Micropipelines

Total Page:16

File Type:pdf, Size:1020Kb

Micropipelines TURING AWARD MICROPIPELINES IVAN E. SUTHERLAND The pipeline processor is a common paradigm for very that they are elastic. high speed computing machinery. Pipeline processors I assign the name micropipeline to a particularly sim- provide high speed because their separate stages can ple form of event-driven elastic pipeline with or with- operate concurrently, much as different people on a out internal processing. The micro part of this name manufacturing assembly line work concurrently on ma- seems appropriate to me because micropipelines con- terial passing down the line. Although the concurrency tain very simple circuitry, because micropipelines are of pipeline processors makes their design a demanding useful in very short lengths, and because micropipe- task, they can be found in graphics processors, in signal lines are suitable for layout in microelectronic form. processing devices, in integrated circuit components for I have chosen micropipelines as the subject of this doing arithmetic, and in the instruction interpretation lecture for three reasons. First, micropipelines are sim- units and arithmetic operations of general purpose ple and easy to understand. I believe that simple ideas computing machinery. are best, and I find beauty in the simplicity and sym- Because I plan to describe a variety of pipeline pro- metry of micropipelines. Second, I see confusion sur- cessors, I will start by suggesting names for their var- rounding the design of FIFOs. I offer this description of ious forms. Pipeline processors, or more simply just micropipelines in the hope of reducing some of that pipelines, operate on data as it passes along them. The confusion. latency of a pipeline is a measure of how long it takes a The third reason I have chosen my subject addresses single data value to pass through it. The throughput the limitations imposed on us by the clocked-logic con- rate of a pipeline is a measure of how many data values ceptual framework now commonly used in the design can pass through it per unit time. of digital systems. I believe that this conceptual frame- Pipelines both store and process data; the storage ele- work or mind set masks simple and useful structures ments and processing logic in them alternate along like micropipelines from our thoughts, structures that their length. I will describe pipelines in their complete are easy to design and apply given a different concep- form later, but first I will focus on their storage ele- tual framework. Because micropipelines are event- ments alone, stripping away all processing logic. driven, their simplicity is not available within the Stripped of all processing logic, any pipeline acts like a clocked-logic conceptual framework. I offer this de- series of storage elements through which data can pass. scription of micropipelines in the hope of focusing at- Pipelines can be clocked or event-driven, depending tention on an alternative transition-signalling concep- on whether their parts act in response to some widely- tual framework. distributed external clock, or act independently when- We need a new conceptual framework because the ever local events permit. Some pipelines are inelastic; complexity of VLSI technology has now reached the the amount of data in them is fixed. The input rate and point where design time and design cost often exceed the output rate of an inelastic pipeline must match ex- fabrication time and fabrication cost. Moreover, most actly. Stripped of any processing logic, an inelastic pipe- systems designed today are monolithic and resist mid- line acts like a shift register. Other pipelines are elastic; life improvement. The transition-signalling conceptual the amount of data in them may vary. The input rate framework Offers the opportunity to build up complex and the output rate of an elastic pipeline may differ systems by hierarchical composition from simpler momentarily because of internal buffering. Stripped of pieces. The resulting systems are easily modified. I be- all processing logic, an elastic pipeline becomes a flow- lieve that the transition-signalling conceptual frame- through first-in-first-out memory, or FIFO. FIFOs may work has much to offer in reducing the design time and be clocked or event-driven; their important property is cost of complex systems and increasing their useful life- time. I offer this description of micropipelines as an example of the transition-signalling conceptual frame- © 1989 ACM OOOl-O782/89/o6oo-o72o $1.5o work. 720 Communications of the ACM June 1989 Volume 32 Number 6 Turing Award Until recently only a hardy few used the transition- of control called transition signalling. In return for signalling conceptual framework for design because it moving into the transition-signalling conceptual flame- was too hard. It was nearly impossible to design the work, we are rewarded with three new types of flexi- small circuits of 10 to 100 transistors that form the bility. In hardware design we attain a new flexibility to elemental building blocks from which complex systems compose systems from small parts previously designed are composed. Moreover, it was difficult to prove any- and tested; in software, we achieve a new flexibility to thing about the resulting compositions. In the past five handle vectors of variable length; and in systems we years, however, much progress has been made on both enjoy a new flexibility to extend system life by replac- fronts. Charles Molnar and his colleagues at Washing- ing isolated parts whenever components with improved ton University have developed a simple way to design speed or cost become available. the small basic building blocks [9]. Martin