Pseudomonas Trautweiniana Sp

Total Page:16

File Type:pdf, Size:1020Kb

Pseudomonas Trautweiniana Sp University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2017 Taxonomy, physiology and biochemistry of the sulfur Bacteria Hutt, Lee Philip http://hdl.handle.net/10026.1/8612 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Copyright statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent. I II Taxonomy, physiology and biochemistry of the sulfur Bacteria By Lee Philip Hutt A thesis submitted to Plymouth University in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Biological Sciences, Faculty of Science and Technology July 2016 III Thesis Abstract Inorganic sulfur-oxidising Bacteria are present throughout the Proteobacteria and inhabit all environments of Earth. Despite these facts they are still poorly understood in terms of taxonomy, physiology, biochemistry and genetics. Using phylogenetic and chemotaxonomic analysis two species that were erroneously classified as Thiobacillus trautweinii spp. in 1921 and 1934 are in fact novel chemolithoheterotrophic species for which the names Pseudomonas trautweiniana sp. nov. and Achromobacter starkeyanus sp. nov. are proposed, respectively. These species were found to oxidise thiosulfate in a “fortuitous” manor when grown in continuous culture and increases in maximum theoretical growth yield (YMAX) and maximum specific growth rate (μMAX) were observed. Cytochrome c linked thiosulfate-dependent ATP production was confirmed in both species, confirming “true” chemolithoheterotrophy. Evidence is presented that the ATP concentration governs the benefits of chemolithoheterotrophy. There were significant changes in enzyme activities, including enzymes of the TCA cycle that might be affecting amino acid synthesis. This is strong evidence that chemolithoheterotrophy gives a strong physiological boost and evolutionary advantage over strictly heterotrophic species. An autotrophic species that was historically placed in Thiobacillus was also shown to be a novel species for which the name Thermithiobacillus parkerianus sp. nov. is proposed. The enzyme profiles of Thermithiobacillus parkerianus differed significantly between different inorganic sulfur growth substrates and was the first time all TCA cycle enzymes were assayed in a member of the Acidithiobacillia. The properties of thiosulfate dehydrogenase varied significantly between Pseudomonas sp. Strain T, Achromobacter sp. Strain B and Thermithiobacillus sp. ParkerM both in terms of optimal parameters and the effect of inhibitors. This evidence adds to the increasing body of work indicating there to be at least two thiosulfate dehydrogenases present in the Bacteria. IV List of abbreviations α Bunsen coefficient ε Molar extinction coefficient λ Wavelength μ Specific growth rate μMAX Maximum specific growth rate Ax Absorbance at x nm ADP Adenosine 5ˈ-Diphosphate AMP Adenosine 5ˈ-Monophosphate ATP Adenosine 5ˈ-Triphosphate BLAST Basic local alignment search tool BSA Bovine serum albumin CFE Cell-free Extract Cyt Cytochrome D Dilution rate DCPIP 2,6-Dichlorophenolindophenol DNA Deoxyribonucleic acid e- Electron EC number Enzyme Commission number EBS E-Basal Salts EDTA Ethylenediamine tetraacetic acid ETC Electron transport chain g Earth’s gravitational acceleration at sea level h hours K Kelvin m Maintenance energy coefficient ms Maintenance energy coefficient with respect to substrate V M Molar Mol Mole Mol% Molar percentage NAD+ Nicotinamide adenine dinucleotide (oxidised form) NADH Nicotinamide adenine dinucleotide (reduced form) NADP+ Nicotinamide adenine dinucleotide phosphate (oxidised