Das Komplementsystem

Total Page:16

File Type:pdf, Size:1020Kb

Das Komplementsystem Die Bedeutung verschiedener CRASP-Proteine für die Komplementresistenz von Borrelia burgdorferi s.s. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biowissenschaften der Johann Wolfgang Goethe - Universität in Frankfurt am Main von Corinna Siegel aus Sebnitz Frankfurt 2010 (D 30) vom Fachbereich Biowissenschaften der Johann Wolfgang Goethe - Universität als Dissertation angenommen. Dekan: Prof. Dr. A. Starzinski-Powitz Gutachter: Prof. Dr. V. Müller Prof. Dr. P. Kraiczy Datum der Disputation: Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis ..................................................................................................... I Abkürzungsverzeichnis ........................................................................................ VIII I. Einleitung ........................................................................................................... 1 1 Die Multisystemkrankheit Lyme-Borreliose ........................................................... 1 2 Der Überträger Ixodes spp. ................................................................................... 2 3 Charakteristika des Erregers B. burgdorferi s.l. .................................................... 3 3. 1 Taxonomie und Morphologie ......................................................................... 4 3. 2 Das Genom ................................................................................................... 6 3. 3 Genetische Manipulation von B. burgdorferi s.l. ............................................ 7 4 Das humane Immunsystem .................................................................................. 7 4. 1 Das Komplementsystem ................................................................................ 7 4. 2 Die Faktor H-Proteinfamilie ......................................................................... 10 4. 2. 1 Faktor H und FHL-1 ............................................................................. 11 4. 2. 2 Faktor H verwandte Proteine (CFHRs) ................................................ 13 5 Komplementevasion von pathogenen Mikroorganismen .................................... 14 5. 1 Komplementevasionsstrategien von B. burgdorferi s.l. ................................ 16 5. 2 Eigenschaften von CRASP der humanpathogenen Spezies B. burgdorferi s.s. ........................................................................................ 17 6 Fragestellung und Zielsetzung ............................................................................ 21 II. Material und Methoden ....................................................................................22 1 Organismen, Vektoren, Oligonukleotide, Antikörper ........................................... 22 1.1 Organismen .................................................................................................. 22 1.2 Vektoren ....................................................................................................... 22 1.3 Starteroligonukleotide ................................................................................... 24 2 Antikörper, rekombinante Proteine, Humanserum .............................................. 26 2.1 Antikörper ..................................................................................................... 26 2.2 Rekombinante Proteine ................................................................................ 27 2.3 Humanserum ................................................................................................ 27 3 Kulturmedien ....................................................................................................... 28 3.1 Kulturmedium für B. burgdorferi s.l. .............................................................. 28 3.2 Kulturmedium für E. coli ............................................................................... 29 I Inhaltsverzeichnis 4 Kultivierung von Bakterien .................................................................................. 30 4.1 Kultivierung von B. burgdorferi s.l. ................................................................ 30 4.2 Bestimmung der Zellkonzentration von B. burgdorferi s.l. ............................ 31 4.3 Kultivierung von E. coli ................................................................................. 31 4.4 Bestimmung der Zelldichte von E. coli .......................................................... 31 5 Molekularbiologische Methoden .......................................................................... 32 5.1 Isolierung von Plasmid-DNA aus B. burgdorferi s.l. ...................................... 32 5.2 Plasmidisolierung aus E. coli ........................................................................ 33 5.3 Photometrische DNA-Konzentrationsbestimmung ....................................... 33 5.4 Aufkonzentration von Plasmid-DNA ............................................................. 33 5.5 Polymerasekettenreaktion (PCR) ................................................................. 33 5.6 PCR aus einer Bakterienflüssigkultur ........................................................... 34 5.7 Gelelektrophorese ........................................................................................ 35 5.7.1 Agarose-Gelelektrophorese ................................................................... 