Reductive Amination of Ethanol to Ethylamines Over Ni/Al2o3 Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

Reductive Amination of Ethanol to Ethylamines Over Ni/Al2o3 Catalysts Korean J. Chem. Eng., 34(10), 2610-2618 (2017) pISSN: 0256-1115 DOI: 10.1007/s11814-017-0164-4 eISSN: 1975-7220 INVITED REVIEW PAPER INVITED REVIEW PAPER Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts Jung-Hyun Park*,‡, Eunpyo Hong**,‡, Sang Hee An**, Dong-Hee Lim***, and Chae-Ho Shin**,† *Greenhouse Gas Resources Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea **Department of Chemical Engineering, Chungbuk National University, Chungbuk 28644, Korea ***Department of Environmental Engineering, Chungbuk National University, Chungbuk 28644, Korea (Received 12 April 2017 • accepted 12 June 2017) − Abstract Ni(x)/Al2O3 (x=wt%) catalysts with Ni loadings of 5-25 wt% were prepared via a wet impregnation method γ on an -Al2O3 support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the vari- ous catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was per- formed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH3 and H2 partial pres- sures in the reactions. In addition, on/off experiments for NH3 and H2 were also carried out. In the absence of NH3 in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were signifi- cantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H2, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al2O3 catalyst exhibited stable catalytic performance over 90 h under the o −1 optimized reaction conditions (i.e., T=190 C, WHSV=0.9 h , and EtOH/NH3/H2 molar ratio=1/1/6). Keywords: Ni/Al2O3 Catalyst, Ethanol, Reductive Amination, Ethylamines, Nickel Nitride INTRODUCTION by consecutive reactions with EtOH. As hydrogenation/dehydro- genation processes are involved in the preparation of EAs via this Ethylamines (EAs) have been widely used as intermediates to mechanism, a catalyst surface bearing metallic functionalities must produce fine chemicals, such as herbicides, pharmaceuticals, tex- be employed. In this context, the dispersion and reducibility of the tile chemicals, rubbers, and corrosion inhibitors [1-3]. Due to the metal species are key factors to determine catalytic performances increasing demand for amine-containing compounds in the chem- in the reductive amination reaction [1,9,13,14]. ical industry, a variety of methods for their syntheses have been The noble metal catalysts containing Pt, Pd, and Rh have been proposed, including the hydrogenation of nitrile compounds [4,5], applied in reductive amination reactions due to their excellent hy- the reductive amination of ethanol (EtOH) and acetaldehyde [1- drogenation and dehydrogenation capabilities [15-18]. However, 3,6], and the hydroamination of olefins [7]. Among the various their application has been restricted due to high costs, and thus the approaches, reductive amination has been considered a promising development of alternative catalysts has received growing atten- route for the preparation of EAs due to the environmentally fri- tion. From this perspective, Ni- and Co-containing catalysts have endly nature of the process [3,8]. In addition, the synthesis of EAs been widely studied for application in reductive amination reac- via other reaction pathways usually requires harsh reaction condi- tions because of their suitable activities and selectivities, in addition tions, including high temperatures and pressures, while the amina- to their wide availability [1,2,9,11-13,19]. Sewell et al. [2] investi- tion reaction can instead proceed under relatively mild conditions gated the reductive amination of alcohols over Ni- or Co-catalysts [1]. supported on SiO2. Although a higher EtOH conversion was ob- As shown in Fig. 1, the reductive amination of EtOH progresses tained for the Co-based catalyst compared to that of the Ni-based through successive stages, beginning with the dehydrogenation of catalyst, selectivity towards the formation of different amine spe- EtOH to acetaldehyde [9-12]. An imine intermediate is then ob- cies varied depending on the type of metal. More specifically, the tained by condensation and reaction of the carbonyl compound Co-based catalyst favored the production of the primary amine, with NH3. As amine compounds can be produced as either pri- while the Ni-based catalyst was more selective towards the sec- mary, secondary, or tertiary amines, monoethylamine (MEA) can ondary amine. In addition, the deactivation of these catalysts by be synthesized via the hydrogenation of the imine intermediate, the formation of metal nitrides through interactions between NH3 while diethylamine (DEA) and triethylamine (TEA) are formed