form) NADPH Nicotinamide adenine dinucleotide phosphate (reduced form) N.D. Not detected NEM N-ethylmaleimide N.G. No growth ODx Optical density at x nm PBS Phosphate Buffered Saline PCA Perchloric acid pCMB p-chloromercuribenzoic acid PCR Polymerase chain reaction PGA 3-phosphoglycerate PSO Paracoccus sulfur oxidation SEM Standard Error of the Mean q Specific rate of substrate uptake RNA Ribonucleic acid RPM Revolutions per minute S4I Tetrasulfur intermediate T Type strain TCA Tricarboxylic acid TEM Transmission electron microscopy TOMES Thiosulfate-oxidising multi-enzyme system UV Ultraviolet VI V Rate of reaction VMAX Maximum rate of reaction v/v Volume to volume w/v Weight to volume x Dry weight of biomass Y Yield Y MAX Maximum yield VII List of contents List of Tables…………………………………………...……………………………XIX List of Figures………………………………………………………………...………XXIII Acknowledgements……………………………………………………………….XXXV Author’s declaration……………………………..………………...……………….XXXVI Presentations and conferences attended……………………….…………………..XXXVII Chapter 1 Introduction………………………………………………….……………….1 1.1 The Biogeochemical sulfur cycle………………………………………………......….2 1.2 Inorganic sulfur compounds…………………………………………...……………..13 1.2.1 Thiosulfate……………………………………………………………...……….….13 1.2.2 Polythionates………………………………………………………………..……...15 1.2.3 Sulfide and elemental sulfur………………………………………………………..18 1.2.4 Sulfate…………………………………………………………….…………...……18 1.3 Inorganic sulfur compound metabolism………………………………….……....…..19 1.3.1 Chemolithoautotrophy…………………………………………………….....……..19 1.3.1.1 The Kelly-Friedrich pathway…………………………………………..………...19 VIII 1.3.1.2 The Kelly-Trudinger pathway…………………………………………..……..…21 1.3.1.3 Other pathways……………………………………………………………..….…31 1.3.2 Chemolithoheterotrophy and mixotrophy……...……………………………..……31 Chapter 2 Materials and methods……………………..…………………..……39 2.1 Chemicals…………………………………………………..……...…………………40 2.2 Culture media…………………………………………………………………..…….40 2.2.1 Basal media…………………………………………………………………….....40 2.2.2 Trace metal solution…………………………………………………..…………....41 2.2.3 Vitamin solution………………………………………………………………..…41 2.2.4 Nutrient broth…………………………………………………………...………….42 2.3 Maintenance of bacterial strains…………………………………………………..….42 2.3.1 Pseudomonas spp. ………………………………………………..……………..…42 2.3.2 Achromobacter spp. …………………………………………………...…...……...42 2.3.3 Thermithiobacillus spp. ……………………………………………………....……43 2.4 Batch culture experiments……………………………………………………….…...43 2.4.1 Heterotrophic batch culture……………………………………………………...…43 IX 2.4.2 Autotrophic batch culture…………………………………………………………..44 2.4.3 Optimal growth temperature……………………………………………………….44 2.4.4 Optimal growth pH…………………………………………………………………44 2.5 Continuous culture experiments……………………………………………..…….....45 2.6 Growth kinetics…………………………………………………………………...….46 2.6.1 Batch growth kinetics………………………………………………..………..……46 2.6.1.1 Determination of yields (Y)…………………………...………………….46 2.6.1.2 Determination of specific growth rate (μ)………….………….………...47 2.6.1.3 Determination of specific rate of substrate uptake (q)…………….…….47 2.6.2 Chemostat kinetics……………………………………………………….……...…47 2.6.2.1 Determination of steady state yields (Y)……………….………….……...47 2.6.2.2 Determination of maximum theoretical growth yield (YMAX)………….…48 2.6.2.3 Determination of maintenance energy coefficient (ms)…………..……....48 2.6.3.4 Determination of maximum specific growth rate (μMAX)……………...…48 2.7 Analytical methods………………………………………………………………..…49 2.7.1 Determination of biomass……………………………………………………….....49 2.7.2 Determination of glucose………………………………………………………..