35 5.7.2 Pulsfeld-Gelelektrophorese (PFGE) ....................................................... 35 5.8 Aufreinigung von PCR-Fragmenten.............................................................. 36 5.9 In vitro-Mutagenese ...................................................................................... 36 5.10 Transformation von Bakterien mit Plasmid-DNA ........................................ 37 5.10.1 Elektroporation von B. garinii G1 ......................................................... 37 5.10.2 Transformation von E. coli DH5-Zellen mittels CaCl2-Hitzeschock .... 38 5.10.2.1 Herstellung kompetenter E. coli DH5-Zellen ............................... 38 5.10.2.2 CaCl2-Hitzeschock-Methode ......................................................... 38 5.11 Southernblot-Analyse ................................................................................. 39 5.11.1 DNA-Transfer auf Nylonmembranen mittels Vakuum .......................... 39 5.11.2 Hybridisierung immobilisierter DNA mit HRP-markierten Gensonden .......................................................................................... 40 5.12 Sequenzierung von Plasmid-DNA .............................................................. 40 6 Proteinbiochemische Methoden .......................................................................... 41 6.1 Herstellung von Zellextrakten von B. burgdorferi s.l. .................................... 41 6.2 Denaturierende Polyacrylamidgelelektrophorese (SDS-PAGE) ................... 41 6.2.1 Separation von Proteinen in der Tris Tricin-SDS-Gelelektrophorse ....... 41 6.2.2 Separation von Proteinen nach Laemmli ............................................... 42 6.3 Westernblot- und Ligandenaffinitätsblot-Analyse ......................................... 42 II Inhaltsverzeichnis 6.4 Silberfärbung von SDS-Polyacrylamidgelen ................................................. 43 6.5 Kolloidale Coomassie-Färbung von SDS-Polyacrylamidgelen ..................... 44 6.6 Massenspektrometrie ................................................................................... 45 6.7 Produktion rekombinanter Proteine in E. coli ................................................ 45 6.8 Affinitätschromatographische Aufreinigung rekombinanter Proteine ............ 46 6.9 Konzentrationsbestimmung rekombinanter Proteine .................................... 47 7 Immunologische Methoden ................................................................................. 47 7.1 Hämolytischer Assay .................................................................................... 47 7.2 Immunfluoreszenzmikroskopie ..................................................................... 48 8 Spezielle Methoden ............................................................................................ 49 8.1 Serumadsorption mittels magnetischer Partikel ........................................... 49 8.2 Serumadsorption .......................................................................................... 50 8.3 Kofaktor-Assay ............................................................................................. 52 8.4 Wachstums-Inhibitions-Assay ...................................................................... 53 8.5 Protease-Assay ............................................................................................ 54 9 Chemikalien ........................................................................................................ 55 III. Ergebnisse ........................................................................................................56 1 Transformation von B. garinii G1 ........................................................................ 56 1.1 Herstellung von Vektorkonstrukten mit mutagenisierten cspA-Genen .......... 57 1.2 Charakterisierung der verschiedenen CRASP-produzierenden Transformanten von B. garinii G1 ................................................................. 58 1.3 Charakterisierung der Transformanten hinsichtlich ihres Plasmidprofils und genetische Lokalisation der CRASP-kodierenden Gene ....................... 62 1.4 Nachweis der CRASP-Produktion
Recommended publications
  • New Distributions and an Insight Into Borrelia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 North American Lyme Borreliae: New Distributions and an Insight Into Borrelia bissettii Infection, Immune Response and Transmission in a Murine Model Brian Francis Leydet Jr Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Leydet Jr, Brian Francis, "North American Lyme Borreliae: New Distributions and an Insight Into Borrelia bissettii Infection, Immune Response and Transmission in a Murine Model" (2014). LSU Doctoral Dissertations. 1985. https://digitalcommons.lsu.edu/gradschool_dissertations/1985 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. NORTH AMERICAN LYME BORRELIAE: NEW DISTRIBUTIONS AND AN INSIGHT INTO BORRELIA BISSETTII INFECTION, IMMUNE RESPONSE AND TRANSMISSION IN A MURINE MODEL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Veterinary Medical Sciences by Brian F. Leydet Jr. B.S.H.S., Old Dominion University, 2007 M.P.H., University of North Florida, 2009 August 2014 ACKNOWLEDGEMENTS I dedicate this dissertation to my family. To my wife-to-be, Karine, who was there for me during some of the hardest moments of my work and who essentially takes care of me, as I seem to have the hardest time doing even the simplest tasks (laundry), je t’aime.
