Finlet Function in Mackerel 2249 View (As an Index of Body Undulation)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on Some Japanese Fishes of The, Family Gempylidae
Studies on Some Japanese Fishes of the, Family Gempylidae KIYOMATSU M ATSUBARA and TAMOTSU IWAI l THOUGH TH E FISHES of the family Gempyli The few species comprising this family live dae have long been of interest to ichth yolo in the high seas and are widely distributed in gists and though considerable literature warm regions throughout the world . concerning this family has accumulated; the The measurements of various parts of the group still is far from being satisfactorily body were made in the same way as those understood. made by the senior author in his study on the Since the publication of " Gempylidae of scorpaenoid fishes ofJapan (Matsubara, 1943: Japan" by Dr. Toshij i Kamohara in 1938, 6-7). We have carefully observed the gill some additional facts have come to ligh t, and rakers stained by alizarin red and cleared by several discrepancies have been found to exist potassium hydroxide. between his descriptions and our specimens. Acknowledgments: .We wish to express our The present paper, supplementing Karno sincere gratitude to Mr. Vernon E. Brock, hara's, treats seven species of the family, re Dr. Carl L. Hubbs, Mr. T. Abe, Dr. T. Karno ferred to the genera N eoepinnul«, Bpinnula, hara, and Mr. M. Nakamura, all of whom Mimasea, Gempylus, Rexea, Nealotus, and helped us in various ways. We are also greatly Prometbicbtbys. The specimens thus far ex indebted to Messrs. G . Abe and S. Noda for amined were all taken by deep-sea trawlers assistance in 'obtaining material. Expenses for off the Pacific coast of J apan at a depth of investigations of deep-sea fishes were de about 100 fathoms, and all are depo sited in frayed from 1943 to 1945 by a research fun d the Department of Fisheries, Facult y of Agri- . -
Daily Ration of Japanese Spanish Mackerel Scomberomorus Niphonius Larvae
FISHERIES SCIENCE 2001; 67: 238–245 Original Article Daily ration of Japanese Spanish mackerel Scomberomorus niphonius larvae J SHOJI,1,* T MAEHARA,2,a M AOYAMA,1 H FUJIMOTO,3 A IWAMOTO3 AND M TANAKA1 1Laboratory of Marine Stock-enhancement Biology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, 2Toyo Branch, Ehime Prefecture Chuyo Fisheries Experimental Station, Toyo, Ehime 799-1303, and 3Yashima Station, Japan Sea-farming Association, Takamatsu, Kagawa 761-0111, Japan SUMMARY: Diel successive samplings of Japanese Spanish mackerel Scomberomorus niphonius larvae were conducted throughout 24 h both in the sea and in captivity in order to estimate their daily ration. Using the Elliott and Persson model, the instantaneous gastric evacuation rate was estimated from the depletion of stomach contents (% dry bodyweight) with time during the night for wild fish (3.0–11.5 mm standard length) and from starvation experiments for reared fish (8, 10, and 15 days after hatching (DAH)). Japanese Spanish mackerel is a daylight feeder and exhibited piscivorous habits from first feeding both in the sea and in captivity. Feeding activity peaked at dusk. The esti- mated daily ration for wild larvae were 111.1 and 127.2% in 1996 and 1997, respectively; and those for reared larvae ranged from 90.6 to 111.7% of dry bodyweight. Based on the estimated value of daily rations for reared fish, the total number of newly hatched red sea bream Pagrus major larvae preyed by a Japanese Spanish mackerel from first feeding (5 DAH) to beginning of juvenile stage (20 DAH) in captivity was calculated to be 1139–1404. -
Simulations of Fishing Effects on the Southern Benguela Fish Community Using an Individual-Based Model: Learning from a Comparison with Ecosim
Ecosystem Approaches to Fisheries in the Southern Benguela Afr. J. mar. Sci. 26: 95–114 2004 95 SIMULATIONS OF FISHING EFFECTS ON THE SOUTHERN BENGUELA FISH COMMUNITY USING AN INDIVIDUAL-BASED MODEL: LEARNING FROM A COMPARISON WITH ECOSIM Y-J. SHIN*, L. J. SHANNON† and P. M. CURY* By applying an individual-based model (OSMOSE) to the southern Benguela ecosystem, a multispecies analysis is proposed, complementary to that provided by the application of ECOPATH/ECOSIM models. To reconstruct marine foodwebs, OSMOSE is based on the hypothesis that predation is a size-structured process. In all, 12 fish species, chosen for their importance in terms of biomass and catches, are explicitly modelled. Growth, repro- duction and mortality parameters are required to model their dynamics and trophic interactions. Maps of mean spatial distribution of the species are compiled from published literature. Taking into account the spatial component is necessary because spatial co-occurrence determines potential interactions between predatory fish and prey fish of suitable size. To explore ecosystem effects of fishing, different fishing scenarios, previously examined using ECOSIM, are simulated using the OSMOSE model. They explore the effects of targeting fish species in the southern Benguela considered to be predators (Cape hake Merluccius capensis and M. paradoxus) or prey (anchovy Engraulis encrasicolus, sardine Sardinops sagax, round herring Etrumeus whiteheadi). Simulation results are compared and are generally consistent with those obtained using an ECOSIM model. This cross-validation appears to be a promising means of evaluating the robustness of model outputs, when separate validation of marine ecosystem models are still difficult to perform. -
