Analysis of Limb Movement Synchronization in Primates Locomotion

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Limb Movement Synchronization in Primates Locomotion ANTHROPOLOGICAL REVIEW • VOL. 81(4), 414–422 (2018) ANTHROPOLOGICAL REVIEW Available online at: https://content.sciendo.com/anre Journal homepage: www.ptantropologiczne.pl Analysis of limb movement synchronization in primates locomotion Zofia Sikorska-Piwowska1, Piotr Śliwka2, Bogdan Ciszek1 1Department of Descriptive and Clinical Anatomy, Centre of Biostructure Research, Medical University of Warsaw, Poland 2Department of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland ABSTRACT: The authors present an original mathematical model based on features identified with discrete variables using vector and hierarchical cluster analysis in primates locomotion. Proposed model allows to formalize and analyze the synchronization variability of movements in given locomotion types of adaptation and specialization in monkeys, apes and humans. The material covers observations of 102 forms including 9 species of primates: the chimpanzee, bonobo, orangutan, gibbon, gelada, mandrill, brown capuchin and ring–tailed lemur. The studies included also the synchronization of locomotory movements in man. The sequences of moves of pectoral and pelvic limbs, right and left, were studied in four categories: walking, running, jumping and brachiation. The locomotion movements depend on the brain centers and allow to find phylogenetic relations between examined forms in the evolution process. The knowledge of the pattern of movements is used in the treatment of paraplegia and paraparesis in humans. KEY WORDS: evolution process of primates bipedality, vector analysis, hierarchical cluster analysis, pattern of movements, treatment of human paraplegia and paraparesis. Introduction The evolution variability of synchro- nization limb movement in terms of lo- The aim of this work is to verify phylo- comotion of primates depends on types genetic relation and contributes to the of their adaptation and specialization explanation of man’s biped posture. As in particular environmental conditions. a tool, the vector analysis and hierarchi- An adaptation type means the state of cal cluster analysis, based on formalized adaptive traits of extremities correlated traits regarding the synchronization of with traits of all organisms. These traits locomotive movements of the primate ensure an optimal solution of locomo- limbs, were used. tory functions of extremities in the ha- These studies explained the mecha- bitat. Specialization types are selected nism of origin of foot and hand gaits exa- structural functional differentiations of mined by many researches and hadn`t to extremities due among others to inten- be identified in this analysis. sification of given locomotory functions. Original Research Article Received July 26, 2018 Revised November 13, 2018 Accepted November 15, 2018 DOI: 10.2478/anre-2018-0036 © 2018 Polish Anthropological Society Movement synchronization in primates 415 Transition from plantigrade to digitigrade According to these authors, bipedalism in quadrupedal adaptation is an instructi- evolved to increase the visual horizon as ve example. a strategy against greater predators and Primates belong to the order of mam- competition in savanna-woodland habi- mals. Zoological taxonomy divides this tats. Richmond (2001) assumed that hu- order into two principal groups: Strepsir- man bipedalism originated from arboreal rhini and Haplorrhini. Strepsirrhini are re- quadruped ancestors. Moreover, there presented in our study by lemurs (Lemur were anatomical similarities in the human catta L.) which climb trees with four limbs and baboon hand structures. Carvalho having prehensile hands and feet. Haplor- (2012) claimed that the climate changes rhini are composed of broad nose monkeys reduced forested areas forming selecti- (Platyrrhini) and narrow nose ones (Ca- ve pressure to lead hominine’s ancestors tharrhini). Platyrrhini, like capuchin (Ce- to modify their posture to include a lar- bus capucinus L.), live in South America and ger component of bipedality. Occasional climb from one branch to another hanging bipedality occurs among wild great apes with pectoral extremities. Additionally, linked to food carrying with males trans- some of them use their prehensile tails porting more often than females (Rich- while locomotion. The Catharrhini were mond 2001). Niemnitz (2010) described divided into Cercopithecidae monkeys the evolution of the upright posture and and Hominoidea. The locomotion