and the active metal species has also been well documented [13, 20,21]. †To whom correspondence should be addressed. We herein report the preparation of Ni/Al2O3 catalysts contain- E-mail: [email protected] ing different Ni loadings for application in the reductive amination ‡These authors contributed equally to this work. of EtOH to EAs. In addition, the relationship between the metal- Copyright by The Korean Institute of Chemical Engineers. lic surface area and the Ni loading was examined, and the catalytic 2610 Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts 2611 Fig. 1. Possible reaction pathways for the reductive amination of ethanol. performance of the different catalysts were carefully investigated. in the relative pressure range between 0.05-0.2. The total pore vol- As reaction parameters have been shown to significantly influ- umes were obtained from the volumes of N2 adsorbed at P/P0= ence alcohol conversion and selectivity towards different nitrogen- 0.995, and the average pore sizes were calculated from the desorp- containing compounds [1,2,9], we also examined the influence of tion branch using the Barrett-Joyner-Hallenda (BJH) equation. reaction temperature (T), weight hourly space velocity (WHSV), The metal dispersions, particle sizes, and metallic surface areas and the partial pressures of NH3 and H2. Finally, to further under- of the different Ni(x)/Al2O3 catalysts were determined by H2 stand the effects of the key reactants, on/off experiments for NH3 chemisorption (Micromeritics ASAP2020C). Prior to analysis, the o and H2 were also carried out. samples (0.3g) were reduced at 600 C for 3h under a flow of H2. Each sample was then cooled to 100oC under reduced pressure, EXPERIMENTAL and the chemisorption isotherm was obtained from the difference between the first and second adsorption isotherms. The first iso- 1. Catalyst Preparation therm involved both quantities of chemisorption and physisorp- Ni/Al2O3 catalysts with Ni loading ranging from 5 to 25 wt% tion, while second contained only the physisorbed quantity. In ad- were prepared via a wet impregnation method with a nickel nitrate dition, the metal dispersion was calculated for each sample assum- hexahydrate solution (Ni(NO3)2·6H2O, >98%, Samchun) and com- ing an H/Ni stoichiometry of 1.0, while the reduction degree of γ 2 μ mercial -Al2O3 (SBET=194 m /g, particle size=100-180 m, Proca- each Ni(x)/Al2O3 catalyst was determined using the O2 titration talyse) as the Ni metal precursor and the support, respectively. The method. The O2 titration method was subsequently conducted on precursor and the support in the desired ratio was stirred at room an identical apparatus, following the H2 chemisorption. The sam- o temperature for 1 h, prior to evaporation of the solvent at 70 C ple used in the H2 chemisorption experiment was evacuated at using a rotary evaporator (Eylar N1000). The impregnated sample 300 oC for 1 h, and the reduction degree was calculated in combi- o was then dried at 100 C for 12 h, and subsequently calcined at nation with the following equation: [the amount of O2 consump- o → 500 C for 2 h under a flow of air. The prepared Ni/Al2O3 catalysts tion (mmol O2; 2Ni+O2 2NiO]/[the theoretical amount of H2 were denoted as Ni(x)/Al2O3, where x (x=5, 10, 15, 20, and 25) consumption with the assumption of fully reduced nickel oxides → 0 represents the Ni loading in weight percent (wt%). (mmol H2; NiO+H2 Ni +H2O)]×100)] [22], where the amount o 2. Characterization of O2 consumption was determined at 300 C by plotting the amount X-ray diffraction (XRD) patterns were obtained using a Rigaku of consumed O2 as a function of the O2 partial pressure, and back diffractometer (Ultima IV) equipped with a Cu-Kα X-ray source extrapolating to zero. operating at 40 kV and 40 mA. The crystalline phases were identi- H2-temperature programmed reduction (H2-TPR) was performed fied by matching the patterns to the JCPDS powder diffraction files, using a quadrupole mass spectrometer (QMS, Balzers QMS 200) and the particle sizes of NiO and Ni were calculated using the Scher- as the detector. Each sample (0.1g) was loaded in a quartz reactor rer equation. The specific surface area, total pore volume, and aver- (I.D. 12 mm) and pretreated at 400 oC for 1h under a flow of Ar 3 o 3 age pore size of the Ni(x)/Al2O3 catalysts were then determined by (50 cm /min). After cooling to 50 C, a flow of 5% H2/Ar (50 cm / − o N2-sorption isotherms at 196 C on a Micromeritics ASAP2020 min) was then introduced into the catalyst bed, and the tempera- o o apparatus. Prior to N2-sorption analysis, the samples were degassed ture was increased to 800 C with a heating rate of 10 C/min.