    [Show full text]
  • REVIEW ARTICLES AAEM Ann Agric Environ Med 2005, 12, 165–172
    REVIEW ARTICLES AAEM Ann Agric Environ Med 2005, 12, 165–172 ASSOCIATION OF GENETIC VARIABILITY WITHIN THE BORRELIA BURGDORFERI SENSU LATO WITH THE ECOLOGY, EPIDEMIOLOGY OF LYME BORRELIOSIS IN EUROPE 1, 2 1 Markéta Derdáková 'DQLHOD/HQþiNRYi 1Parasitological Institute, Slovak Academy of Sciences, Košice, Slovakia 2Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia 'HUGiNRYi 0 /HQþiNRYi ' $VVRFLDWLRQ RI JHQHWLF YDULDELOLW\ ZLWKLQ WKH Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. Ann Agric Environ Med 2005, 12, 165–172. Abstract: Lyme borreliosis (LB) represents the most common vector-borne zoonotic disease in the Northern Hemisphere. The infection is caused by the spirochetes of the Borrelia burgdorferi sensu lato (s.l.) complex which circulate between tick vectors and vertebrate reservoir hosts. The complex of Borrelia burgdorferi s.l. encompasses at least 12 species. Genetic variability within and between each species has a considerable impact on pathogenicity, clinical picture, diagnostic methods, transmission mechanisms and its ecology. The distribution of distinct genospecies varies with the different geographic area and over a time. In recent years, new molecular assays have been developed for direct detection and classification of different Borrelia strains. Profound studies of strain heterogeneity initiated a new approach to vaccine development and routine diagnosis of Lyme borreliosis in Europe. Although great progress has been made in characterization of the organism, the present knowledge of ecology and epidemiology of B. burgdorferi s.l. is still incomplete. Further information on the distribution of different Borrelia species and subspecies in their natural reservoir hosts and vectors is needed. Address for correspondence: MVDr.
    [Show full text]
  • Multilocus Sequence Typing Von Borrelia Burgdorferi Sensu Stricto
    Multilocus Sequence Typing von Borrelia burgdorferi sensu stricto und Borrelia afzelii Stämmen aus Europa und den USA: Populationsstruktur, Pathogenität und Patientensymptomatik Sabrina Jungnick München 2018 Aus dem Nationalen Referenzzentrum für Borrelien am Bayrischen Landesamt für Gesundheit und Lebensmittelsicherheit in Oberschleißheim Präsident: Dr. med. Andreas Zapf Multilocus Sequence Typing von Borrelia burgdorferi sensu stricto und Borrelia afzelii Stämmen aus Europa und den USA: Populationsstruktur, Pathogenität und Patientensymptomatik Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Sabrina Jungnick aus Ansbach 2018 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. med. Dr. phil. Andreas Sing Mitberichterstatter: Prof. Dr. Sebastian Suerbaum Prof. Dr. Michael Hoelscher Prof. Dr. Hans – Walter Pfister Mitbetreuung durch den promovierten Mitarbeiter: Dr. med. Volker Fingerle Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 26.04.2018 Teile dieser Arbeit wurden in folgenden Originalartikeln veröffentlicht: 1. Jungnick S, Margos G, Rieger M, Dzaferovic E, Bent SJ, Overzier E, Silaghi C, Walder G, Wex F, Koloczek J, Sing A und Fingerle V. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity. International Journal of Medical Microbiology. 2015. 2. Wang G, Liveris D, Mukherjee P, Jungnick S, Margos G und Schwartz I. Molecular Typing of Borrelia burgdorferi. Current protocols in microbiology. 2014:12C. 5.1-C. 5.31. 3. Castillo-Ramírez S, Fingerle V. Jungnick S, Straubinger RK, Krebs S, Blum H, Meinel DM, Hofmann H, Guertler P, Sing A und Margos G. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto.
