Affine Reflection Group Codes

Total Page:16

File Type:pdf, Size:1020Kb

Affine Reflection Group Codes Affine Reflection Group Codes Terasan Niyomsataya1, Ali Miri1,2 and Monica Nevins2 School of Information Technology and Engineering (SITE)1 Department of Mathematics and Statistics2 University of Ottawa, Ottawa, Canada K1N 6N5 email: {tniyomsa,samiri}@site.uottawa.ca, [email protected] Abstract This paper presents a construction of Slepian group codes from affine reflection groups. The solution to the initial vector and nearest distance problem is presented for all irreducible affine reflection groups of rank n ≥ 2, for varying stabilizer subgroups. Moreover, we use a detailed analysis of the geometry of affine reflection groups to produce an efficient decoding algorithm which is equivalent to the maximum-likelihood decoder. Its complexity depends only on the dimension of the vector space containing the codewords, and not on the number of codewords. We give several examples of the decoding algorithm, both to demonstrate its correctness and to show how, in small rank cases, it may be further streamlined by exploiting additional symmetries of the group. 1 1 Introduction Slepian [11] introduced group codes whose codewords represent a finite set of signals combining coding and modulation, for the Gaussian channel. A thorough survey of group codes can be found in [8]. The codewords lie on a sphere in n−dimensional Euclidean space Rn with equal nearest-neighbour distances. This gives congruent maximum-likelihood (ML) decoding regions, and hence equal error probability, for all codewords. Given a group G with a representation (action) on Rn, that is, an 1Keywords: Group codes, initial vector problem, decoding schemes, affine reflection groups 1 orthogonal n × n matrix Og for each g ∈ G, a group code generated from G is given by the set of all cg = Ogx0 (1) n for all g ∈ G where x0 = (x1, . , xn) ∈ R is called the initial vector. The initial vector problem is to choose a vector x0 which maximizes the Euclidean distance between a codeword and its nearest neighbour, over all codewords. It has not been solved for general groups, but rather is known only for special cases such as for cyclic groups [2], for the full homogeneous representation and the (n − 1)- dimensional representation of the symmetric groups of rank n [3] and for finite reflection groups [9, 10]. In this paper, we let G be an (infinite) affine reflection group of rank n ≥ 2, which has a natural action on Rn. The action of G restricted to any bounded portion of Rn (a codeword region) may be considered a Slepian group code, in the sense that: the group acts by isometries; the codewords are generated by multiplying an initial vector x0 by elements of the group; and, for a suitable choice of x0, they satisfy the nearest-neighbour equidistance property. Our main results are the solution to the initial vector problem, in Section 3, and the development of an efficient decoding algorithm for affine reflection group codes (bounded or not), in Section 5. The decoding algorithm is optimal, that is, equivalent to a maximum-likelihood decoder. We note that other group codes have provided alternatives to ML decoders. In particular, the length-reduction algorithm which is proposed in [9, Section IV] for finite reflection groups can be adapted directly for use with affine reflection group codes, but it would have high complexity for the case that the group code is large, or when the received vector lies very far from the fundamental domain. The paper is organized as follows. In Section 2 we give the mathematical background of affine reflection groups. In Section 3 we present the solution to the initial vector problem for any irreducible affine reflection group of rank n ≥ 2, that is, the method for computing the optimal choice of initial vector x0. Theorem 1 in this section gives a closed-form solution for x0 as well as a formula for the nearest-neighbour distance of the corresponding group code. Table 2 lists the initial vector and nearest distance of all affine reflection group codes. In Corollary 1, we solve the initial vector problem also for the case that the stabilizer subgroup of x0 is nontrivial. To illustrate our solution to the initial vector problem, and later to the decoding problem, we present the irreducible affine reflection groups A2, B2, G2 and A3 in detail. We include the necessary root data for all irreducible finite reflection groups in Table 1. In Table 2, we give the solutions to the initial vector problem for the corresponding irreducible affine reflection groups; the calculations have been relegated to the Appendix. 2 In Section 4 we define the bounded codeword regions R. These are designed to be maximally symmetric. We give examples of the size of these codes for irreducible affine reflection groups with bounded codeword regions in Table 3. An efficient decoding algorithm for the corresponding group code is proposed in Section 5. The complexity of the proposed decoding algorithm depends only the rank n of the affine reflection group (that is, on the dimension of the space spanned by the roots), and not on the size of the group code; this is in sharp contrast with the ML decoder. We summarize the algorithm briefly in Section 5.1 and Figure 4, showing how to efficiently reduce the decoding of a distant vector to one adjacent to the origin, where decoding techniques for finite reflection groups, such as the length-reduction algorithm of [9] may be applied effectively. We then proceed to describe the algorithm in detail, including proofs of correctness, in Section 5.2. The final step of the algorithm is illustrated in detail for the affine reflection groups A2, B2 and A3; in the first two of these we further optimize the algorithm by exploiting the many symmetries of the rank 2 groups. We then illustrate the complete algorithm with several examples from A2 and B2 in Section 6. We also give simulation results for a variety of cases, as further evidence of the correctness of the algorithm. Our conclusions are presented in Section 7. 