Recommended publications
  • The Reductive Amination of Ethanol Using Supported Metal Catalysts
    The Reductive Amination of Ethanol using Supported Metal Catalysts By Gary Stanton Sewell- BSc (Chern. Eng.) Submitted to the University of Cape Town in fulfilment of the requirements for the degree of '• DOCTOR OF PHILOSOPHY University of Cape Town Department of Chemi~al Engineering 14 August 1996 University of Cape Town Rondebosch Cape Town South Africa ---"----""_______ " __ The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Acknowledgements Acknowledgements I would like to thank my supervisors Dr Eric van Steen and Professor Cyril O'Connor for their guidance and encouragement without which this thesis would not have been possible. My thanks also go to Dr Klaus Moller for the fruitful discussions and to Professor Mark Dry for his help with aspects of metal catalysis. I would like to thank Rob for the great times, Tony for his friendship, Jannie for his cool hairstyle and Rein for having a comfortable couch. Thanks to Dave for introducing me to the finer intricacies of toolboxes, to Ashley for his unending optimism and to Peter for always losing at pool. To the II Young Ones II, Chappie, St. John, Frank, Andrew, Mary and Frans, thanks for the great parties and may the department survive you.
    [Show full text]
  • Title Several Reactions of Isocyanide and Related Compounds( Dissertation 全文 ) Author(S) Kobayashi, Shiro Citation
    Several Reactions of Isocyanide and Related Compounds( Title Dissertation_全文 ) Author(s) Kobayashi, Shiro Citation 京都大学 Issue Date 1969-07-23 URL https://doi.org/10.14989/doctor.k916 Right Type Thesis or Dissertation Textversion author Kyoto University IN ISOCYANIDE AND COMPOUNDS 6 IR B s SEVERAL REACTIONS OF ISOCYANIDE AND RELATED COMPOUNDS 1 9 6 9 SHIRO KOBA Y ASHI PREFACE In the present thesis are collected the author's studies which have been carried out under the direction of Profossor Takeo Saegusa at Kyoto University during 1966 -- 1969. The studies include new organic reactions of isocyanide, carbon monoxide and carbene, which are characterized by a carbon atom carry­ ing lone-pair electrons. Reactions catalyzed by copper compounds as well as other Groups IB and IIB metal compounds constitute the central featl1re of tIl':' present studies. New organic reactions of isocyanidE' without catalysts are also presented. The author expresses his deep gratitude to Professor Takeo Saes'Usa for his constant guidance and encouragement throughout the work. Grateful acknowledgement is also made to Dr. Yoshihiko Ito for his valuable advice an? dis cussions during the course of studies. The author wishes to express his deep appreciation to Messrs. Kiwami Hirota, Nobuyuki Takeda, Toyoji Shimizu, Hiroshi Yoshioka, Yoshiharu Okumura. and Ikuo Morino for their active collaborations in carrying out the experiments. Shiro Kobayashi Department of Synthetic Chemistry Kyoto University March, 1969. (i) CON TEN TS Page INTRODUCTION ............................ .. 1 SYNOPSES .............................. .. 7 PART I. INSERTION REACTIONS OF ISOCYNJIDE CATALYZED BY COPPER COMPOUNDS 15 Chapter 1. Reaction of Isocyanide with Amine Catalyzed by Groups IB and IIB Metal Compounds, main ly by Copper Compounds.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Protonation Effect on C-N Bond Length of Alkylamines Studied by Molecular Orbital Calculations
    Protonation Effect on C-N Bond Length of Alkylamines Studied by Molecular Orbital Calculations Hiroyuki Ishida Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan Reprint requests to Dr. H. I.; Fax +81-86-251-8497; E-mail: [email protected] Z. Naturforsch. 55 a, 769-771 (2000); received August 8, 2000 Molecular orbital calculations were performed for the six saturated alkylamines (CH3NH2, (CH3)2NH, (CH3)3N, CH3CH2NH2, (CH3)2CHNH2, (CH3)3CNH2), their protonated cations + + + + + + (CH3NH3 , (CH3)2NH2 , (CH3)3NH , CH3CH2NH3 , (CH3)2CHNH3 , (CH3)3CNH3 ), and + (CH3)4N using the Hartree-Fock, second-order M0ller-Plesset, and density functional theory methods with the 6-311+G(d,p) basis set. Protonation lengthens the C-N bonds of the amines by 0.05 - 0.08 A and shortens the C-C bonds of CH3CH2NH2, (CH3)2CHNH2, and (CH3)3CNH2 by ca. 0.01 A. Key words: Protonation; Amine; HF; DFT. Protonation of the nitrogen atom of the primary troscopy. But that of the corresponding cations is amines XNH2 (X = CH3, OH, F, CN, CHO, and N02) difficult to determine experimentally, and thus its was investigated by Hopkinson and Csizmadia us- structure is usually deduced from data obtained in ing ab initio molecular orbital calculations [1]. They the liquid and solid phase where inter molecular in- found that the protonation results in an increase in the teractions are believed to affect the geometry con- N-X bond length with changes of 0.132, 0.193, and siderably. Thus, the molecule orbital calculation is a 0.212 A occurring for X = CN, HCO, and N02, re- suitable method to estimate the geometry of isolated spectively.