    [Show full text]
  • Pär Comstedt
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 1161 ISSN 0346-6612 ISBN 978-91-7264-521-9 Editor: The Dean of the Faculty of Medicine Biology of Borrelia garinii Spirochetes Pär Comstedt Department of Molecular Biology Laboratory for Molecular Infection Medicine Sweden (MIMS) Umeå University, Sweden 2008 To Erik Bengtsson Copyright © Pär Comstedt Printed by Print & Media 2008 Design: Anna Bolin Table of contents ABSTRACT.................................................................................................................1 Papers in this thesis.....................................................................................................2 Papers not included in this thesis...............................................................................3 Abbreviations and terms ............................................................................................4 INTRODUCTION.........................................................................5 The history of Lyme borreliosis .................................................................................5 Zoonoses.......................................................................................................................6 Vector-borne diseases .................................................................................................7 Birds as reservoirs for zoonoses.................................................................................8 Classification................................................................................................................9
    [Show full text]
  • MOTILITY and CHEMOTAXIS in the LYME DISEASE SPIROCHETE BORRELIA BURGDORFERI: ROLE in PATHOGENESIS by Ki Hwan Moon July, 2016
    MOTILITY AND CHEMOTAXIS IN THE LYME DISEASE SPIROCHETE BORRELIA BURGDORFERI: ROLE IN PATHOGENESIS By Ki Hwan Moon July, 2016 Director of Dissertation: MD A. MOTALEB, Ph.D. Major Department: Department of Microbiology and Immunology Abstract Lyme disease is the most prevalent vector-borne disease in United States and is caused by the spirochete Borrelia burgdorferi. The disease is transmitted from an infected Ixodes scapularis tick to a mammalian host. B. burgdorferi is a highly motile organism and motility is provided by flagella that are enclosed by the outer membrane and thus are called periplasmic flagella. Chemotaxis, the cellular movement in response to a chemical gradient in external environments, empowers bacteria to approach and remain in beneficial environments or escape from noxious ones by modulating their swimming behaviors. Both motility and chemotaxis are reported to be crucial for migration of B. burgdorferi from the tick to the mammalian host, and persistent infection of mice. However, the knowledge of how the spirochete achieves complex swimming is limited. Moreover, the roles of most of the B. burgdorferi putative chemotaxis proteins are still elusive. B. burgdorferi contains multiple copies of chemotaxis genes (two cheA, three cheW, three cheY, two cheB, two cheR, cheX, and cheD), which make its chemotaxis system more complex than other chemotactic bacteria. In the first project of this dissertation, we determined the role of a putative chemotaxis gene cheD. Our experimental evidence indicates that CheD enhances chemotaxis CheX phosphatase activity, and modulated its infectivity in the mammalian hosts. Although CheD is important for infection in mice, it is not required for acquisition or transmission of spirochetes during mouse-tick-mouse infection cycle experiments.