2 Affine Reflection Groups An affine reflection group G (also known as an affine Weyl group) is a group generated by reflections in affine hyperplanes of Rn, and satisfying a local finiteness condition. Namely, if H is the set of all hyperplanes corresponding to reflections in G, then for any point in Rn, only finitely many hyperplanes in H intersect a neighbourhood of that point. We further say that G is irreducible if there does not exist a partition of H into mutually orthogonal sets; equivalently, if there does not exist a proper nonzero subspace which is preserved by all reflections in G. It is proven in [7, §4.10] that all irreducible affine reflection groups are generated by a finite, irreducible Weyl group (that is, a crystallographic finite reflection group), together with a single affine reflection. Hence these groups are completely classified by their Coxeter graphs; see for example [7]. All irreducible Weyl groups are listed in Table 1. More precisely: to each affine reflection group is associated a finite set of roots, which are vectors 3 n r in R . For each root r of G and each integer k ∈ Z, the affine hyperplane Hr,k is defined as n Hr,k = {x ∈ R : r · x = k} (2) where r · x denotes the dot product of the two vectors. The affine reflection in this hyperplane is n denoted Sr,k ∈ G; its action on a vector x ∈ R is defined by [7] 2r Sr,kx = x − (x · r − k) · (3) r · r 2kr = Srx + . (4) r · r The group G is generated by the set of all affine reflections Sr,k; it is infinite. From (3) and (4), we can see that the affine reflections with k = 0, Sr,0, are linear; the subgroup of G generated by these linear reflections is the corresponding Weyl group. If G is a Weyl group, one often writes Ge for the corresponding affine reflection group; but we omit the e, for simplicity. Throughout this paper, let us denote the set of all roots of G by Φ; they are generated by a root + base, which is a set of linearly independent simple roots Π = {r1,..., rn}. The set Φ of roots which are positive linear combinations of elements of Π are called the positive roots, and Π is such that + + Pn Φ = Φ ∪ −(Φ ). The highest long root of G is a positive root ρ = i=1 airi which is defined by the Pn property that the sum of its coordinates i=1 ai with respect to the basis Π is maximal among all roots. Then a minimal generating set for G is in fact {Sr,0 : r ∈ Π} ∪ {Sρ,1}. Example 1. Figure 1 shows all the roots of the irreducible affine reflection group B2. The root base is Π = {r1 = (1, 0), r2 = (−1, 1)} and the highest long root is ρ = 2r1 + r2 = (1, 1). In Table 1, we list the simple roots and the highest long roots of the irreducible Weyl groups, as k obtained from [6, §12.1, Table 12.2]. We use {e1, e2,..., ek} to denote the standard basis of R . For each Weyl group, the letter identifies its associated Coxeter graph and the subscript indicates the rank of the group, which is defined equivalently as the number of vertices in its Coxeter graph, and as the dimension of the vector space spanned by its simple roots. Note that the roots of An, E6 and E7 are given so that each span a proper subspace of their ambient space of definition; this is convention. See the Appendix for further discussion.
Recommended publications
  • Feature Matching and Heat Flow in Centro-Affine Geometry
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 093, 22 pages Feature Matching and Heat Flow in Centro-Affine Geometry Peter J. OLVER y, Changzheng QU z and Yun YANG x y School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA E-mail: [email protected] URL: http://www.math.umn.edu/~olver/ z School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China E-mail: [email protected] x Department of Mathematics, Northeastern University, Shenyang, 110819, P.R. China E-mail: [email protected] Received April 02, 2020, in final form September 14, 2020; Published online September 29, 2020 https://doi.org/10.3842/SIGMA.2020.093 Abstract. In this paper, we study the differential invariants and the invariant heat flow in centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers' equa- tion. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to match features of objects appearing in images. We show that the resulting algorithm com- pares favorably with the widely applied scale-invariant feature transform (SIFT), speeded up robust features (SURF), and affine-SIFT (ASIFT) methods. Key words: centro-affine geometry; equivariant moving frames; heat flow; inviscid Burgers' equation; differential invariant; edge matching 2020 Mathematics Subject Classification: 53A15; 53A55 1 Introduction The main objective in this paper is to study differential invariants and invariant curve flows { in particular the heat flow { in centro-affine geometry. In addition, we will present some basic applications to feature matching in camera images of three-dimensional objects, comparing our method with other popular algorithms.