of the gaits. Oscillatory movements of the limbs Cercopithecidae, like baboons (Papio pa- during locomotion of vertebrates were also pio Desm.) or mandrills (Mandrillus sphinx considered by physicists and mathemati- L.), effects quadrupedally with prehensile cians such as Collins and Steward (1991) hands and feet on branches or on the gro- in terms of their diverse inter-relations. und. Hominoidea like gibbons (Hylobates According to Crompton (2008), in the lar L.) and apes like chimpanzee (Pan tro- evolution of the locomotion system from glodytes L.) and bonobo (Pan paniscus L.) the earliest hominids to modern Homo sa- brachiate hanging on branches or step on piens has to be explained how flexed po- the ground quadrupedally (Sikorska-Pi- stures of the hind limb could have prea- wowska et al. 2015). Their pectoral extre- dapted the body for the apes acquisition mities are very elongated in relation to the of straight-legged erect bipedality. Hilde- pelvic ones. brand (1967) analyzed walking and run- In the present paper, the locomotion ning gaits of 26 genera of primates and de- of man was compared with those of scribed typical support sequences of them. monkeys and apes. Human extremities Schmitt (2003) considered that primates evolved in a different way than those of including human showed patterns of lo- other primates, because human pelvic comotion and locomotor control different legs are very elongated in biped loco- from all other mammals. According to this motion, and pectoral ones are shortened. author, hominid bipedalism evolved in ar- In the human hand, the thumb is capable boreal climbing primates. of real opposition to other fingers ena- Type of movement is generated by bling precise movements. the spinal cord centers both for pectoral The evolution of primates locomotion and pelvic limbs. Long-lasting research was examined by Videan and McGrew indicated that they play a significant role (2002) as well as by Williams (2010). in coordinating primates’ locomotion 416 Sikorska-Piwowska, et al. movements (Carvalho et all. 2012; Dietz 2 second one, and so on. If the move- 2002). This knowledge is being used in ments occur at the same time, they are the treatment of paraplegia and parapa- denoted by the same number. The sequ- resis in humans - victims of spinal cord ence allows to estimate the differences or injuries. This research is focused on acti- similarities between the studied forms vation of peripheric spinal neurons coor- in the types of movements. For exam- dinating pelvic limbs activities. This can ple, in walking moves of the chimp, the be done by spinal cord stimulation or right chest limb (RC}, which is the first by modification of rehab programs and to move is numbered 1, next moves the the usage of limbs’ exoskeletons (van left pelvic limb (LP) that is numbered 2, den Brand et al. 2015). These categories after that moves the left chest limb (LC) are the measure of brain evolution and numbered 3 and finally the right pelvic allow to find phylogenetic relations be- limb (RP) numbered 4. So its sequence tween examined forms. Particular limb of movements was represented in Table movement patterns are supposed to be 1 denoted by (3,1,2,4). There is also 0 in invariable within the populations stu- the table which indicates the lack of the died which are considered to be inde- type of movement. pendent forms. In the rows of the table there are gro- ups of stages of the movement tabula- Material and methods ted. The 16 stages are divided between all types of movement as walking, run- Observations were carried out in the ning, jumping and brachiation. This way, Chimpanzees Sanctuary in the Swe- every species is described by 16 stages etwaters Game Reserve in Kenya, in the of movements which compose a vector Orangutans Sanctuary in Sumatra and xi={xi1, ..., xiN} determining a location of Tsaratanana Strict Nature Reserve in Ma- a given species in a multi-dimensional dagascar. This research was complemen- vector space with information about their ted in zoos in Warsaw and Gdansk. synchronization (N=4 or N=16). Eight species of primates were ob- These 16 stages of movements divi- served at the following numbers: ring-ta- ded into 4 types of movements: walking iled lemur (14), tufted capuchin monkey - W, running - R, jumping - J and brachia- (14), baboon (14), mandrill (14), gibbon tion – B were considered to be discrete (10), orangutan (12), chimpanzee (12) characteristics which characterize each of and bonobo (12). In total information the primate forms. These vectors genera- about 102 specimens was collected. The te matrix X (dim: 9x4 or 9x16) observed results were analyzed. X = {x1, ..., xQ} Table 1 presents four types of move- consists of movement stages vectors ments considered: walking, running, jum- for all species (i∈Q, Q = 9 - number of ping and brachiation with information on species of monkeys and human). the left and right chest and pelvic limb The lack of a particular type of move- synchronization for all analyzed prima- ment in the examined species was custo- tes, including man. This synchronization marily