    [Show full text]
  • Master of Environment
    Knowledge and Perception of Lyme Disease in Manitoba: Implications for Risk Assessment by Kathleen Crang A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of MASTER OF ENVIRONMENT Department of Environment and Geography University of Manitoba Winnipeg Copyright @ 2009 by Kathleen Crang THB UNIVBRSITY OF MANITOBA FACULTY OF GRADT]ATE STUDIBS COPYRIGHT PBRMISSION Knowledge and Perception of Lyme Disease in Manitoba: lmplications for Risk Assessment By Kathleen Crang A Thesis/PI'acticum submitted to the Faculty of Gracluatc Stutlies of Thc Uniyersitv of Manitob¿r in ¡rartial fulfillrnent of the req uire ment of the degrce of Master of Environment Kathleen CrangO2009 Permission has been grantecl to the Universit),of Manitob¿r Libraries to lcnd a copy of this thesis/practicum, to Library and Archives Canatla (LAC) to lencl ¿r cop)¡ of this thesis/¡lr.acticum, arltl to LAC's agent (UMI/ProQuest) to microfilm, sellcopies and to publish an ¿rbstract of this thesis/¡r racticu rn. This reproduction or copy of this thesis has been rn¿rde available by ¿ruthority of the copyright olner solely for the purpose of private study ancl research, ancl may onl5, 5" reir.oducerl ana copiea :rs permittecl by copyright lan's or lvith express rvritten authorization from the copyright on,ner. Table of Contents Abstract.... iv Acknowledgements.... .......... v List of Tab1es............. .... vi List of Figures............. .......... vii Permission List for Copyrighted Material ....... viii Chapter I: Introduction............. I Literature Review. 2 Research Objectives and Questions... ..... 11 Chapter II: Research Methods ..... 13 Chapter III: Ecology and Epidemiology of Lyme Disease.
    [Show full text]
  • Lyme Disease and Relapsing Fever Spirochetes
    Chapter from: LYME DISEASE AND RELAPSING FEVER SPIROCHETES Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis Editors: Justin D. Radolf Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genome Sciences, and Immunology UConn Health 263 Farmington Avenue Farmington, CT 06030-3715 USA D. Scott Samuels Division of Biological Sciences University of Montana 32 Campus Dr Missoula MT 59812-4824 USA Caister Academic Press www.caister.com Chapter 19 Human and Veterinary Vaccines for Lyme Disease Nathaniel S. O’Bier, Amanda L. Hatke, Andrew C. Camire and Richard T. Marconi* Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA *Corresponding author: [email protected] DOI: https://doi.org/10.21775/9781913652616.19 Abstract DNA molecule. As a consequence of extensive Lyme disease (LD) is an emerging zoonotic infection complementarity, the single-stranded DNA molecules that is increasing in incidence in North America, can reanneal upon themselves to form double- Europe, and Asia. With the development of safe and stranded linear DNA with covalently closed hairpin efficacious vaccines, LD can potentially be termini (Barbour and Garon, 1987). While linear DNA prevented. Vaccination offers a cost-effective and is rare in bacteria, genetic elements with similar safe approach for decreasing the risk of infection. structure are found in some viruses including the While LD vaccines have been widely used in African Swine Fever Virus, an arbovirus (Ndlovu et veterinary medicine, they are not available as a al., 2020). B. burgdorferi and the TBRF Borrelia have preventive tool for humans. Central to the a similar spiral ultrastructure, unique mode of motility development of effective vaccines is an and similar nutritional requirements (Barbour, 1984; understanding of the enzootic cycle of LD, differential Asbrink and Hovmark, 1985).