    [Show full text]
  • The Affine Group of a Lie Group
    THE AFFINE GROUP OF A LIE GROUP JOSEPH A. WOLF1 1. If G is a Lie group, then the group Aut(G) of all continuous auto- morphisms of G has a natural Lie group structure. This gives the semi- direct product A(G) = G-Aut(G) the structure of a Lie group. When G is a vector group R", A(G) is the ordinary affine group A(re). Follow- ing L. Auslander [l ] we will refer to A(G) as the affine group of G, and regard it as a transformation group on G by (g, a): h-^g-a(h) where g, hEG and aGAut(G) ; in the case of a vector group, this is the usual action on A(») on R". If B is a compact subgroup of A(n), then it is well known that B has a fixed point on R", i.e., that there is a point xGR" such that b(x)=x for every bEB. For A(ra) is contained in the general linear group GL(« + 1, R) in the usual fashion, and B (being compact) must be conjugate to a subgroup of the orthogonal group 0(w + l). This conjugation can be done leaving fixed the (« + 1, w + 1)-place matrix entries, and is thus possible by an element of k(n). This done, the translation-parts of elements of B must be zero, proving the assertion. L. Auslander [l] has extended this theorem to compact abelian subgroups of A(G) when G is connected, simply connected and nil- potent. We will give a further extension.
    [Show full text]
  • The Hidden Subgroup Problem in Affine Groups: Basis Selection in Fourier Sampling
    The Hidden Subgroup Problem in Affine Groups: Basis Selection in Fourier Sampling Cristopher Moore1, Daniel Rockmore2, Alexander Russell3, and Leonard J. Schulman4 1 University of New Mexico, [email protected] 2 Dartmouth College, [email protected] 3 University of Connecticut, [email protected] 4 California Institute of Technology, [email protected] Abstract. Many quantum algorithms, including Shor's celebrated fac- toring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which a subgroup H of a group G must be deter- mined from a quantum state uniformly supported on a left coset of H. These hidden subgroup problems are then solved by Fourier sam- pling: the quantum Fourier transform of is computed and measured. When the underlying group is non-Abelian, two important variants of the Fourier sampling paradigm have been identified: the weak standard method, where only representation names are measured, and the strong standard method, where full measurement occurs. It has remained open whether the strong standard method is indeed stronger, that is, whether there are hidden subgroups that can be reconstructed via the strong method but not by the weak, or any other known, method. In this article, we settle this question in the affirmative. We show that hidden subgroups of semidirect products of the form Zq n Zp, where q j (p − 1) and q = p=polylog(p), can be efficiently determined by the strong standard method. Furthermore, the weak standard method and the \forgetful" Abelian method are insufficient for these groups. We ex- tend this to an information-theoretic solution for the hidden subgroup problem over the groups Zq n Zp where q j (p − 1) and, in particular, the Affine groups Ap.
    [Show full text]
  • Affine Dilatations
    2.6. AFFINE GROUPS 75 2.6 Affine Groups We now take a quick look at the bijective affine maps. GivenanaffinespaceE, the set of affine bijections f: E → E is clearly a group, called the affine group of E, and denoted by GA(E). Recall that the group of bijective linear maps of the vector −→ −→ −→ space E is denoted by GL( E ). Then, the map f → f −→ defines a group homomorphism L:GA(E) → GL( E ). The kernel of this map is the set of translations on E. The subset of all linear maps of the form λ id−→, where −→ E λ ∈ R −{0}, is a subgroup of GL( E ), and is denoted as R∗id−→. E 76 CHAPTER 2. BASICS OF AFFINE GEOMETRY The subgroup DIL(E)=L−1(R∗id−→)ofGA(E) is par- E ticularly interesting. It turns out that it is the disjoint union of the translations and of the dilatations of ratio λ =1. The elements of DIL(E) are called affine dilatations (or dilations). Given any point a ∈ E, and any scalar λ ∈ R,adilata- tion (or central dilatation, or magnification, or ho- mothety) of center a and ratio λ,isamapHa,λ defined such that Ha,λ(x)=a + λax, for every x ∈ E. Observe that Ha,λ(a)=a, and when λ = 0 and x = a, Ha,λ(x)isonthelinedefinedbya and x, and is obtained by “scaling” ax by λ.Whenλ =1,Ha,1 is the identity. 2.6. AFFINE GROUPS 77 −−→ Note that H = λ id−→.Whenλ = 0, it is clear that a,λ E Ha,λ is an affine bijection.