Chub Mackerel, Scomber Japonicus (Perciformes: Scombridae), a New Host Record for Nerocila Phaiopleura (Isopoda: Cymothoidae)
生物圏科学 Biosphere Sci. 56:7-11 (2017) Chub mackerel, Scomber japonicus (Perciformes: Scombridae), a new host record for Nerocila phaiopleura (Isopoda: Cymothoidae) 1) 2) Kazuya NAGASAWA * and Hiroki NAKAO 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kamiura, Saeki, Oita 879-2602, Japan Abstract An ovigerous female of Nerocila phaiopleura Bleeker, 1857 was collected from the caudal peduncle of a chub mackerel, Scomber japonicus Houttuyn, 1782 (Perciformes: Scombridae), at the Hōyo Strait located between the western Seto Inland Sea and the Bungo Channell in western Japan. This represents a new host record for N. phaioplueura and its fourth record from the Seto Inland Sea and adjacent region. Key words: Cymothoidae, fish parasite, Isopoda, Nerocila phaiopleura, new host record, Scomber japonicus INTRODUCTION The Hōyo Strait is located between the western Seto Inland Sea and the Bungo Channell in western Japan. This strait is famous as a fishing ground of two perciform fishes of high quality, viz., chub mackerel, Scomber japonicus Houttuyn, 1782 (Scombridae), and Japanese jack mackerel, Trachurus japonicus (Temminck and Schlegel, 1844) (Carangidae), both of which are currently called“ Seki-saba” and“ Seki-aji”, respectively, as registered brands (e.g., Ishida and Fukushige, 2010). The brand names are well known nationwide, and the price of the fishes is very high (up to 5,000 yen per kg). Under these situations, the fishermen working in the strait pay much attention to the parasites of the fishes they catch because those fishes are almost exclusively eaten raw as“ sashimi.” Recently, a chub mackerel infected by a large parasite on the body surface (Fig. -
© Iccat, 2007
A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo -
The First Registration of Oilfish Ruvettus Pretiosus (Cocco, 1833) in the Waters of the Albanian Coast of the Adriatic Sea; Morphometry
06 | Fisheries, Game Management and Beekeeping PRELIMINARY COMMUNICATION The first registration of oilfish Ruvettus pretiosus (Cocco, 1833) in the waters of the Albanian coast of the Adriatic Sea; morphometry Dritan Arapi1, Rigerta Sadikaj2,Vladimir Spaho3 1Flora and Fauna Research Center, University of Tirana, Tirana, Albania ([email protected]) 2Faculty of Natural Sciences, University of Tirana, Tirana, Albania 3Agricultural University, Tirana, Albania Abstract In February 2017, it was recorded for the first time the presence of the fish “oilfish” (Ruvettus pretiosus Cocco,1833) in the waters of the Albanian coast of the Adriatic Sea, near Karaburun peninsula. This alien fish was caught as by-catch during fishing with hooks (longline fishing) which is carried out for large pelagics. Its overall live weight was W=26.1 kg while the values for some morphometric indicators were TL=173.5 cm; FL=155 cm, SL=146cm and cf=40.2 cm. The caught specimen was donated to the Museum of Natural Sciences at the University of Tirana. Key words: oilfish, morphometry, Adriatic Sea, Albania, alien species Introduction Alien invasive species (IAS) are considered as a major threat to global diversity (Bax et al. 2003.). In the recent years, in the scientific literature have apparently increased the reports on the involvement of alien species, originating from temperate and tropical climate, in the ictic fauna of the Mediterranean basin. Alien or non-native fish have been introduced in the Mediterranean and Black Sea Basins through the Suez Canal, the Gibraltar Strait and the ballast water. The opening of Suez Canal, climate changes and the intensification of international shipping activities are factors that have favored an increase in the number of alien species. -
Management of Scombroid Fisheries