Recommended publications
  • The Local Biomechanical Analysis of Lower Limb on Counter- Movement Jump Between Barefoot and Shod People with Different Foot Morphology
    38th International Society of Biomechanics in Sport Conference, Physical conference cancelled, Online Activities: July 20-24, 2020 THE LOCAL BIOMECHANICAL ANALYSIS OF LOWER LIMB ON COUNTER- MOVEMENT JUMP BETWEEN BAREFOOT AND SHOD PEOPLE WITH DIFFERENT FOOT MORPHOLOGY Zhiqiang Liang1,2 Jiabin Yu1,2 Yaodong Gu1,2 and Jianshe Li1 Research academy of grand health, Ningbo University, Ningbo, China1 Faculty of sports science, Ningbo University, Ningbo, China2 The aim of this study was to explore the kinematic variations in knee and ankle joints and the ground reaction force between habitually barefoot (HBM) and shod males (HSM) during countermovement jump. Twenty-eight males (14 HBM,14 HSM) participated in this experiment. An 8-camera Vicon motion system was used to collect the kinematic data of knee and ankle joints from 3 dimensions and the force plate was used to collect the ground reaction force in take-off phase. Results in take-off phase showed that HSM produced two peak forces to take off and showed significantly greater knee ROM in sagittal plane, as well as greater ankle inversion and external rotation. In conclusion, the foot morphological differences can result in the different influence on jump performance. The relevant practioner should pay close attention to the effect of foot morphology on jump in training. KEYWORDS: foot morphology; vertical jump performance; ground reaction force; kinematics. INTRODUCTION: Habitually barefoot population (HBM) has some differences in morphology compared to habitually shod population (HSM) when running (Lieberman et al., 2010), which can lead to different performance and partly reduce sports injuries (Lieberman et al., 2010). Biomechanical studies reported that the separated large toe of HBM and the other toes of HSM had the specific prehensile function (Ashizawa et al., 1997); these characteristics lead to load and initiate larger push forces for take-off (Tam et al., 2016).
    [Show full text]
  • Specific Skills Check List © Ruth Ring Harvie 1990 1
    Specific Skills Check List © Ruth Ring Harvie 1990 1. Mounting and dismounting correctly 2. Holding reins correctly 3. Lengthening and shortening reins correctly 4. Adjusting both stirrups and girth correctly when mounted 5. Adjusting stirrups correctly at walk 6. Demonstrate correct position at walk and trot 7. Pick up and drop stirrups correctly at walk and trot. 8. Demonstrate basic balanced position used with control in arena and in the open 9. Demonstrate changes of direction at walk and trot 10. Demonstrate gradual transitions using reins, seat, legs, correctly 11. Mount and dismount from each side correctly. 12. Maintain basic balanced position at walk/trot/canter transitions in both directions 13. Demonstrate and use correct aids for canter departures both directions 14. Demonstrate correct trot/canter transitions 15. Demonstrate correct jumping position at walk/trot/canter maintaining balance and stability of gaits. 16. Demonstrate balancing and suppling exercises for rider. Demonstrate same for horse. 17. Demonstrate correct effective jumping position at walk/trot/canter on both reins using aids correctly. 18. Maintain correct and effective position (basic, balanced position for flat-work, basic, balanced position for jumping) at walk/trot/canter without stirrups. 19. Know when diagonals are correct for riding at rising trot in ALL of the above 20. Aids for canter transitions given correctly and effectively at trot/canter and walk/canter transitions 21. Demonstrate an understanding of the skill of changing leads at canter, how to change leads if horse takes the wrong lead, and how to school leads correctly 22. Know how to demonstrate jumping position and effectiveness through use of a correct base of support and necessary changes in, adjusting the knee ,ankle, hip and elbow angles for maintaining functionally correct position through grids/courses and in the open 23.