Rem's "VLSI It is often hard to discard a conceptual framework. Club" at the Technical University of Eindhoven has The well-known puzzle shown in Figure 1 illustrates been working effectively on the mathematics of event- this difficulty by asking us to draw four straight lines driven systems [6, 10, 11, 19]. These emerging concep- through nine dots without lifting our pencil from the tual tools now make transition signalling a lively candi- paper. Our natural conception of figure and ground in date for widespread use. looking at this puzzle suggests that the lines to be drawn should stay within the square of dots, a concep- tual framework that renders the task impossible. The TWO CONCEPTUAL FRAMEWORKS puzzle can be solved only by drawing outside the In the clocked-logic conceptual framework, registers of boundary of the dots. flip flops operating from a common clock separate Similar difficulty in discarding a conceptual flame- stages of processing logic. Each time the clock enters its work can be seen in the design of FIFOs. Conventional active state a new data element enters each register. wisdom in the clocked-logic conceptual framework says Data elements march forward through successive regis- that each stage of a flow-through FIFO should have a ters in lock step, each taking a fixed number of clock clocked register that feeds its output to the input of the cycles to pass through the fixed number of registers and next stage. Now recall that a FIFO must be elastic; it intervening logic stages built into the system. The must be able to store a variable amount of data; and if clocked-logic conceptual framework is widely used 1} it has a fixed number of stages, some of them may be because it offers a simple way to design computing unoccupied. Continuing with the clocked-logic concep- equipment, 2) because it is widely taught and under- tual framework, a "full" or "empty" clocked flip flop for stood, 3) because parts that operate with clocks are each stage is required to make the FIFO elastic. widely available, and 4) because system noise has died Each stage must also have logic involving the state of away by the time a clock event occurs. its full or empty flip flop and the states of other stages To build the micropipelines described here we must to decide when to capture new data. One simple con- discard the clocked-logic conceptual framework and trol rule operates as follows: a) Each stage captures new think instead about a different but equally simple form data and sets its full flip flop to the full state whenever f~ \/ FIGURE 1. A Puzzle 0 0 Without lifting your pencil from the paper, connect the dots with four straight lines. June 1989 Volume 32 Number 6 Communications of the ACM 721 Turing Award it is empty and its predecessor is full. b) Each stage sets TRANSITION SIGNALLING its full flip flop to the empty state whenever it is full In transition signalling any transition, either rising or and its successor is empty. This rule delivers output falling, has the same meaning, as illustrated in Figure 2; data only on alternate clock cycles. More complex rules either kind of transition is called an event. As indicated for the control of synchronous FIFOs get better perfor- in the figure, and suggested by its name, transition sig- mance by looking ahead many stages to decide if an nalling avoids distinguishing between the two types of entire block of data can move forward during the forth- transitions even though they may look quite different. coming cycle. The clocked-logic conceptual framework In effect, all responses to transition signals are edge- itself creates this complexity, because all registers must triggered, and are triggered on both rising and falling act together at once; any that fail to act now must suffer edges. Because transition signalling uses both rising and a complete cycle of delay for their next opportunity. falling edges as trigger events, it may offer twice the The clocked-logic conceptual framework is poorly matched to FIFO design for another reason as well: FIFOs often connect senders and receivers that have I separate clocks.
Recommended publications
  • Asp Net Core Request Pipeline
    Asp Net Core Request Pipeline Is Royce always cowled and multilobate when achromatize some wall very instanter and lawlessly? Hobbyless and flustered brazensVladamir regressively? cocainizing her intangibles tiptoed or cluster advertently. Is Patric fuzzed or paintable when cogs some theocracy Or gray may choose to berry the request. Json files etc and community of response body is not inject all low maintenance, we will be same coin. Another through components that asp and cto of. How extensible it crashes, just by one of startup class controller. Do the extended with really very complex scenarios when he enjoys sharing it ever was to delete models first user makes for node. Even add to implement captcha in startup class to the same concept is the reason you want to. Let us a pipeline to any incoming request processing, firefox still create an output? For an app to build a cup of. Razor pages uses handler methods to deal of incoming HTTP request. Ask how the above mentioned in last middleware, the come to tell who are ready simply obsolete at asp and options. Have asp and asp net core request pipeline but will not be mapped to pipeline io threads to work both. The internet and when creating sawdust in snippets or improvements that by one description be a request pipeline branching. Help editing this article, ordinary code inside of hosting infrastructure asp and actions before, we issue was not. The body to deal with minimal footprint to entity framework of needed loans for each middleware will take a docker, that receive criticism.