Management of Scombroid Fisheries Editors N.G.K. Pillai N.G. Menon P.P. Pillai U. Ganga ICAR CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian Council of Agricultural Research) Post Box No. 1603, Tatapuram P.O. Kochi-682 014, India Field identification of scombroids from Indian seas U.Ganga and N.G.K.Pillai Central Marine Fisheries Research Institute, Kochi Scombroids are a diverse group of pelagic fishes ranging in size from about 30 cm to over 3 m in length. Most of them, especially the tunas and billfishes perform considerable and sometimes even transoceanic migrations. Being highly valued table fishes, they are of significant importance both as a commercial and recreational fishery. In Indian waters, this group includes, 1. Tuna and tuna-like fishes belonging to 6 genera, namely, Thunnus, Katsuwonus, Euthynnus, Auxis (tribe Thunnini) and the bonitos, Sarda and Gymnosarda (tribe Sardini) 2. Four genera of Billfishes, namely, Istiophorus, Makaira and Tetrapturus (family Istiophoridae) and Xiphias (family Xiphiidae) 3. Mackerels of the genus Rastrelliger (tribe Scombrini) and Spanish mack- erels of the genera Scomberomorus and Acanthocybium (tribe Scomberomorini) Species-wise field identification characters and line diagrams of these fishes are presented below: 1. TUNAS Euthynnus affinis (Little tunny); A medium sized coastal species. Upper part of body has numerous blue black broken wavy lines directed backwards and upwards while belly is sil very white. The first and sec ond dorsal fins are contiguous. A few conspicuous black spots are present on sides of body be tween pectoral and pelvic fins. Scales on body are confined to corselet and lateral line only. -
Chub Mackerel
species specifics BY CHUGEY SEPULVEDA, Ph.D., AND SCOTT AALBERS, M.S. CHUB MACKEREL (Scomber japonicus) Photo by Bob Hoose hub mackerel, also known as Pacific mackerel, is a prolific coastal pelagic species that occurs throughout temperate regions around the globe. Belonging to the C tuna family (Scombridae), a group of fishes with several adaptations for increased swimming performance (i.e., high deg- ree of streamlining, deeply forked caudal fin, finlets), this species is a valuable resource for several nations, including the U.S., and plays a key role in Southern California as an important forage species for higher trophic levels. BIOLOGY a highly varied diet that includes cope- In the eastern Pacific, chub mackerel pods, euphausids (krill), small fishes, range from Chile to the Gulf of Alaska, and squid. where they provide an important link To defend against the wide variety of in marine food webs between plank- predators that rely on mackerel as part tonic organisms and predatory fishes, of their diet, juvenile mackerel begin to marine mammals, and sea birds. They form structured schools at just over one are opportunistic feeders, particularly inch in size. In southern California many during the larval and juvenile stages, of our coastal game fishes, such as white when they feed upon a wide variety of seabass, yellowtail, giant seabass, tunas, zooplankton. Juvenile chub mackerel dorado, striped marlin, and pelagic are voracious feeders and grow rapidly, sharks, rely heavily on the chub mack- particularly during the spring and sum- erel resource. As juveniles, chub mack- mer months. Adult mackerel also have erel often develop multi-species schools 84 | PCSportfishing.com | THINK CONSERVATION | SEPTEMBER 2011 with other coastal pelagic species, such erel supported one of California’s most as Pacific sardines, jack mackerel, and lucrative fisheries during the 1930s and sometimes eastern Pacific bonito. -
6. Associated Species
57 6. Associated species As mentioned earlier, associated species are those impacted species that are not part of the landed catch. Fisheries for straddling fish stocks, highly migratory fish stocks, and high seas fish stocks, impact other species as a result of: (1) discards, (2) physical contact of fishing gear with organisms (and habitat) that are not caught, and (3) indirect processes. Discards are considered in section 6.1 while physical contact and indirect processes are considered together in section 6.2. 6.1 DISCARDS Much more is known about discards than the other mechanisms through which fisheries impact associated species, although information is still limited. The most recent global information on discards is in an FAO report by Kelleher (2005). It estimates that the rate of discards is about 8 percent for all marine fisheries combined (EEZ and high seas), with large differences by countries, gear types, target species and statistical areas. Shrimp trawling has the highest estimated average discard rate (62.3 percent), but the rates vary widely between fisheries (from 0 to 96 percent). Most shrimp trawling is on stocks confined to the EEZ, although there are some straddling or other high seas stocks of shrimp that are fished. These are likely to be fisheries in relatively deep water for cold-water species, such as the fishery for Pandalus shrimp on the Flemish Cap off Newfoundland and off Labrador in the northwest Atlantic (FAO statistical area 21). The aggregate discard rate for cold/deep-water shrimp fisheries is 39 percent, but where use of bycatch reduction devices (BRDs) is mandated (e.g. -