    [Show full text]
  • How Much Muscle Strength Is Required to Walk in a Crouch Gait?
    Journal of Biomechanics 45 (2012) 2564–2569 Contents lists available at SciVerse ScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com How much muscle strength is required to walk in a crouch gait? Katherine M. Steele a, Marjolein M. van der Krogt c,d, Michael H. Schwartz e,f, Scott L. Delp a,b,n a Department of Mechanical Engineering, Stanford University, Stanford, CA, USA bDepartment of Bioengineering, Stanford University, Stanford, CA, USA c Department of Rehabilitation Medicine, Research Institute MOVE,VU University Medical Center, Amsterdam, The Netherlands d Laboratory of Biomechanical Engineering, University of Twente, Enschede, The Netherlands e Gillette Children’s Specialty Healthcare, Stanford University, St. Paul, MN, USA f Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA article info abstract Article history: Muscle weakness is commonly cited as a cause of crouch gait in individuals with cerebral palsy; Accepted 27 July 2012 however, outcomes after strength training are variable and mechanisms by which muscle weakness may contribute to crouch gait are unclear. Understanding how much muscle strength is required to Keywords: walk in a crouch gait compared to an unimpaired gait may provide insight into how muscle weakness Cerebral palsy contributes to crouch gait and assist in the design of strength training programs. The goal of this study Crouch gait was to examine how much muscle groups could be weakened before crouch gait becomes impossible. Strength To investigate this question, we first created muscle-driven simulations of gait for three typically Muscle developing children and six children with cerebral palsy who walked with varying degrees of crouch Simulation severity.
    [Show full text]
  • University of Illinois
    UNIVERSITY OF ILLINOIS 3 MAY THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Leahanne M, Sarlo Functional Anatomy and Allometry in the Shoulder of ENTITLED........................................................ Suspensory Primates IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF. BACHELOR OF ARTS LIBERAL ARTS AND SCIENCES 0-1M4 t « w or c o w n w Introduction.....................................................................................................................................1 Dafinibon*..................................................................................................................................... 2 fFunctional m ivw w iiw irwbaola am foriwi irviiiiHbimanual iw 9 jrvafwooaitiona! Vf aai irwbahavlort iiHviw i# in thaahoukter joint complex......................................................................................3 nyvootiua pooioonaiaA^^AlttAAMAl oanainor................................................................................... i4 *4 -TnoOV a awmang.a Ia M AM JI* nwoo—U^AtkA^AA i (snDBDfllluu)/AuMyAlftAlAnAH |At AkJA^AAtlA•wwacwai* |A .............. 4ia i -Tho lar gibbon: KM obate* ]|£.................................................................................15 ANomatry.......................................................................................................................................16 Material* and matooda.....................................................................................................19
    [Show full text]
  • Introduction to Sports Biomechanics: Analysing Human Movement
    Introduction to Sports Biomechanics Introduction to Sports Biomechanics: Analysing Human Movement Patterns provides a genuinely accessible and comprehensive guide to all of the biomechanics topics covered in an undergraduate sports and exercise science degree. Now revised and in its second edition, Introduction to Sports Biomechanics is colour illustrated and full of visual aids to support the text. Every chapter contains cross- references to key terms and definitions from that chapter, learning objectives and sum- maries, study tasks to confirm and extend your understanding, and suggestions to further your reading. Highly structured and with many student-friendly features, the text covers: • Movement Patterns – Exploring the Essence and Purpose of Movement Analysis • Qualitative Analysis of Sports Movements • Movement Patterns and the Geometry of Motion • Quantitative Measurement and Analysis of Movement • Forces and Torques – Causes of Movement • The Human Body and the Anatomy of Movement This edition of Introduction to Sports Biomechanics is supported by a website containing video clips, and offers sample data tables for comparison and analysis and multiple- choice questions to confirm your understanding of the material in each chapter. This text is a must have for students of sport and exercise, human movement sciences, ergonomics, biomechanics and sports performance and coaching. Roger Bartlett is Professor of Sports Biomechanics in the School of Physical Education, University of Otago, New Zealand. He is an Invited Fellow of the International Society of Biomechanics in Sports and European College of Sports Sciences, and an Honorary Fellow of the British Association of Sport and Exercise Sciences, of which he was Chairman from 1991–4.