…52 2.7.3 Determination of succinate…………………………………………………………52 2.7.4 Determination of thiosulfate, tetrathionate and trithionate………………………...52 X 2.7.5 Determination of ammonium………………………………………………………53 2.7.6 Determination of phosphates……………………………………………………….53 2.7.7 Determination of guanine plus cytosine genomic DNA content…………………...53 2.7.8 Ubiquinone extraction and analysis………………………………………………..53 2.7.9. Determination of cellular fatty acid methyl esters………………………………...54 2.7.10 Determination of total protein………………………………………………….…55 2.7.11 Oxygen uptake by whole cells…………………………………………………….55 2.7.12 Cytochrome spectra……………………………………………………………….55 2.7.13 Determination of cellular ATP and ADP…………………………………………56 2.8 Preparation of cell-free extracts…………………………………………………..…56 2.8.1 Harvesting cells………………………………………………………………..….56 2.8.2 Disruption of cell…………………………………………………………………56 2.9 Enzyme assays………………………………………………….………………….....57 2.9.1 Inorganic sulfur metabolism………………………………………………………57 2.9.1.1 Thiosulfate dehydrogenase (EC 1.8.2.2)………………………………..57 2.9.1.2 Sulfite dehydrogenase (EC 1.8.2.1), thiocyanate dehydrogenase and trithionate hydrolase (EC 3.12.1.1)……………………………………………..58 2.9.1.3 Tetrathionate hydrolase (EC 3.12.1.B1)……………………………….…58 2.9.1.4 Sulfur oxygenase (EC 1.13.11.55)……………………………………….58 XI 2.9.1.5 Sulfur dioxygenase (EC EC 1.13.11.18)…………………………………59 2.9.2 TCA cycle enzymes………………………………………………………………..59 2.9.2.1 Citrate synthase (EC 4.1.3.7)…………………………………………….59 2.9.2.2 Aconitase (EC 4.2.1.3)………………………………………………….60 2.9.2.3 Isocitrate dehydrogenase (EC 1.1.1.41)…………………….…………....60 2.9.2.4 α-ketoglutarate dehydrogenase (EC 1.2.4.2)………………………….….61 2.9.2.5 Succinyl-CoA synthetase (EC 6.2.1.5)……………………………..…….61 2.9.2.6 Succinate dehydrogenase (EC 1.3.99.1)…………………………….....…61 2.9.2.7 Fumarase (EC 4.2.1.2)……………………………………………..…..…62
Recommended publications
  • Sulfite Dehydrogenases in Organotrophic Bacteria : Enzymes
    Sulfite dehydrogenases in organotrophic bacteria: enzymes, genes and regulation. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Biologie vorgelegt von Sabine Lehmann Tag der mündlichen Prüfung: 10. April 2013 1. Referent: Prof. Dr. Bernhard Schink 2. Referent: Prof. Dr. Andrew W. B. Johnston So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat. (Johann Wolfgang von Goethe, Italienische Reise, 1787) DANKSAGUNG An dieser Stelle möchte ich mich herzlich bei folgenden Personen bedanken: . Prof. Dr. Alasdair M. Cook (Universität Konstanz, Deutschland), der mir dieses Thema und seine Laboratorien zur Verfügung stellte, . Prof. Dr. Bernhard Schink (Universität Konstanz, Deutschland), für seine spontane und engagierte Übernahme der Betreuung, . Prof. Dr. Andrew W. B. Johnston (University of East Anglia, UK), für seine herzliche und bereitwillige Aufnahme in seiner Arbeitsgruppe, seiner engagierten Unter- stützung, sowie für die Übernahme des Koreferates, . Prof. Dr. Frithjof C. Küpper (University of Aberdeen, UK), für seine große Hilfsbereitschaft bei der vorliegenden Arbeit und geplanter Manuskripte, als auch für die mentale Unterstützung während der letzten Jahre! Desweiteren möchte ich herzlichst Dr. David Schleheck für die Übernahme des Koreferates der mündlichen Prüfung sowie Prof. Dr. Alexander Bürkle, für die Übernahme des Prüfungsvorsitzes sowie für seine vielen hilfreichen Ratschläge danken! Ein herzliches Dankeschön geht an alle beteiligten Arbeitsgruppen der Universität Konstanz, der UEA und des SAMS, ganz besonders möchte ich dabei folgenden Personen danken: . Dr. David Schleheck und Karin Denger, für die kritische Durchsicht dieser Arbeit, der durch und durch sehr engagierten Hilfsbereitschaft bei Problemen, den zahlreichen wissenschaftlichen Diskussionen und für die aufbauenden Worte, .