DIET of the OILFISH Ruvettus Pretiosus (PERCIFORMES: GEMPYLIDAE) in the SAINT PETER and SAINT PAUL ARCHIPELAGO, BRAZIL
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 60(2):181-188, 2012 DIET OF THE OILFISH Ruvettus pretiosus (PERCIFORMES: GEMPYLIDAE) IN THE SAINT PETER AND SAINT PAUL ARCHIPELAGO, BRAZIL Danielle de Lima Viana*, Mariana Travassos Tolotti, Mariana Porto, Rodolfo Jorge Vale de Araújo, Teodoro Vaske Júnior and Fabio Hissa Vieira Hazin Universidade Federal de Pernambuco - Departamento de Pesca (Av. Dom Manuel de Medeiros, S/N, 52171-030 Jaboatão dos Guararapes, PE, Brasil) *Corresponding author: [email protected] ABSTRACT Feeding aspects of the oilfish , Ruvettus pretiosus , were studied based on 360 stomachs of both male and female specimens caught off the Saint Peter and Saint Paul Archipelago. The total length of the specimens ranged from 52.4 cm to 189.0 cm. Of the 360 stomachs examined, 135 presented some food and 225 were empty. Thirty-four taxa were identified, represented by 16 fish, 17 cephalopods and 1 crustacean. The stabilization of the food items richness was attained at 35 food items and 104 stomachs, approximately. A remarkable predation upon the flying fish Cheilopogon cyanopterus was observed around SPSPA, directly related to the main reproductive period of this species in the area. The oilfish’s food spectrum shows that the species feeds on a wide vertical range in the water column, catching prey items at the surface or in shallow waters, as well as epi-mesopelagic fish, in addition to mesopelagic cephalopods. RESUMO Aspectos alimentares do peixe-prego, Ruvettus pretiosus , foram estudados com base nos estômagos de 360 espécimes, de ambos os sexos, capturados nos arredores do Arquipélago de São Pedro e São Paulo. -
Ecological Importance of Auxis Spp. As Prey for Dolphin and Wahoo
Ecological importance of Auxis spp. as prey for Dolphin and Wahoo DEPARTMENT OF ENVIRONMENTAL QUALITY Marine Fisheries SAFMC Dolphin/Wahoo Committee| Steve Poland | 12/3/2018 Overview Background • MAFMC request Pelagic Food Web in the SAB • Auxis spp. Important prey in Dolphin/Wahoo diets • Poland thesis – seasonal and size contribution • Rudershausen – annual contribution Questions? 2 MAFMC Unmanaged Forage Omnibus Amendment “To prohibit the development of new and expansion of existing directed commercial fisheries on unmanaged forage species … until the Council has had an adequate opportunity to assess the scientific information relating to any new or expanded directed fisheries and consider potential impacts to existing fisheries, fishing communities, and the marine ecosystem.” Major Actions • Designate taxa included in the amendment as EC species • Manage chub mackerel under discretionary authority • Require EFPs for new fisheries and require comm vessels to be permitted if landing EC species 3 Request to South Atlantic NMFS disapproved measures • Determined inclusion of Auxis spp as a EC species is inconsistent with NS2 • Did not demonstrate the Auxis spp are important forage for MAFMC managed species MAFMC felt that Auxis still warranted protection within its management region • Sent request to SAFMC to consider management of Auxis under its Dolphin/Wahoo FMP Dolphin/Wahoo management unit extends from FL Keys through NY 4 Prey Groups 1. Sargassum associated prey • Filefish, pufferfish, juvenile jacks, swimming crabs 2. Surface schooling prey • Flying fish 3. Schooling prey not assoc. with surface • Bullet tuna, round herring, jacks, cephalopods 4. Small aggregations of crustaceans • Amphipods, stomatopods, isopods Auxis spp. Two species occur in the Atlantic: • A. -
A Molecular Technique for Specific Identification of Western Atlantic Ocean Scombrids and an Analysis of a Larval Scombrid Assemblage Off the Kona Coast of Hawaii
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2006 A Molecular Technique for Specific Identification ofestern W Atlantic Ocean Scombrids and an Analysis of a Larval Scombrid Assemblage off the Kona Coast of Hawaii Melissa A. Paine College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Marine Biology Commons, Molecular Biology Commons, Oceanography Commons, and the Systems Biology Commons Recommended Citation Paine, Melissa A., "A Molecular Technique for Specific Identification ofestern W Atlantic Ocean Scombrids and an Analysis of a Larval Scombrid Assemblage off the Kona Coast of Hawaii" (2006). Dissertations, Theses, and Masters Projects. Paper 1539617849. https://dx.doi.org/doi:10.25773/v5-63qj-zz90 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A MOLECULAR TECHNIQUE FOR SPECIFIC IDENTIFICATION OF WESTERN ATLANTIC OCEAN SCOMBRIDS AND AN ANALYSIS OF A LARVAL SCOMBRID ASSEMBLAGE OFF THE KONA COAST OF HAWAII A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Science by Melissa A. Paine 2006 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science y 4- Melissa A.