    [Show full text]
  • Ruthenium Catalysed Aerobic Dehydrogenation of Ethylamine
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 An alternative pathway for production of acetonitrile: ruthenium catalysed aerobic dehydrogenation of ethylamine Corker, Emily; Mentzel, Uffe Vie; Mielby, Jerrik Jørgen; Riisager, Anders; Fehrmann, Rasmus Published in: Green Chemistry Link to article, DOI: 10.1039/c3gc36513a Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Corker, E., Mentzel, U. V., Mielby, J. J., Riisager, A., & Fehrmann, R. (2013). An alternative pathway for production of acetonitrile: ruthenium catalysed aerobic dehydrogenation of ethylamine. Green Chemistry, 15(4), 928-933. https://doi.org/10.1039/c3gc36513a General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Green Chemistry PAPER An alternative pathway for production of acetonitrile: Cite this: Green Chem., 2013, 15, 928 ruthenium catalysed aerobic dehydrogenation of ethylamine Emily C. Corker,a Uffe V. Mentzel,a,b Jerrik Mielby,a Anders Riisagera and Rasmus Fehrmann*a The oxidative synthesis of acetonitrile from ethylamine was studied using a supported ruthenium catalyst.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • United States Patent Office
    Patented Apr. 7, 1953 2,634,292 UNITED STATES PATENT OFFICE 2,634,292 CYCLOHEXENYLETHYL AMINE AND PROC ESS FOR HE MANUFACTURE THEREOF Joseph Hellerbach, Basel, Switzerland, assignor to Hoffmann-La Roche Inc., Nutley, N.J., a cor poration of New Jersey No. Drawing. Original application May 27, 1950, Serial No. 164,849. Divided and this applica tion October 3, 1951, Serial No. 249,631. In Switzerland July 29, 1949 2 Claims. (Cl. 260-563) 1. 2 This invention relates to derivatives of mor- It has been found, according to this invention, phinane and4. salts -thereof - - - - - - if and. also to. intermes. : that morphinane and the derivatives thereof can anddiates salts used thereof, in the manufactureas well as to ofprocesses said derivatives for the be prepared according- to a process which may. be. ) manufacture of these compounds. 5 represented by the following formulae Scheme: 2,684,292 3 4 in which R, and R' are the same or different and effected. Free hydroxy groups (of the hydroxy are each a hydrogen atom or an OH, OCH3 or Or the dihydroxy-N-methyl-morphinane respec OCOCH3 group, and R'' and R'' are the same or tively) can be methylated or acetylated. different and are each a hydrogen atom or an The compounds or the Salts thereof, which are OCH3 group. obtained according to the present process, are The compounds of the general formulae I, III, effective as analgesics, IV, V, VI and VIII shown above are all new com In the following examples "parts' means pounds, Whilst the compound "parts by Weight' uniess otherwise stated.