    [Show full text]
  • Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
    Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright.
    [Show full text]
  • Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli
    International Journal of Environmental Research and Public Health Article Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli Surendra K. Pradhan 1,* , Helvi Heinonen-Tanski 1, Anna-Maria Veijalainen 1, Sirpa Peräniemi 2 and Eila Torvinen 1 1 Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; helvi.heinonentanski@uef.fi (H.H.-T.); anna-maria.veijalainen@uef.fi (A.-M.V.); eila.torvinen@uef.fi (E.T.) 2 Department of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland; sirpa.peraniemi@uef.fi * Correspondence: surendra.pradhan@uef.fi Abstract: Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferroox- idans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 ◦C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, Citation: Pradhan, S.K.; which solubilized and extracted 92% of P.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Electronic Supplementary Material (ESI) for Metallomics
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine
    [Show full text]
  • Applied Microbiology VOLUME 60 This Page Intentionally Left Blank ADVANCES in Applied Microbiology
    ADVANCES IN Applied Microbiology VOLUME 60 This page intentionally left blank ADVANCES IN Applied Microbiology Edited by ALLEN I. LASKIN Somerset, New Jersey SIMA SARIASLANI Wilmington, Delaware GEOFFREY M. GADD Dundee, United Kingdom VOLUME 60 AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald’s Road, London WC1X 8RR, UK This book is printed on acid-free paper. Copyright ß 2006, Elsevier Inc. All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2006 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters.
    [Show full text]
  • QM/MM Study of the Reaction Mechanism of Sulfite Oxidase
    www.nature.com/scientificreports OPEN QM/MM study of the reaction mechanism of sulfte oxidase Octav Caldararu1, Milica Feldt 2,4, Daniela Cioloboc1, Marie-Céline van Severen1, Kerstin Starke3, Ricardo A. Mata2, Ebbe Nordlander3 & Ulf Ryde 1 Received: 29 November 2017 Sulfte oxidase is a mononuclear molybdenum enzyme that oxidises sulfte to sulfate in many Accepted: 28 February 2018 organisms, including man. Three diferent reaction mechanisms have been suggested, based on Published: xx xx xxxx experimental and computational studies. Here, we study all three with combined quantum mechanical (QM) and molecular mechanical (QM/MM) methods, including calculations with large basis sets, very large QM regions (803 atoms) and QM/MM free-energy perturbations. Our results show that the enzyme is set up to follow a mechanism in which the sulfur atom of the sulfte substrate reacts directly with the equatorial oxo ligand of the Mo ion, forming a Mo-bound sulfate product, which dissociates in the second step. The frst step is rate limiting, with a barrier of 39–49 kJ/mol. The low barrier is obtained by an intricate hydrogen-bond network around the substrate, which is preserved during the reaction. This network favours the deprotonated substrate and disfavours the other two reaction mechanisms. We have studied the reaction with both an oxidised and a reduced form of the molybdopterin ligand and quantum-refnement calculations indicate that it is in the normal reduced tetrahydro form in this protein. Molybdenum (Mo) is the only second-row transition metal that is used in biological systems1. It is employed in nitrogenases, as well as in a large group of molybdenum oxo-transfer enzymes.
