and Immunology and lDivision of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595; fCentres Nationaux de Re´fe´ rence des Borrelia et de la Leptospirose, Institut Pasteur, 75724 Paris Cedex 15, France; gBacterial Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Ft. Collins, CO 80521; hDepartment of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; iPublic Health Agency, LV-1012, Riga, Latvia; and kDivision of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132 Edited by Barry J. Beaty, Colorado State University, Fort Collins, CO, and approved April 23, 2008 (received for review January 16, 2008) Lyme borreliosis, caused by the tick-borne bacterium Borrelia where B. burgdorferi is now prevalent: the Northeast, the upper burgdorferi, has become the most common vector-borne disease in Midwest, and northern coastal California.
    [Show full text]