    [Show full text]
  • Why Trot When You Can Walk? an Investigation of the Walk-Trot Transition in the Horse
    Why trot when you can walk? An Investigation of the Walk-Trot Transition in the Horse A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment of the Requirements for the Degree Master of Science In Biological Sciences By Devin A. J. Johnsen 2003 SIGNATURE PAGE THESIS: Why trot when you can walk? An investigation of the Walk-Trot Transition in the Horse AUTHOR: Devin A. J. Johnsen DATE SUBMITTED: __________________________________________ Department of Biological Sciences Dr. Donald F. Hoyt __________________________________________ Thesis Committee Chair Biological Sciences Dr. Steven J. Wickler __________________________________________ Animal & Veterinary Sciences Dr. Edward A. Cogger __________________________________________ Animal & Veterinary Sciences Dr. Sepehr Eskandari __________________________________________ Biological Sciences ii Abstract Parameters ranging from energetics to kinematics, from muscle function to ground reaction force, have been theorized as triggers for a variety of terrestrial gait transitions. The walk-trot transition represents a change between gaits governed by very different mechanics, as the walk is modeled by the inverted pendulum, while the trot is modeled by the spring-mass model. A set of five criteria was established in order to determine a parameter as a trigger of the walk-trot transition in the horse. In addition, these mechanical models can provide specific predictions about the change in leg length during the stride. Six horses walked and trotted over a range of speeds on a high-speed treadmill. Stride parameters were measured using accelerometers, while sonomicrometry and electromyography measured muscle function of the vastus lateralis. Kinematics of the coxofemoral, femorotibial, tarsal, and metatarsophalangeal joints as well as leg length were determined using a high-speed (125 Hz) camera.
    [Show full text]
  • Linking Gait Dynamics to Mechanical Cost of Legged Locomotion
    REVIEW published: 17 October 2018 doi: 10.3389/frobt.2018.00111 Linking Gait Dynamics to Mechanical Cost of Legged Locomotion David V. Lee 1* and Sarah L. Harris 2 1 School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States, 2 Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States For millenia, legged locomotion has been of central importance to humans for hunting, agriculture, transportation, sport, and warfare. Today, the same principal considerations of locomotor performance and economy apply to legged systems designed to serve, assist, or be worn by humans in urban and natural environments. Energy comes at a premium not only for animals, wherein suitably fast and economical gaits are selected through organic evolution, but also for legged robots that must carry sufficient energy in their batteries. Although a robot’s energy is spent at many levels, from control systems to actuators, we suggest that the mechanical cost of transport is an integral energy expenditure for any legged system—and measuring this cost permits the most direct comparison between gaits of legged animals and robots. Although legged robots have matched or even improved upon total cost of transport of animals, this is typically achieved by choosing extremely slow speeds or by using regenerative mechanisms. Legged robots have not yet reached the low mechanical cost of transport achieved at speeds used by bipedal and quadrupedal animals. Here we consider approaches Edited by: used to analyze gaits and discuss a framework, termed mechanical cost analysis, that Monica A. Daley, can be used to evaluate the economy of legged systems.