    [Show full text]
  • Homographic Wavelet Analysis in Identification of Characteristic Image Features
    Optica Applicata, VoL X X X , No. 2 —3, 2000 Homographic wavelet analysis in identification of characteristic image features T adeusz Niedziela, Artur Stankiewicz Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland. Mirosław Świętochowski Department of Physics, Warsaw University, ul. Hoża 69, 00-681 Warszawa, Poland. Wavelet transformations connected with subgroups SL(2, C\ performed as homographic transfor­ mations of a plane have been applied to identification of characteristic features of two-dimensional images. It has been proven that wavelet transformations exist for symmetry groups S17( 1,1) and SL(2.R). 1. Introduction In the present work, the problem of an analysis, processing and recognition of a two-dimensional image has been studied by means of wavelet analysis connected with subgroups of GL(2, C) group, acting in a plane by homographies hA(z) = - -- - -j , CZ + fl where A -(::)eG L (2, C). The existence of wavelet reversible transformations has been proven for individual subgroups in the group of homographic transfor­ mations. The kind of wavelet analysis most often used in technical applications is connected with affine subgroup h(z) = az + b, a. case for A = ^ of the symmetry of plane £ ~ S2 maintaining points at infinity [1], [2]. Adoption of the wider symmetry group means rejection of the invariability of certain image features, which is reasonable if the problem has a certain symmetry or lacks affine symmetry. The application of wavelet analysis connected with a wider symmetry group is by no means the loss of information. On the contrary, the information is duplicated for additional symmetries or coded by other means.
    [Show full text]
  • Discrete Groups of Affine Isometries
    Journal of Lie Theory Volume 9 (1999) 321{349 C 1999 Heldermann Verlag Discrete groups of affine isometries Herbert Abels Communicated by E. B. Vinberg Abstract. Given a finite set S of isometries of an affine Euclidean space. We ask when the group Γ generated by S is discrete. This includes as a special case the question when the group generated by a finite set of rotations is finite. This latter question is answered in an appendix. In the main part of the paper the general case is reduced to this special case. The result is phrased as a series of tests: Γ is discrete iff S passes all the tests. The testing procedure is algorithmic. Suppose we are given a finite set S of isometries of some affine Euclidean space. We ask when the group Γ generated by S is discrete. This includes as a special case the question when the group generated by a finite set of rotations is finite. We deal with this special case in an appendix. In the main part of the paper we reduce the general question to this special case. The main result is phrased as a series of tests. Γ is discrete iff S passes all the tests. The method is based on Bieberbach's theorems characterizing discrete groups of affine isometries. Bieberbach's second theorem says that a group Γ of isometries of an affine Euclidean space E is discrete (if and) only if there is a Γ{invariant affine subspace F of E such that the restriction homomorphism r from Γ to the group of isometries of F has finite kernel and a crystallographic group as image.
    [Show full text]
  • On Properties of Translation Groups in the Affine General Linear
    On properties of translation groups in the affine general linear group with applications to cryptography⋆ Marco Calderinia, Roberto Civinob, Massimiliano Salac aDepartment of Informatics, University of Bergen, Norway bDISIM, University of l’Aquila, Italy cDepartment of Mathematics, University of Trento, Italy Abstract The affine general linear group acting on a vector space over a prime field is a well-understood mathematical object. Its elementary abelian regular subgroups have recently drawn attention in applied mathematics thanks to their use in cryptography as a way to hide or detect weaknesses inside block ciphers. This paper is focused on building a convenient representation of their elements which suits better the purposes of the cryptanalyst. Sev- eral combinatorial counting formulas and a classification of their conjugacy classes are given as well. Keywords: Translation group, affine group, block ciphers, cryptanalysis. 1. Introduction The group of the translations of a vector space over a prime field is an elementary abelian regular subgroup of the corresponding symmetric group, and its normaliser, the affine general linear group, is a well-understood math- ematical object. Regular subgroups of the affine group and their connections with algebraic structures, such as radical rings [16] and braces [19], have already been studied in several works [18, 24, 27, 28]. More recently, ele- mentary abelian regular groups have been used in cryptography to define new operations on the message space of a block cipher and to implement statistical and group theoretical attacks [13, 15, 20]. All these objects are arXiv:1702.00581v4 [math.GR] 20 Nov 2020 well-known to be conjugated to the translation group, but this fact does not provide a simple description and representation of their elements which ⋆This research was partially funded by the Italian Ministry of Education, Universities and Research (MIUR), with the project PRIN 2015TW9LSR “Group theory and applica- tions”.
