Aggregation, of Nanoparticles 19 Dispersion and Transformation 22
Total Page:16
File Type:pdf, Size:1020Kb
325 Index a bismuth nanoparticles aggregation, of nanoparticles 19 chemical reduction 129 dispersion and transformation 22 one pot synthesis 130 mineralization 24 polyol method 129 schematic representation of 21 solvothermal method 130 albumin 294–296 thermal decomposition 128 alginate-BSA nanoparticles 296 bismuth sulphide -helix content of lysozyme 92 protein mediated 231 alumina nanoparticles solvothermal synthesis 230 precipitation method 147 sonochemical method 229 sol–gel synthesis 145 template synthesis 230 template method 146–147 blood–brain barrier (BBB) 9 aluminum nanoparticles Boltzmann entropy, characteristics of catalytic decomposition 130 44 templated synthesis 132 Boltzmann–Gibbs entropy formulae thermal decomposition 132 44 antimony oxide bottom-up approach, for nanostructures biosynthesis 151 18–19 bulk and nanoscale, properties of 13 BSA–Acacia nanoparticles 297 chemical reduction 151 chemical synthesis 149 c Gibbs energy 148 cadmium sulphide hydrothermal method 151 carbon 28 microemulsion method 149–150 chemical synthesis 231, 236 customized synthesis 237 antimony sulphide (Sb2S3) hydrothermal method 228 electrochemical method 232 laser ablation technique 228 green synthesis 234–235, 237 solvothermal method 227 hot injection method 233 thermal decomposition method b 233, 236 biomolecules 69 carbonyl decomposition 102 BSA-Acacia nanoparticles 297 CdSe quantum dot-lysozyme interaction nucleic acid nanoparticles 313–314 94 biosynthetic methods, for metal CdSe quantum dots 77, 78 nanoparticle preparation 13 cerium oxide Design of Nanostructures: Self-Assembly of Nanomaterials, First Edition. Himadri B. Bohidar and Kamla Rawat. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA. 326 Index Ceria nanoparticles 21 molar entropy vs. reciprocal of size hydrothermal and hydrolysis methods 65 161 plant extract method 159 microemulsions 161 supramolecular method 158 plant extract method 162–163 critical coagulation concentration 30 precipitation method 159 cross flow filtration technique 9 thermal decomposition method 161 chemical equilibrium 51 d chemical potential difference 56 differential entropy production 43 chemical reactions, in nanosystems DLVO theory 28–30 61–65 DNA 9 chitosan 298 DNA-chitosan nanoparticles 300–301 circular dichroism (CD) spectroscopy DNA-nanoclay interaction 74, 75, 84, 85, 92 circular dichroism 92 cobalt nanoparticles differential binding studies 94 chemical reduction 121 effect on secondary structure foam based synthesis 122 89–90 laser ablation method 123 enzymatic activity effect 93 polyol based 121 FTIR spectroscopy 90–92 thermal decomposition 122 relative viscosity 87–88 cobalt oxide nanoparticles surface tension 88 UV–vis spectroscopy 87 facile method 154 microemulsion method 154 e microwave synthesis 155 entropy 44–45 plant extract method 155 equilibrium thermodynamics 7 thermal decomposition 153 ethyl cellulose colloidal iron oxides 166 nanoprecipitation technique 280 colloidal nanoclays 79 phase-inversion synthesis 278 copper nanoparticles solvent diffusion method 280 chemical reduction 117 one-pot synthesis 119–120 f polyol method 117 first law of thermodynamics 42–43 reduction by plant extracts 119 fluorescence quenching 81–82 thermal decomposition and free-radical miniemulsion sonochemical synthesis 118 polymerization 273 copper oxide (CuO) nanoparticles FTIR spectroscopy 76–78, 90–92 chemical reduction procedure 157 g equilibrium constant vs. reciprocal of gelatin nano-and microparticles size 64 301–309 Gibbs free-energy vs. reciprocal of gelatin nanoparticles, self-assembly of size 64 27 hydrothermal decomposition 159 gel filtration 9 microemulsion method 157 Gibbs–Duhem equation, for molar enthalpy vs. reciprocal of size macroscopic system 46 65 Gibbs equation 45–47 Index 327 Gibbs free-energy 57 laser pyrolysis 169 Gibbs nucleation theory 55 magnetite nanoparticles 166 Gibbs–Thomson equation 6 microemulsion 167 glutathione (GSH) 231 microwave assisted synthesis 171 gold nanoparticles pyrolysis 167 chemical reduction 103 sol–gel 167 green chemistry 104 solution method 167 ligand free synthesis 104 thermal decomposition 168–169 pulsed laser ablation method 103 vapour deposition 167 green chemistry methods 10 irreversible thermodynamics concept 41 h hard-sphere repulsion potential 31 k helicity value 90 Kubo gap 8 heparin 309 heparin-chitosan nanoparticles 310 l heparin-deoxycholic acid nanoparticles lanthanum oxide 311 hydrothermal method 172 heparin–poly(-benzyl-L-aspartate) sonochemical method 172 nanoparticles 311–312 thermolysis 172 heteroaggregation 23–24 Laplace–Young equation 53, 55 homogeneous aggregation 23 laponite-DNA solutions, FTIR spectra homogeneous nucleation 24–25 of 91 Huggin’s