    [Show full text]
  • Sulfur-Dependent Microbial Lifestyles: Deceptively Flexible Roles for Biochemically Versatile Enzymes Crane 141
    Available online at www.sciencedirect.com ScienceDirect Sulfur-dependent microbial lifestyles: deceptively flexible roles for biochemically versatile enzymes Edward J Crane III Abstract of sulfur in a manner similar to the utilization of starch granules by yeast [1]. In a series of elegant experiments A wide group of microbes are able to “make a living” on Earth originally designed to confirm the idea that individual by basing their energetic metabolism on inorganic sulfur species of bacteria existed that exhibited defined charac- compounds. Because of their range of stable redox states, teristics (known as monomorphism) Winogradsky not only sulfur and inorganic sulfur compounds can be utilized as either provided support that the microbial community was made oxidants or reductants in a diverse array of energy-conserving up of a diverse array of defined species, he also demon- reactions. In this review the major enzymes and basic strated the first known case of chemolithotrophy, at the chemistry of sulfur-based respiration and chemolithotrophy are same time establishing the fields of geomicrobiology and outlined. The reversibility and versatility of these enzymes, microbial ecology [3]. The importance of the microbes and however, means that they can often be used in multiple ways, enzymes capable of sulfur-based chemolithoautotrophy and several cases are discussed in which enzymes which are and photoautotrophy (using sulfur compounds as energy considered to be hallmarks of a particular respiratory or and/or electron sources, respectively, in theoxidative direc- lithotrophic process have been found to be used in other, often tion) and sulfur-based respiration (in the reductive direc- opposing, metabolic processes.
    [Show full text]
  • I. General Introduction
    SECTION 3 ACIDITHIOBACILLUS I. General Introduction This document presents information that is accepted in the literature about the known characteristics of bacteria in the genus Acidithiobacillus. Regulatory officials may find the technical information useful in evaluating properties of micro-organisms that have been derived for various environmental applications. Consequently, this document provides a wide range of information without prescribing when the information would or would not be relevant to a specific risk assessment. The document represents a snapshot of current information (end-2002) that may be potentially relevant to such assessments. In considering information that should be presented on this taxonomic grouping, the Task Group on Micro-organisms has discussed the list of topics presented in the “Blue Book” (i.e. Recombinant DNA Safety Considerations (OECD, 1986)) and attempted to pare down that list to eliminate duplications as well as those topics whose meaning is unclear, and to rearrange the presentation of the topics covered to be more easily understood (the Task Group met in Vienna, 15-16 June, 2000). This document is a first draft of a proposed Consensus Document for environmental applications involving organisms from the genus Acidithiobacillus. II. General Considerations 1. Subject of Document: Species Included and Taxonomic Considerations The four species of Acidithiobacillus covered in this document were formerly placed in the genus Thiobacillus Beijerinck. In recent years several members of Thiobacillus were transferred to other genera while the remainder became part of three newly created genera, Acidithiobacillus, Halothiobacillus, Thermithiobacillus, and to the revised genus Thiobacillus sensu stricto (Kelly and Harrison, 1989; Kelly and Wood, 2000).
    [Show full text]
  • Hydrogen Sulfide Metabolite, Sodium Thiosulfate
    International Journal of Molecular Sciences Review Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms Max Y. Zhang 1,2, George J. Dugbartey 1,2,3, Smriti Juriasingani 1,3 and Alp Sener 1,2,3,4,* 1 Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; [email protected] (M.Y.Z.); [email protected] (G.J.D.); [email protected] (S.J.) 2 London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada 3 London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada 4 Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada * Correspondence: [email protected]; Tel.: +1(519) 6633352 Abstract: Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review Citation: Zhang, M.Y.; Dugbartey, discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical G.J.; Juriasingani, S.; Sener, A. usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these Hydrogen Sulfide Metabolite, clinical applications and a future perspective in kidney transplantation.
    [Show full text]