    [Show full text]
  • Stclang: State Thread Composition As a Foundation for Monadic Dataflow Parallelism Sebastian Ertel∗ Justus Adam Norman A
    STCLang: State Thread Composition as a Foundation for Monadic Dataflow Parallelism Sebastian Ertel∗ Justus Adam Norman A. Rink Dresden Research Lab Chair for Compiler Construction Chair for Compiler Construction Huawei Technologies Technische Universität Dresden Technische Universität Dresden Dresden, Germany Dresden, Germany Dresden, Germany [email protected] [email protected] [email protected] Andrés Goens Jeronimo Castrillon Chair for Compiler Construction Chair for Compiler Construction Technische Universität Dresden Technische Universität Dresden Dresden, Germany Dresden, Germany [email protected] [email protected] Abstract using monad-par and LVars to expose parallelism explicitly Dataflow execution models are used to build highly scalable and reach the same level of performance, showing that our parallel systems. A programming model that targets parallel programming model successfully extracts parallelism that dataflow execution must answer the following question: How is present in an algorithm. Further evaluation shows that can parallelism between two dependent nodes in a dataflow smap is expressive enough to implement parallel reductions graph be exploited? This is difficult when the dataflow lan- and our programming model resolves short-comings of the guage or programming model is implemented by a monad, stream-based programming model for current state-of-the- as is common in the functional community, since express- art big data processing systems. ing dependence between nodes by a monadic bind suggests CCS Concepts • Software and its engineering → Func- sequential execution. Even in monadic constructs that explic- tional languages. itly separate state from computation, problems arise due to the need to reason about opaquely defined state.
    [Show full text]
  • Let's Get Functional
    5 LET’S GET FUNCTIONAL I’ve mentioned several times that F# is a functional language, but as you’ve learned from previous chapters you can build rich applications in F# without using any functional techniques. Does that mean that F# isn’t really a functional language? No. F# is a general-purpose, multi paradigm language that allows you to program in the style most suited to your task. It is considered a functional-first lan- guage, meaning that its constructs encourage a functional style. In other words, when developing in F# you should favor functional approaches whenever possible and switch to other styles as appropriate. In this chapter, we’ll see what functional programming really is and how functions in F# differ from those in other languages. Once we’ve estab- lished that foundation, we’ll explore several data types commonly used with functional programming and take a brief side trip into lazy evaluation. The Book of F# © 2014 by Dave Fancher What Is Functional Programming? Functional programming takes a fundamentally different approach toward developing software than object-oriented programming. While object-oriented programming is primarily concerned with managing an ever-changing system state, functional programming emphasizes immutability and the application of deterministic functions. This difference drastically changes the way you build software, because in object-oriented programming you’re mostly concerned with defining classes (or structs), whereas in functional programming your focus is on defining functions with particular emphasis on their input and output. F# is an impure functional language where data is immutable by default, though you can still define mutable data or cause other side effects in your functions.