    [Show full text]
  • The Genus Borrelia Reloaded
    RESEARCH ARTICLE The genus Borrelia reloaded 1☯ 2☯ 3 1 Gabriele MargosID *, Alex Gofton , Daniel Wibberg , Alexandra Dangel , 1 2 2 1 Durdica Marosevic , Siew-May Loh , Charlotte OskamID , Volker Fingerle 1 Bavarian Health and Food Safety Authority and National Reference Center for Borrelia, Oberschleissheim, Germany, 2 Vector & Waterborne Pathogens Research Group, School of Veterinary & Life Sciences, Murdoch University, South St, Murdoch, Australia, 3 Cebitec, University of Bielefeld, Bielefeld, Germany ☯ These authors contributed equally to this work. * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 The genus Borrelia, originally described by Swellengrebel in 1907, contains tick- or louse- a1111111111 transmitted spirochetes belonging to the relapsing fever (RF) group of spirochetes, the Lyme borreliosis (LB) group of spirochetes and spirochetes that form intermittent clades. In 2014 it was proposed that the genus Borrelia should be separated into two genera; Borrelia Swellengrebel 1907 emend. Adeolu and Gupta 2014 containing RF spirochetes and Borre- OPEN ACCESS liella Adeolu and Gupta 2014 containing LB group of spirochetes. In this study we conducted Citation: Margos G, Gofton A, Wibberg D, Dangel an analysis based on a method that is suitable for bacterial genus demarcation, the percent- A, Marosevic D, Loh S-M, et al. (2018) The genus Borrelia reloaded. PLoS ONE 13(12): e0208432. age of conserved proteins (POCP). We included RF group species, LB group species and https://doi.org/10.1371/journal.pone.0208432 two species belonging to intermittent clades, Borrelia turcica GuÈner et al. 2004 and Candida- Editor: Sven BergstroÈm, Umeå University, tus Borrelia tachyglossi Loh et al. 2017. These analyses convincingly showed that all groups SWEDEN of spirochetes belong into one genus and we propose to emend, and re-unite all groups in, Received: May 4, 2018 the genus Borrelia.
    [Show full text]
  • Prevalence of Borrelia Burgdorferi Sensu Lato in Ixodes Ricinus Ticks in Scandinavia
    Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Scandinavia Rikke Rollum Thesis for the Master’s degree in Molecular Biosciences 60 study points Department of Molecular Biosciences Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO 2014 II © Rikke Rollum 2014 Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Scandinavia Supervisors: Vivian Kjelland (UiA), Hans Petter Leinås (UiO), Audun Slettan (UiA) http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo III IV Acknowledgements This master thesis was partly funded by the ScandTick project, which is a transnational project in Scandinavia devoted to ticks and tick-borne diseases. The laboratory work was conducted at the Department of Natural Sciences at the University of Agder (UiA) as an external thesis from the University of Oslo (UiO). I want to acknowledge all the people at UiO and UiA who have guided and helped me during my thesis. Vivian Kjelland (UiA), my supervisor, who gave me the opportunity to use her lab and for always being helpful, thorough and positive, which I really appreciate. You have inspired me to explore my opportunities, build connections and to be more confident and independent – Thank you! Audun Slettan (UiA), my co-supervisor, for always having a cheerful attitude and keeping my courage up when things did not go exactly as planned. I am also grateful to Hans Petter Leinaas (UiO), my co-supervisor, who have guided me in the writing process and for not letting me get carried away in fun facts. I would also like to thank Lars Korslund (UiA), who have helped me to understand and interpret the value of my results from a statistical point of view.