    [Show full text]
  • Euclidean Group - Wikipedia, the Free Encyclopedia Page 1 of 6
    Euclidean group - Wikipedia, the free encyclopedia Page 1 of 6 Euclidean group From Wikipedia, the free encyclopedia In mathematics, the Euclidean group E(n), sometimes called ISO( n) or similar, is the symmetry group of n-dimensional Euclidean space. Its elements, the isometries associated with the Euclidean metric, are called Euclidean moves . These groups are among the oldest and most studied, at least in the cases of dimension 2 and 3 — implicitly, long before the concept of group was known. Contents 1 Overview 1.1 Dimensionality 1.2 Direct and indirect isometries 1.3 Relation to the affine group 2 Detailed discussion 2.1 Subgroup structure, matrix and vector representation 2.2 Subgroups 2.3 Overview of isometries in up to three dimensions 2.4 Commuting isometries 2.5 Conjugacy classes 3 See also Overview Dimensionality The number of degrees of freedom for E(n) is n(n + 1)/2, which gives 3 in case n = 2, and 6 for n = 3. Of these, n can be attributed to available translational symmetry, and the remaining n(n − 1)/2 to rotational symmetry. Direct and indirect isometries There is a subgroup E+(n) of the direct isometries , i.e., isometries preserving orientation, also called rigid motions ; they are the rigid body moves. These include the translations, and the rotations, which together generate E+(n). E+(n) is also called a special Euclidean group , and denoted SE (n). The others are the indirect isometries . The subgroup E+(n) is of index 2. In other words, the indirect isometries form a single coset of E+(n).
    [Show full text]
  • Möbius Invariant Quaternion Geometry
    CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 2, Pages 89{106 (October 14, 1998) S 1088-4173(98)00032-0 MOBIUS¨ INVARIANT QUATERNION GEOMETRY R. MICHAEL PORTER Abstract. A covariant derivative is defined on the one point compactifica- tion of the quaternions, respecting the natural action of quaternionic M¨obius transformations. The self-parallel curves (analogues of geodesics) in this geom- etry are the loxodromes. Contrasts between quaternionic and complex M¨obius geometries are noted. 1. Introduction Let H denote the skew field of quaternions, and H = H the compactifi- ∪{∞} cation to the 4-sphere. Consider a smooth curve γ in H. We define a “covariant derivative” Dγ along γ which is invariant under the fullb quaternionic M¨obius group Aut H. The construction goes along the following lines:b A loxodrome is any image tu tv under an element of Aut H of a spiral t e qe− ,whereq, u, v H.Thereis 7→ ∈ a fiberb bundle π : Hof all germs of loxodromes, where the germ β is B B→ ∈B based at π (β). Suppose tb βt is a curve in lying over γ,thatis,π (βt)=γ(t). B 7→ B B Then Dγβ, the covariantb derivative of this loxodromic germ field on γ, is defined generically to lie in ,andforanyT Aut H, DT γ (T (β)) = T (Dγβ). Because B ∈ ◦ ∗ ∗ of this invariance, Dγ is also well defined for a curve γ in a manifold modeled on (Aut H, H). b An analogous construction was carried out in [19] for the Riemann sphere C in placeb of bH.