equation 87 laponite 79, see also nanoclay-protein human serum albumin (HSA) interaction® nanoparticles 295–296 lead nanoparticles hyaluronic acid nanoparticles 312–313 hot injection method 133–135 hydration of complexes 76–78 thermolysis in organic solvent 132 hydrogen bonding 31–32 lead sulphide hydrophobic index, of protein molecule facile method 238 72 single-step synthesis 238 hydrophobic interactions 32–34 synthesis of nanostructures with controlled dimensionality 240 i Lennard–Jones potential 30–31 indium oxide (In2 O3) lithographic techniques 17 co-precipitation method 164 lyophylization technique 9 hydrothermal synthesis 165 laser ablation technique 164 m microemulsion method 164 magnesium oxide nanoparticles intrinsic protein fluorescence, feature of hydrothermal synthesis 175 71 microemulsions 176 iron oxide nanoparticles optical properties 174 aqueous method 167 precipitation method 174 biocompatibility 166 sol–gel based method 175 colloidal iron oxides 166 thermal decomposition 175–176 coprecipitation 170 magnetic resonance force spectroscopy ferrofluids 166 52 328 Index magnetite nanoparticles 166 nanothermodynamics 41, 52 manganese sulphide neodymium oxide (Nd2 O3) hydrothermal method 241 microemulsion method 179 single step method 240 microwave assisted synthesis 179 thermal decomposition 241 solution-coprecipitation synthesis thermolysis 242 179 mean residue ellipticity (MRE) 75, 84 solventless method 178 metastable phase formation, in Nernst heat theorem 43 nanoscale systems 52–58 nickel nanoparticles mineralization 24 chemical reduction 124 MMT-DNA solutions, FTIR spectra of laser ablation 127 91 microemulsion 126–127 montmorillonite (MMT) 79, see also polyol based reduction 126 nanoclay-protein interaction nickel oxide nanoparticles alkoxide-based protocol 182 n heat treatment 183–184 nanobiotechnology 95 magnetic susceptibility 181 nanoclay-protein interaction sol–gel method 182 aspect ratio differential behaviour thermal decomposition 181 85 nickel sulphide binding constant 81–82 chemical synthesis 244 circular dichroism spectroscopy 84, gamma irradiation 243 85 solvothermal synthesis protocol 243 fluorescence quenching 81–82 thermolysis technique 243 stoichiometry 82 nonextensive thermodynamics 45 synchronous fluorescence non extensivity index 45 spectroscopy 82 nucleation and growth process 52 UV–vis absorption spectroscopy nucleic acid nanoparticles 313–314 80–81 nanomaterial-biomolecule/cell p interaction 95 palladium nanoparticles nanomedicine 95 impregnation method 109 nano vs. microscopic objects 5 Pluronic based synthesis 110 nanoparticles polyol based synthesis 110–111 aggregation, see aggregation, of reverse micelle 111 nanoparticles thermal decomposition 111 biological applications 5 partition function, for ideal gas 48 biopolymers for surface pectin–cisplatin nanoconjugate functionalization 11 316–317 biosynthesis 10 pectin nanoparticles 315–316 characterization 3 phase transitions 48 gold 7 physical stability, of nano size objects vs. microparticles 5 58–61 plant resources 12 platinum nanoparticles platinum 7 chemical reduction 114 nanoscience 3 colloidal method 114 nanotechnology 3, 39, 49 polyol based synthesis 113 Index 329 reverse micellar synthesis 114 poly(vinyl alcohol) 285–287 solvothermal techniques 115 poly(vinylpyrrolidone) 283–284 synthesis using thiol-functionalized reviews on 262 ionic liquid 112–113 polystyrene PNIPAM nanoparticles emulsion polymerization 276 free radical polymerization 267 free-radical emulsion polymerization one-pot synthesis 268 277 poly(-aminoester)s 268 miniemulsion co-polymerization polyacrylamide 278 free-radical mircoemulsion surfactant-free synthesis 277 polymerization 281 polyurethanes inverse heterophase polymerization interfacial polycondensation 276 283 mini emulsion synthesis 274 inverse mcroemulsion polymerization oligodiol-polyurathane synthesis 282 275 poly(-aminoesters) 268 poly(vinyl alcohol) poly(-caprolacton) micromulsion and freezing/thawing microemulsion method 284 cycle 285 solvent displacement 284 nanoprecipitation 285–287 poly(ethylene glycol) (PEG) 261–262 poly(vinylpyrrolidone) 283 poly(lactic acid) (PLA) protein-CdSe complex quenching rate electrospraying 266–267 constant 70 one-pot synthesis 264 protein-quantum dot interaction plant extract synthesis 265 circular dichroism spectroscopy 74, solvent displacement technique 265 75 poly(lactic-co-glycolic acid) (PLGA) fluorescence quenching 70, 72 emulsion solvent 270 FTIR spectroscopy 76 microfluidic nanoprecipitation 270 hydration of complexes 76–76 nanoprecipitation 270 protein hydrophobicity effect poly(methyl methacrylate) (PMMA) 72–73 “click” chemistry 272–273 stoichiometry 73 free-radical miniemulsion polymerization 273 q microemulsion polymerization quantum effects 5 271–272 quantumsizeeffects 12 surfactant-free