    [Show full text]
  • Selective Synthesis of Acetonitrile by Reaction of Ethanol with Ammonia Over Ni/Al2o3 Catalyst 1053
    Korean J. Chem. Eng., 36(7), 1051-1056 (2019) pISSN: 0256-1115 DOI: 10.1007/s11814-019-0294-y eISSN: 1975-7220 INVITED REVIEW PAPER INVITED REVIEW PAPER Selective synthesis of acetonitrile by reaction of ethanol with ammonia over Ni/Al2O3 catalyst Ye-Seul Jeong, Sang Hee An, and Chae-Ho Shin† Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea (Received 28 March 2019 • accepted 7 May 2019) AbstractA highly selective synthesis of acetonitrile was carried out by the reaction of ethanol with ammonia on a 10 wt% Ni/Al2O3 catalyst. The conversion of ethanol and selectivity to acetonitrile, ethylene, and monoethylamine were examined by varying experimental parameters such as ammonia partial pressure, reaction temperature, and space time. The increase in the ammonia partial pressure led to a considerable decrease in the conversion and small increase in the acetonitrile selectivity up to a molar ratio of NH3/ethanol of 3, followed by almost constant values. The partial reaction order of ethanol obtained by controlling the space time was one, while that of ammonia was negative, 0.4. The deacti- vation behavior of the catalyst after 100 h on stream reaction at 230 oC was analyzed by X-ray photoelectron spectros- copy and temperature programmed oxidation of the catalyst used. The catalyst deactivation was attributed to the gradual formation of nickel carbonitride on the catalyst surface. Keywords: Acetonitrile, Nickel Catalyst, Ethanol, Carbonitride, Deactivation INTRODUCTION face in a metallic state, so that a gradual deactivation is observed. The development of a highly selective acetonitrile synthesis catalyst Acetonitrile is used mainly as a solvent of extractive distillation, by controlling these simple experimental parameters is important isolation of butadiene from C4 hydrocarbons, in battery applica- to guide the development of novel catalysts in the future.
    [Show full text]
  • Supporting Information Amine Assisted Top Down Delamination Of
    Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017 Supporting Information Amine Assisted Top Down Delamination of the Two-Dimensional Metal-Organic Framework Cu2(bdc)2 Christel Kutzscher, André Gelbert, Sebastian Ehrling, Claudia Schenk, Irena Senkovska, and Stefan Kaskel* Department of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany. E-mail: [email protected] 1. General methods, equipment and parameters Chemicals were purchased from Sigma Aldrich, TCI, Acros Organics, AppliChem, and Riedel-de Haën and used without further purification. Solvents were purchased from Sigma Aldrich, Fischer Chemicals or Acros Organics and stored under argon. Delamination tests were performed under argon atmosphere in Schlenk tubes. Powder X-ray diffraction (PXRD) patterns were collected using a Stoe StadiP system in transmission mode. Samples were prepared in flat base sample holders. 3° Step wide and 80 sec per step exposure time were used. For measurements Cu Kα1 radiation (λ=0.15405 nm) was applied. Scanning electron microscope (SEM) analysis was performed on the SU8020 scanning electron microscope (HITACHI, Japan) with an accelerating voltage of 1-2 kV. Dried materials were sputtered with gold. Average particle size was estimated from 10-20 measurements. For nitrogen physisorption experiments a Belsorp-max system from MicrotracBEL (Japan) was used. The samples were additionally activated at 150 °C for 18 hours prior to measurements. The analysis was performed at 77 K. Solid state infrared (IR) spectroscopy was performed using the Vertex 70 instrumentation of Bruker in DRIFT-IR mode. Samples were mixed with dry KBr (0.5 mg MOF + 100 mg KBr) directly before measurements.