    [Show full text]
  • Point-Mass Model of Brachiation
    The Journal of Experimental Biology 202, 2609–2617 (1999) 2609 Printed in Great Britain © The Company of Biologists Limited 1999 JEB1788 A POINT-MASS MODEL OF GIBBON LOCOMOTION JOHN E. A. BERTRAM1,*, ANDY RUINA2, C. E. CANNON3, YOUNG HUI CHANG4 AND MICHAEL J. COLEMAN5 1College of Veterinary Medicine, Cornell University, USA, 2Theoretical and Applied Mechanics, Cornell University, USA, 3Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA, 4Department of Integrative Biology, University of California-Berkeley, USA and 5Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA *Author for correspondence at Department of Nutrition, Food and Exercise Sciences, 436 Sandels Building, Florida State University, Tallahassee, FL 32306, USA (e-mail: [email protected]) Accepted 10 June; published on WWW 13 September 1999 Summary In brachiation, an animal uses alternating bimanual losses due to inelastic collisions of the animal with the support to move beneath an overhead support. Past support are avoided, either because the collisions occur at brachiation models have been based on the oscillations of zero velocity (continuous-contact brachiation) or by a a simple pendulum over half of a full cycle of oscillation. smooth matching of the circular and parabolic trajectories These models have been unsatisfying because the natural at the point of contact (ricochetal brachiation). This model behavior of gibbons and siamangs appears to be far less predicts that brachiation is possible over a large range restricted than so predicted. Cursorial mammals use an of speeds, handhold spacings and gait frequencies with inverted pendulum-like energy exchange in walking, but (theoretically) no mechanical energy cost.
    [Show full text]
  • Analysis of Standing Vertical Jumps Using a Force Platform Nicholas P
    Analysis of standing vertical jumps using a force platform Nicholas P. Linthornea) School of Exercise and Sport Science, The University of Sydney, Sydney, New South Wales, Australia ͑Received 9 March 2001; accepted 8 May 2001͒ A force platform analysis of vertical jumping provides an engaging demonstration of the kinematics and dynamics of one-dimensional motion. The height of the jump may be calculated ͑1͒ from the flight time of the jump, ͑2͒ by applying the impulse–momentum theorem to the force–time curve, and ͑3͒ by applying the work–energy theorem to the force-displacement curve. © 2001 American Association of Physics Teachers. ͓DOI: 10.1119/1.1397460͔ I. INTRODUCTION subject. In terrestrial human movement, the force exerted by the platform on the body is commonly called the ‘‘ground A force platform can be an excellent teaching aid in un- reaction force.’’ dergraduate physics classes and laboratories. Recently, The jumps discussed in this article we recorded using a Cross1 showed how to increase student interest and under- Kistler force platform that was set in concrete in the floor of standing of elementary mechanics by using a force platform our teaching laboratory.3 The vertical component of the to study everyday human movement such as walking, run- ground reaction force of the jumper was sampled at 1000 Hz ning, and jumping. My experiences with using a force plat- and recorded by an IBM compatible PC with a Windows 95 form in undergraduate classes have also been highly favor- operating system. Data acquisition and analysis of the jumps able. The aim of this article is to show how a force platform were performed using a custom computer program ͑JUMP analysis of the standing vertical jump may be used in teach- ANALYSIS͒ that was written using LABVIEW virtual instru- ing the kinematics and dynamics of one-dimensional motion.
    [Show full text]
  • Horse Jumping Project Guide
    JUMPING Project Guide The 4-H Motto “Learn to Do by Doing” The 4-H Pledge I pledge My head to clearer thinking, My heart to greater loyalty, My hands to larger service, My health to better living, For my club, my community my country, and my world. Acknowledgements This Jumping Horse Project Book is in its second edition. The following volunteers from our Provincial 4-H Horse Advisory Committee (PEAC) contributed to the research, editing and reviewing of this edition. Kippy Maitland-Smith - Rocky Mountain House, Alberta Robert Young, 4-H Volunteer, Red Deer Alberta The Alberta 4-H program extends a thank you to the following individuals for reviewing portions of this 4-H Jumping Horse Project Book. Beth MacGougan - Coronation, Alberta Gerald Maitland, 4-H Volunteer, Rocky Mountain House, Alberta Cover Photo Credit Digital Sports Photography Revised and Reprinted – September 2004 1st Edition – September 1998 Published by 4-H Alberta for the 4-H Community. For more information or to find other helpgul resources, please visit the 4-H Alberta website at www.4hab.com 3 4-H Jumping Project Guide 4-H Jumping Jumping In these levels you will work through the basic skills that you will need to jump. These skills are very important because good clean jumps are the product of good flatwork and the complete understanding of both horse’s and rider’s biodynamics, jump construction, the ground underfoot and riding techniques. A lot of the basic information has already been given to you in the Horse Reference Manual and the Dressage manual, so it will not be repeated here.