    [Show full text]
  • BIOVIA Pipeline Pilot System Requirements
    SYSTEM REQUIREMENTS PIPELINE PILOT 2020 Copyright Notice ©2019 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA, NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval. Acknowledgments and References To print photographs or files of computational results (figures and/or data) obtained by using Dassault Systèmes software, acknowledge the source in an appropriate format. For example: "Computational results were obtained by using Dassault Systèmes BIOVIA software programs. Pipeline Pilot Server was used to perform the calculations and to generate the graphical results." Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to Dassault Systèmes Customer Support, either by visiting https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to: Dassault Systèmes Customer Support 10, Rue Marcel Dassault 78140 Vélizy-Villacoublay FRANCE Contents About This Document 1 Definitions 1 Additional Information 1 Dassault Systèmes Support Resources 1 Pipeline Pilot Server Requirements 2 Minimum Hardware
    [Show full text]
  • Fast Linux I/O in the Unix Tradition
    — preprint only: final version will appear in OSR, July 2008 — PipesFS: Fast Linux I/O in the Unix Tradition Willem de Bruijn Herbert Bos Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam and NICTA [email protected] [email protected] ABSTRACT ory wall” [26]). To improve throughput, it is now essential This paper presents PipesFS, an I/O architecture for Linux to avoid all unnecessary memory operations. Inefficient I/O 2.6 that increases I/O throughput and adds support for het- primitives exacerbate the effects of the memory wall by in- erogeneous parallel processors by (1) collapsing many I/O curring unnecessary copying and context switching, and as interfaces onto one: the Unix pipeline, (2) increasing pipe a result of these cache misses. efficiency and (3) exploiting pipeline modularity to spread computation across all available processors. Contribution. We revisit the Unix pipeline as a generic model for streaming I/O, but modify it to reduce overhead, PipesFS extends the pipeline model to kernel I/O and com- extend it to integrate kernel processing and complement it municates with applications through a Linux virtual filesys- with support for anycore execution. We link kernel and tem (VFS), where directory nodes represent operations and userspace processing through a virtual filesystem, PipesFS, pipe nodes export live kernel data. Users can thus interact that presents kernel operations as directories and live data as with kernel I/O through existing calls like mkdir, tools like pipes. This solution avoids new interfaces and so unlocks all grep, most languages and even shell scripts.
    [Show full text]
  • Making a Faster Curry with Extensional Types
    Making a Faster Curry with Extensional Types Paul Downen Simon Peyton Jones Zachary Sullivan Microsoft Research Zena M. Ariola Cambridge, UK University of Oregon [email protected] Eugene, Oregon, USA [email protected] [email protected] [email protected] Abstract 1 Introduction Curried functions apparently take one argument at a time, Consider these two function definitions: which is slow. So optimizing compilers for higher-order lan- guages invariably have some mechanism for working around f1 = λx: let z = h x x in λy:e y z currying by passing several arguments at once, as many as f = λx:λy: let z = h x x in e y z the function can handle, which is known as its arity. But 2 such mechanisms are often ad-hoc, and do not work at all in higher-order functions. We show how extensional, call- It is highly desirable for an optimizing compiler to η ex- by-name functions have the correct behavior for directly pand f1 into f2. The function f1 takes only a single argu- expressing the arity of curried functions. And these exten- ment before returning a heap-allocated function closure; sional functions can stand side-by-side with functions native then that closure must subsequently be called by passing the to practical programming languages, which do not use call- second argument. In contrast, f2 can take both arguments by-name evaluation. Integrating call-by-name with other at once, without constructing an intermediate closure, and evaluation strategies in the same intermediate language ex- this can make a huge difference to run-time performance in presses the arity of a function in its type and gives a princi- practice [Marlow and Peyton Jones 2004].
    [Show full text]
  • Pipecheck: 3D Scanning Solution Pipeline Integrity Assessment
    NDT SOLUTIONS 3D3D SCANNING SCANNING SOLUTION SOLUTION FORFOR PIPELINE PIPELINE INTEGRITY INTEGRITY ASSESSMENTASSESSMENT CODE-COMPLIANT CODE-COMPLIANT Pipeline operators and NDT service companies are facing an increasing pressure from regulation authorities and environmentalist groups to guarantee pipeline networks integrity, while wanting to keep maintenance costs as low as possible. Field crews are experiencing pressure to complete inspection as quickly as possible so the excavation site can be backfilled, and the pipeline, put back into service in the shortest time. Thus, the use of surface inspection tools that are reliable, efficient and user-friendly is of paramount importance. Creaform has developed the PipecheckTM solution for pipeline integrity assessment. The solution includes a HandySCAN 3DTM portable handheld scanner and the Pipecheck software. Thanks to this unique 3D scanning technology and innovative software, surface inspection has been reinvented completely! RELIABLE. EFFICIENT. EASY. INTRODUCING PIPECHECK. PIPECHECK SOFTWARE MODULES CORROSION MECHANICAL DAMAGE Pipecheck’s pipeline corrosion software module offers very fast and As its name states, this software module has been developed reliable data processing that generates instant, on-site results. specifically for pipeline mechanical damage analysis. This module In comparison with traditional measurement methods, this software features numerous key functionalities that increase dent understanding offers accuracy and repeatability that are beyond expectations. and facilitate the decision making process. ADVANCED FUNCTIONALITIES CORROSION IN ILI CORRELATION MECHANICAL DAMAGE STRAIGHTENING OPERATION TOOL Being able to separate material loss depth Traditional methods for depth measurement The ILI Correlation tool is used to correlate from a mechanical damage deformation is (pit gauge) on field bends can’t be used in-line inspection data with the Pipecheck 3D no longer a dream.