    [Show full text]
  • Diagnosis of Lyme Disease by Kinetic Enzyme-Linked Immunosor- Bent Assay Using Recombinant Vlse1 Or Peptide Antigens of Borrelia Burg- (Ix) the Use of B
    CLINICAL MICROBIOLOGY REVIEWS, July 2005, p. 484–509 Vol. 18, No. 3 0893-8512/05/$08.00ϩ0 doi:10.1128/CMR.18.3.484–509.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Diagnosis of Lyme Borreliosis Maria E. Aguero-Rosenfeld,1,4* Guiqing Wang,2 Ira Schwartz,2 and Gary P. Wormser3,4 Departments of Pathology,1 Microbiology and Immunology,2 and Medicine,3 Division of Infectious Diseases, New York Medical College, and Westchester Medical Center,4 Valhalla, New York INTRODUCTION .......................................................................................................................................................484 CHARACTERISTICS OF B. BURGDORFERI........................................................................................................485 B. burgdorferi Genospecies .....................................................................................................................................485 LYME BORRELIOSIS: DISEASE SPECTRUM....................................................................................................486 LABORATORY DIAGNOSIS....................................................................................................................................486 Direct Detection of B. burgdorferi .........................................................................................................................486 Culture of B. burgdorferi sensu lato .................................................................................................................487
    [Show full text]
  • Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective Publication: Gupta, Mahmood and Adeolu 2015, 15), Emend
    Bergey’s Manual of Systematics of Archaea and Bacteria Family Spirochaetes/Spirochaetia/Spirochaetales Borreliaceae Gupta, Mahmood, and Adeolu 2014, 693VP (Effective publication: Gupta, Mahmood and Adeolu 2015, 15), emend. Adeolu and Gupta 2014, 1064 Alan G. Barbour Departments of Microbiology and Molecular Genetics, Medicine, and Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, U.S.A. Bor.rel.i.a'ce.ae. N.L. fem. n. Borrelia type genus of the family; suff. -aceae ending to denote a family; N.L. fem. pl. n. Borreliaceae, the family of Borrelia. Cells are helical with regular or irregular coils. 0.2-0.3 µm in diameter and 10-40 µm in length. Cells do not have hooked ends. Motile. Inner and outer membrane with periplasmic flagella with 7 to 20 subterminal insertion points. Aniline-stain-positive. Microaerophilic. Most members of the family cultivable in complex media that includes N-acetylglucosamine. Optimum growth between 33 and 38° C. Diamino acid of peptidoglycan is ornithine. Lacks a lipopolysaccharide. Linear chromosome and plasmids with hairpin telomeres. The family currently accommodates the genera Borrelia and Borreliella. Members of the family are host-associated organisms that are transmitted between vertebrate reservoirs by a hematophagous arthropod, in all but one case, a tick. Members include the agents of relapsing fever, Lyme disease, and avian spirochetosis. DNA G+C content (mol%): 26-30 Type genus: Borrelia Swellengrebel 1907, 562AL ............................................................................................................................................................ Cells are helical, 0.2–0.3 µm in diameter and 10–40 µm in length. The coils, which usually are observed as flat waves, vary in amplitude and are either regular or irregular in spacing, depending on phase of growth and environment.
    [Show full text]
  • Borrelia Burgdorferi Surface-Localized Proteins Expressed During Persistent Murine Infection
    Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection and the importance of BBA66 during infection of C3H/HeJ mice by Jessica Lynn Hughes Bachelor of Science, University of Washington, 2001 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Jessica Lynn Hughes It was defended on April 3, 2008 and approved by Saleem A. Khan, Ph.D., Microbiology and Molecular Genetics Jeffrey G. Lawrence, Ph.D., Biological Sciences Bruce A. McClane, Ph.D., Microbiology and Molecular Genetics Ted M. Ross, Ph.D., Microbiology and Molecular Genetics Dissertation Advisor: James A. Carroll, Ph.D., Microbiology and Molecular Genetics ii Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection and the importance of BBA66 during infection of C3H/HeJ mice Jessica Lynn Hughes, PhD University of Pittsburgh, 2008 Select members of the group Borrelia burgdorferi sensu lato are the causative agents of Lyme disease (LD), a multisystem, potentially chronic disorder with debilitating clinical manifestations including Lyme arthritis, carditis, and neuroborreliosis. Current knowledge regarding the expression of virulence factors encoded by B. burgdorferi and the breadth of their distribution amongst Borrelia species within or beyond the sensu lato group is limited. Some genes historically categorized into paralogous gene family (pgf) 54 have been suggested to be important during transmission to and/or infection of mammalian hosts. By studying the factors affecting the expression of this gene family and its encoded proteins, their distribution, and the disease profile of a bba66 deletion isolate, we aimed to determine the importance of pgf 54 genes in Lyme disease and their conservation amongst diverse Borrelia species.
    [Show full text]