    [Show full text]
  • Equilibrium Constants for the Formation of Silver
    EQUILIBRIUM CONSTANTS FOR THE FORMATION OF SILVER AMMINES IN ETHANOL-WATER MIXTURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Charles Thomas Anderson, A.B ****** The Ohio State University Approved by* Adviser Department of Chemistry .•■--•.sia-ji • c--.\'--~t ' -.- ■?-..-_ _ _ _ _ __ ACKNOWLEDGMENT I -wish to express my deep appreciation to my preoeptor. Professor Prank Verhoek, for suggesting this problem, and for his advice and encouragement during the course of the work. 1 also wish to thank the Cincinnati Chemical Works for providing a fellowship under which much of this work was done. ii PREFACE This dissertation is & report of experimental studies on the equilibrium constants of a number of silver ammine complexes in ethanol-water solution, with the purpose of examining the relation­ ship between the stabilities of these complexes and the basio strengths and structures of the amines. Formation constants of the complex silver ions and dissociation constants of the amines were obtained at 25°C in 50 mole % ethanol-water mixtures from pH measurements of solutions containing known amounts of silver ion, acid, amine and neutral salt. The glass eleotrode used was calibrated on solutions for which the pH had been determined by potentiometric measurements with hydrogen electrodes and by spectrophotometric measurements using an indicator. - iii - TABLE OF CONTENTS ACKNOWLEDGMENT ....................................... ii PREFACE............................................... iii LIST OF T A B L E S ......................................... vi LIST OF ILLUSTRATIONS................................... ix LIST OF AMINES (ALPHABETICAL).......................... x LIST OF AMINES (BY NUMBER SYMBOL)........................ xi I.
    [Show full text]
  • Clandestine Laboratory Seizures in Tile United States-1993
    If you have issues viewing or accessing this file contact us at NCJRS.gov. U.S. Department of Justice Drug Enforcement Administration Clandestine Laboratory Seizures in tIle United States-1993 Drug Intelligence Report Intelligence Division • December 1994 • DEA-94080 CAVEAT The information in this study is based on reporting from Drug Enforcement Administration (DEA) offices and regional laboratories that participated in the seizure of clandestine manufacturing sites used for the illicit production of dangerous drugs. Seizure data from State and local agencies also is included, when available. Although reporting from non-DEA sources is limited, this study accurately reflects illicit drug production trends from the perspective of DEA participation in clandestine laboratory seizures. Cover Photo: Agents wearing Saranex body suits and self-contained breathing apparatus (SCBA) assemble prior to entering a clandestine laboratory in the southwestern United States. The Attorney General has determined that publication of this periodical is necessary in the transaction of the public business required by law of the Department of Justice. • Drug Enforcement Administration Clandestine Laboratory Seizures in the United States-1993 • Drug Intelligence Report This report was prepared by the Domestic Unit of the Strategic Intelligence Section. Comments and requests for copies are welcome and may be directed to the Publications Unit, Intelligence Division, DBA Headquarters at (202) 307-8726. 153010 U.S. Department of Justice National Institute of Justice This document ilas been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.
    [Show full text]
  • A Study of Certain Methods for the Preparation of Secondary Amines
    THE UNIVERSITY OF ILLINOIS LIBRARY ^^"ii'Ui^tlY Of I: A STUDY OF CERTATIV METHODS FOR THE PREPARATION OF SECONDARY AMINES BY ALWIN CLYDE EIDE THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMICAL ENGINEERmG COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1915 Digitized by the Internet Archive in 2013 http://archive.org/details/studyofcertainmeOOeide UNIVERSITY OF ILLINOIS THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ALWIN CLYDE EIDE STUr)Y...OP IIT MT.HODS._.FO.R...T PREPARAT ION.. O.P ENTITLED A CERTA . SECONDARY AMINES IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE ...S.c DEGREE OF Bac.h.e.l or ... of.. ience in. Chemml ..Ert.gineer.ing* Instructor in Charge APPROVED: TABLE OP GOUTEHTS Pages niTBODUCTIOU 1 EXPEEIIvIElITAL ^ Dipropylaniline 4 Propyl Bromide 5 Dipropylaniline from the Alkylation of Aniline 6 Dipropylamine 7 Methylethylaniline 10 Methylethylamine 10 Butyramide 11 Propyl Amine 12 Preparation of Dipropylamine by the Action of Propyl Bromide Upon Propyl Amine 13 Dipropylamine by the Sulphonamide Method 14 318168 * UlUC A STUDY OF CERTAIII lOiTIIODS FOR THI^ PEEPAEATIOII OP SECOIJDARY A1.H1IE3 IIJTRODUCTIOIT The work described in this paper is a study of methods for the preparation of secondary amines with special reference to dipropylamine. Dipropylamine has been prepared * by heating under Vincent. Jahresber. 1886, 695. pressure one part of propyl iodide and one and one-half parts of alcohol saturated v/ith ammonia. This method gives a mixture of the primary, secondary and tertiary amines which are very difficult to separate.
    [Show full text]