    [Show full text]
  • Characteristics of Workloads Using the Pipeline Programming Model
    Characteristics of Workloads Using the Pipeline Programming Model Christian Bienia and Kai Li Department of Computer Science, Princeton University {cbienia, li}@cs.princeton.edu Abstract covered by their applications. Second, we demonstrate that Pipeline parallel programming is a frequently used model to the programs using the pipeline model have different char- program applications on multiprocessors. Despite its popu- acteristics compared to other workloads. The differences larity, there is a lack of studies of the characteristics of such are significant and systematic in nature, which justifies the workloads. This paper gives an overview of the pipeline existence of pipelined programs in the PARSEC benchmark model and its typical implementations for multiprocessors. suite [2]. This suggests that pipelined workloads should be We present implementation choices and analyze their im- considered for the inclusion in future benchmark programs pact on the program. We furthermore show that workloads for computer architecture studies. that use the pipeline model have their own unique charac- The remainder of the paper is structured as follows: teristics that should be considered when selecting a set of Section 2 presents a survey of the pipeline parallelization benchmarks. Such information can be beneficial for pro- model. In Section 3 we discuss how we studied the impact gram developers as well as for computer architects who of the pipeline model on the workload characteristics, and want to understand the behavior of applications. we present our experimental results in Section 4. Related work is discussed in Section 5 before we conclude in Sec- 1 Introduction tion 6. Modern parallel workloads are becoming increasingly di- verse and use a wide range of techniques and methods to 2 Pipeline Programming Model take advantage of multiprocessors.
    [Show full text]
  • Elastic Pipeline Design of High Performance Micro-Controller YL8MCU for Signal Processing of Digital Home Appliances
    Send Orders for Reprints to [email protected] The Open Automation and Control Systems Journal, 2015, 7, 863-872 863 Open Access Elastic Pipeline Design of High Performance Micro-Controller YL8MCU for Signal Processing of Digital Home Appliances Fulong Chen1,*, Yunxiang Sun2, Chuanxin Zhao2, Jie Yang2, Heping Ye2, Junru Zhu2, and Qimei Tang2 1Department of Computer Science & Technology, Anhui Normal University, Wuhu, Anhui 241002, China 2Network and Information Security Engineering Research Center, Anhui Normal University, Wuhu, Anhui 241002, China Abstract-With the growing complexity of the structure and function of the digital home appliance controllers, the higher requirements on the design of integrated circuits are expected. In view of the lower efficiency of the traditional large scale integrated circuit design, such as long design cycle, high investment and bad flexibility, therefore, the traditional design method is unable to meet the rapid product development. A design and its implementation scheme based on System-on- Programmable-Chip (SoPC) technologies with the Intellectual Property (IP) core parametric technology and elastic design method are proposed for the Micro-controller Unit (MCU) YL8MCU applied in digital home appliances. It makes used of Reduced Instruction Set Computer (RISC) framework and 5-stage pipeline technology for designing the instruction sys- tem and hardware structure so as to improve the speed of processing data and instructions. Finally the correctness and fea- sibility of its function is verified with the integrated verification, the IP function module verification based on coverage and the simulation test of the controlling flow for the washer. The results show that YL8MCU meets the requirements of digital home appliances and supports system integration on chip.