    [Show full text]
  • Proper Affine Actions on Semisimple Lie Algebras
    Proper affine actions on semisimple Lie algebras Ilia Smilga August 14, 2018 For any noncompact semisimple real Lie group G, we construct a group of affine transformations of its Lie algebra g whose linear part is Zariski-dense in Ad G and which is free, nonabelian and acts properly discontinuously on g. 1 Introduction 1.1 Background and motivation The present paper is part of a larger effort to understand discrete groups Γ of affine n transformations (subgroups of the affine group GLn(R) ⋉R ) acting properly discontin- uously on the affine space Rn. The case where Γ consists of isometries (in other words, n Γ On(R) ⋉R ) is well-understood: a classical theorem by Bieberbach says that such ⊂ a group always has an abelian subgroup of finite index. We say that a group G acts properly discontinuously on a topological space X if for every compact K X, the set g G gK K = is finite. We define a crystallo- ⊂ { ∈ | ∩ 6 ∅}n graphic group to be a discrete group Γ GLn(R) ⋉R acting properly discontinuously ⊂ and such that the quotient space Rn/Γ is compact. In [5], Auslander conjectured that any crystallographic group is virtually solvable, that is, contains a solvable subgroup of finite index. Later, Milnor [16] asked whether this statement is actually true for any affine group acting properly discontinuously. The answer turned out to be negative: Margulis [14, 15] gave a nonabelian free group of affine transformations with linear part Zariski-dense in SO(2, 1), acting properly discontinuously on R3. On the other hand, Fried and Goldman [12] proved the Auslander conjecture in dimension 3 (the cases n = 1 and 2 are easy).
    [Show full text]
  • Lecture 2: Euclidean Spaces, Affine Spaces, and Homogenous Spaces in General
    LECTURE 2: EUCLIDEAN SPACES, AFFINE SPACES, AND HOMOGENOUS SPACES IN GENERAL 1. Euclidean space n If the vector space R is endowed with a positive definite inner product h, i n we say that it is a Euclidean space and denote it E . The inner product n gives a way of measuring distances and angles between points in E , and this is the fundamental property of Euclidean spaces. Question: What are the symmetries of Euclidean space? i.e., what kinds of n n transformations ϕ : E → E preserve the fundamental properties of lengths and angles between vectors? Answer: Translations, rotations, and reflections, collectively known as “rigid motions.” Any such transformation has the form ϕ(x) = Ax + b n where A ∈ O(n) and b ∈ E . The set of such transformations forms a Lie group, called the Euclidean group E(n). This group can be represented as a group of (n + 1) × (n + 1) matrices as follows: let A b E(n) = : A ∈ O(n), b ∈ n . 0 1 E Here A is an n × n matrix, b is an n × 1 column, and 0 represents a 1 × n n row of 0’s. If we represent a vector x ∈ E by the (n+1)-dimensional vector x , then elements of E(n) acts on x by matrix multiplication: 1 A b x Ax + b = . 0 1 1 1 n Question: Given a point x ∈ E , which elements of E(n) leave x fixed? This question is easiest to answer when x = ~0. It is clear that an element A b A 0 fixes ~0 if and only if b = 0.
    [Show full text]
  • Algebraic Groups Lecture Notes
    Algebraic Groups Lecture Notes Lecturer: Julia Pevtsova; written and edited by Josh Swanson May 15, 2016 Abstract The following notes were taking during a course on Algebraic Groups at the University of Washington in Fall 2014. Please send any corrections to [email protected]. Thanks! Contents September 24th, 2014: Functor of Points, Representable Functors, and Affine (Group) Schemes..2 September 26th, 2014: Examples of Affine Group Schemes, Hopf Algebras..............4 September 29th, 2014: Fiber and Cartesian Products of Affine Group Schemes; Sweedler Notation; Categorical Equivalence Proof and Practice............................6 October 1st, 2014: Hopf Algebras from Group Schemes; Cocommutativity; Closed Subschemes; Closed Subgroup Schemes......................................9 October 3rd, 2014: Kernels and Character Groups of Group Schemes................. 12 October 6th, 2014: Injective and Surjective maps; Images; Finite Groups and Group Schemes... 14 October 8th, 2014: Extension of Scalars, Galois Descent, and Weil Restriction............ 16 October 10th, 2014: Weil Restriction is Affine, Separable Algebras.................. 18 October 13th, 2014: Etale´ Algebras and Finite Γ-Sets......................... 19 October 15th, 2014: Etale´ Algebras and Finite Γ-Sets Continued................... 20 October 17th, 2014: Etale´ Algebras and Finite Γ-Sets Concluded; Equivalences of Categories... 21 October 20th, 2014: Diagonalizable Group Schemes; Multiplicative Type; Tori; Cartier Duality.. 23 October 22nd, 2014: Examples of Cartier Duality; Rational Representations and Comodules.... 25 October 27th, 2014: Basic Comodule Theory.............................. 27 October 29th, 2014: Affine Algebraic Groups are Linear; Left Regular, Right Regular, and Adjoint Representations............................................ 29 October 31st, 2014: G-modules and G(k)-modules; Fixed Point Functor............... 30 November 3rd, 2014: Characters, Restriction, and Induction...................... 32 November 5th, 2014: Induction and the Tensor Identity.......................
    [Show full text]