    [Show full text]
  • Fleagle and Lieberman 2015F.Pdf
    15 Major Transformations in the Evolution of Primate Locomotion John G. Fleagle* and Daniel E. Lieberman† Introduction Compared to other mammalian orders, Primates use an extraordinary diversity of locomotor behaviors, which are made possible by a complementary diversity of musculoskeletal adaptations. Primate locomotor repertoires include various kinds of suspension, bipedalism, leaping, and quadrupedalism using multiple pronograde and orthograde postures and employing numerous gaits such as walking, trotting, galloping, and brachiation. In addition to using different locomotor modes, pri- mates regularly climb, leap, run, swing, and more in extremely diverse ways. As one might expect, the expansion of the field of primatology in the 1960s stimulated efforts to make sense of this diversity by classifying the locomotor behavior of living primates and identifying major evolutionary trends in primate locomotion. The most notable and enduring of these efforts were by the British physician and comparative anatomist John Napier (e.g., Napier 1963, 1967b; Napier and Napier 1967; Napier and Walker 1967). Napier’s seminal 1967 paper, “Evolutionary Aspects of Primate Locomotion,” drew on the work of earlier comparative anatomists such as LeGros Clark, Wood Jones, Straus, and Washburn. By synthesizing the anatomy and behavior of extant primates with the primate fossil record, Napier argued that * Department of Anatomical Sciences, Health Sciences Center, Stony Brook University † Department of Human Evolutionary Biology, Harvard University 257 You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher. fig. 15.1 Trends in the evolution of primate locomotion.
    [Show full text]
  • SOCIAL BEHAVIOURS of CAPTIVE Hylobates Moloch (PRIMATES: HYLOBATIDAE) in the JAVAN GIBBON RESCUE and REHABILITATION CENTER, GEDE-PANGRANGO NATIONAL PARK, INDONESIA
    TAPROBANICA , ISSN 1800-427X. October, 2010. Vol. 02, No. 02: pp. 97-103. © Taprobanica Nature Conservation Society, 146, Kendalanda, Homagama, Sri Lanka. SOCIAL BEHAVIOURS OF CAPTIVE Hylobates moloch (PRIMATES: HYLOBATIDAE) IN THE JAVAN GIBBON RESCUE AND REHABILITATION CENTER, GEDE-PANGRANGO NATIONAL PARK, INDONESIA Sectional Editor: Colin Groves Submitted: 14 February 2011, Accepted: 08 March 2011 Niki K. Amarasinghe1,2 and A. A. Thasun Amarasinghe1,3 1 Taprobanica Nature Conservation Society, 146, Kendalanda, Homagama, Sri Lanka E-mails: 2 [email protected], 3 [email protected] Abstract Hylobates moloch, Silvery Gibbon occure on the Java island (in the western half of Java), Indonesia. This study presents preliminary data on social behaviours for Silvery Gibbon in captivity. All the individuals had an average active period from 6:30 hr to 16:00 hr (total 9.5 hours). Resting behaviour had the highest percentage (57.05% ± 0.45), followed by movement (21.99% ± 0.14), feeding ( 15.73% ± 0.34), courtship (5.16% ± 0.03), calling (2.35% ± 0.02), social behaviours (1.6% ± 0.09), agonistic behaviours (0.37 % ± 0.01), and copulation (0.05% ± 0.01). Gibbons showed two peaks of feeding, from 06:35 to 07:30 and from 14:35 to 15:30. Gibbons in the JGC made two types of calls: male solo and female solo calls. Males had a lower time budget for calling behaviour than females. All the gibbons showed four types of locomotor behaviours: brachiating, climbing, jumping (including ricocheting) and bipedal. The most frequent locomotor behaviour was brachiation type. All individuals in the study groups showed autogrooming.
    [Show full text]