    [Show full text]
  • Interleaving Data and Effects"
    Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Interleaving data and effects By: Robert Atkey and Patricia Johann Abstract: The study of programming with and reasoning about inductive datatypes such as lists and trees has benefited from the simple categorical principle of initial algebras. In initial algebra semantics, each inductive datatype is represented by an initial f-algebra for an appropriate functor f. The initial algebra principle then supports the straightforward derivation of definitional principles and proof principles for these datatypes. This technique has been expanded to a whole methodology of structured functional programming, often called origami programming.In this article we show how to extend initial algebra semantics from pure inductive datatypes to inductive datatypes interleaved with computational effects. Inductive datatypes interleaved with effects arise naturally in many computational settings. For example, incrementally reading characters from a file generates a list of characters interleaved with input/output actions, and lazily constructed infinite values can be represented by pure data interleaved with the possibility of non-terminating computation. Straightforward application of initial algebra techniques to effectful datatypes leads either to unsound conclusions if we ignore the possibility of effects, or to unnecessarily complicated reasoning because the pure and effectful concerns must be considered simultaneously. We show how pure and effectful concerns can be separated using the abstraction of initial f-and-m-algebras, where the functor f describes the pure part of a datatype and the monad m describes the interleaved effects. Because initial f-and-m-algebras are the analogue for the effectful setting of initial f- algebras, they support the extension of the standard definitional and proof principles to the effectful setting.
    [Show full text]
  • Pipelines Guide and Reference
    Pipelines Guide and Reference Ed Tomlinson Jeff Hennick René Jansen Version 4.01-GA of March 20, 2021 THE REXX LANGUAGE ASSOCIATION NetRexx Programming Series ISBN 978-90-819090-3-7 Publication Data ©Copyright The Rexx Language Association, 2011- 2021 All original material in this publication is published under the Creative Commons - Share Alike 3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode. The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Amsteldijk 14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom of The Netherlands. This edition is registered under ISBN 978-90-819090-3-7 ISBN 978-90-819090-3-7 9 789081 909037 I Contents The NetR Programming Series i 1 Introduction 1 2 The Pipeline Concept 2 2.1 What is a Pipeline? 2 2.2 Stage 2 2.3 Device Driver 3 3 Running pipelines 4 3.1 Configuration 4 3.2 From the NetREXX Workspace (nrws) with direct execution 5 3.3 From the command line with direct execution 6 3.4 Precompiled Pipelines 6 3.5 Compiled from an .njp file 7 3.6 Compiled from an .njp file with additional stage definitions in NetREXX 7 4 Example Session 8 5 Write your own Filters 12 6 More advanced Pipelines 14 7 Device Drivers 15 8 Record Selection 17 9 Filters 18 10 Other Stages 19 11 Multi-Stream Pipelines 20 12 Pipeline Stalls 22 13 How to use a pipe in a NetR program 24 II 14 Giving commands to the operating system 27 14.1 Built-ins 27 15 TCP/IP Networking 28 16 Selecting from relational databases 30 17 The Pipes Runner 31 18 The Pipes Compiler 32 19 Built-in Stages 33 20 Differences with CMS Pipelines 34 Index 83 III The NetR Programming Series This book is part of a library, the NetR Programming Series, documenting the NetREXX programming language and its use and applications.
    [Show full text]
  • Exploring Languages with Interpreters and Functional Programming Chapter 16
    Exploring Languages with Interpreters and Functional Programming Chapter 16 H. Conrad Cunningham 15 October 2018 Contents 16 Haskell Function Concepts 2 16.1 Chapter Introduction . .2 16.2 Strictness . .2 16.3 Currying and Partial Application . .3 16.4 Operator Sections . .4 16.5 Combinators . .5 16.6 Functional Composition . .7 16.7 Function Pipelines . .7 16.8 Lambda Expressions . .9 16.9 Application Operator $ ....................... 10 16.10Eager Evaluation Using seq and $! ................. 11 16.11What Next? . 12 16.12Exercises . 13 16.13Acknowledgements . 13 16.14References . 14 16.15Terms and Concepts . 14 Copyright (C) 2016, 2017, 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires a browser that supports the display of MathML. A good choice as of October 2018 is a recent version of Firefox from Mozilla. 1 16 Haskell Function Concepts 16.1 Chapter Introduction The previous chapter introduced the concepts of first-class and higher-order functions and generalized common computational patterns to construct a library of useful higher-order functions to process lists. This chapter continues to examine those concepts and their implications for Haskell programming. It explores strictness, currying, partial application, com- binators, operator sections, functional composition, inline function definitions, evaluation strategies, and related methods. The Haskell module for this chapter is in FunctionConcepts.hs. 16.2 Strictness In the discussion of the fold functions, the previous chapter introduced the concept of strictness. In this section, we explore that in more depth.
    [Show full text]