Reconfigurable Nanomechanical Photonic Metamaterials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance
hv photonics Communication All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance Jing Yu, Tingting Lang * and Huateng Chen Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (J.Y.); [email protected] (H.C.) * Correspondence: [email protected] Abstract: This paper presents a terahertz (THz) metamaterial absorber made of stainless steel. We found that the absorption rate of electromagnetic waves reached 99.95% at 1.563 THz. Later, we ana- lyzed the effect of structural parameter changes on absorption. Finally, we explored the application of the absorber in refractive index sensing. We numerically demonstrated that when the refractive index (n) is changing from 1 to 1.05, our absorber can yield a sensitivity of 74.18 µm/refractive index unit (RIU), and the quality factor (Q-factor) of this sensor is 36.35. Compared with metal–dielectric–metal sandwiched structure, the absorber designed in this paper is made of stainless steel materials with no sandwiched structure, which greatly simplifies the manufacturing process and reduces costs. Keywords: metamaterial absorber; stainless steel; refractive index sensing; sensitivity 1. Introduction Metamaterials are new artificial materials that are periodically arranged according to certain subwavelength dimensions [1,2]. Owing to their unique properties of perfect absorption, perfect transmission, and stealth, metamaterials show promising applications Citation: Yu, J.; Lang, T.; Chen, H. in sensors [3–11], absorbers [12,13], imaging [14,15], etc. Among them, in biomolecular All-Metal Terahertz Metamaterial sensing, metamaterial devices are spurring unprecedented interest as a diagnostic protocol Absorber and Refractive Index for cancer and infectious diseases [10,11]. -
Bringing Optical Metamaterials to Reality
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction. -
To Super-Radiating Manipulation of a Dipolar Emitter Coupled to a Toroidal Metastructure
From non- to super-radiating manipulation of a dipolar emitter coupled to a toroidal metastructure Jie Li,1 Xing-Xing Xin,1 Jian Shao,1 Ying-Hua Wang,1 Jia-Qi Li,1 Lin Zhou,2 and Zheng- Gao Dong1,* 1Physics Department and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China 2School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China * [email protected] Abstract: Toroidal dipolar response in a metallic metastructure, composed of double flat rings, is utilized to manipulate the radiation pattern of a single dipolar emitter (e.g., florescent molecule/atom or quantum dot). Strong Fano-type radiation spectrum can be obtained when these two coupling dipoles are spatially overlapped, leading to significant radiation suppression (so-called nonradiating source) attributed to the dipolar destructive interference. Moreover, this nonradiating configuration will become a directionally super-radiating nanoantenna after a radial displacement of the emitter with respect to the toroidal flat-ring geometry, which emits linearly polarized radiation with orders of power enhancement in a particular orientation. The demonstrated radiation characteristics from a toroidal- dipole-mediated dipolar emitter indicate a promising manipulation capability of the dipolar emission source by intriguing toroidal dipolar response. ©2015 Optical Society of America OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics. References and links 1. L. B. Zel’dovich, “The relation between decay asymmetry and dipole moment of elementary particles,” Sov. Phys. JETP 6, 1148 (1958). 2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010). -
And Ku-Band Application
applied sciences Article Compact Left-Handed Meta-Atom for S-, C- and Ku-Band Application Md. Mehedi Hasan 1,*, Mohammad Rashed Iqbal Faruque 1,* and Mohammad Tariqul Islam 2,* ID 1 Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 2 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia * Correspondence: [email protected] (M.M.H.); [email protected] (M.R.I.F.); [email protected] (M.T.I.); Tel.: +60-102938061 (M.R.I.F.) Received: 10 August 2017; Accepted: 10 October 2017; Published: 23 October 2017 Abstract: A new compact left-handed meta-atom for S-, C- and Ku-band applications is presented in this paper. The proposed structure provides a wide bandwidth and exhibits left-handed characteristics at 0◦, 90◦, 180◦ and 270◦ (xy-axes) rotations. Besides, the left-handed characteristics and wide bandwidth of 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays are also investigated at the above-mentioned rotation angles. In this study, the meta-atom is designed by creating splits at the outer and inner square-shaped ring resonators, and a metal arm is placed at the middle of the inner ring resonator. The arm is also connected to the upper and lower portions of the inner ring resonator, and later, the design appears as an I-shaped split ring resonator. The commercially available, finite integration technique (FIT)-based electromagnetic simulator CST Microwave Studio is used for design and simulation purposes. The measured data comply well with the simulated data of the unit cell for 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays at every rotation angle. -
Reconfigurable Terahertz Metamaterial Using Split-Ring Meta
applied sciences Article Reconfigurable Terahertz Metamaterial Using Split-Ring Meta-Atoms with Multifunctional Electromagnetic Characteristics Yuhang Liao and Yu-Sheng Lin * State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] * Correspondence: [email protected]; Tel.: +86-188-0205-4660 Received: 1 July 2020; Accepted: 29 July 2020; Published: 30 July 2020 Abstract: We propose a reconfigurable terahertz (THz) metamaterial (RTM) to investigate its multifunctional electromagnetic characteristics by moving the meta-atoms of split-ring resonator (SRR) array. It shows the preferable and capable adjustability in the THz frequency range. The electromagnetic characteristics of the proposed RTM device are compared and analyzed by moving the meta-atoms in different polarized transverse magnetic (TM) and transverse electric (TE) modes. The symmetrical meta-atoms of RTM device exhibit a resonant tuning range of several tens of GHz and the asymmetrical meta-atoms of RTM device exhibit the better tunability. Therefore, an RTM device with reconfigurable meta-atoms possesses the resonance shifting, polarization switching, electromagnetically induced transparency (EIT) switching and multiband to single-band switching characteristics. This proposed RTM device provides the potential possibilities for the use of THz-wave optoelectronics with tunable resonance, EIT analog and tunable multiresonance characteristics. Keywords: metamaterial; terahertz; optical switching; electromagnetically induced transparency; resonator 1. Introduction In the last two decades, there has been increasing interest in terahertz (THz) metamaterial optics spanning the spectrum range of 0.1 THz to 10 THz [1,2]. Metamaterials are not natural materials. It means that they are artificially designed [3] and engineered to span the whole electromagnetic spectrum, including visible [4–6], infrared [7–12], THz [13–23] and microwaves [24]. -
Bulk Negative Index Photonic Metamaterials for Direct Laser Writing
Bulk Negative Index Photonic Metamaterials for Direct Laser Writing Durdu Ö. Güney1,*, Thomas Koschny1,2, Maria Kafesaki2, and Costas M. Soukoulis1,2 1Ames National Laboratory, USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 2 Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), and Department of Materials Science and Technology, University of Crete, 7110 Heraklion, Crete, Greece *Corresponding author: [email protected] Abstract: We show the designs of one- and two-dimensional photonic negative index metamaterials around telecom wavelengths. Designed bulk structures are inherently connected, which render their fabrication feasible by direct laser writing and chemical vapor deposition. ©2008 Optical Society of America OCIS Codes: (350.3618) Left-handed materials; (260.2065) Effective medium theory 1 Simultaneously negative effective magnetic permeability and electric permittivity of metamaterials gives rise to exotic electromagnetic phenomena [1—4] not known to exist naturally and these materials enable a wide range of new applications as varied as cloaking devices and ultrahigh-resolution imaging systems. All photonic metamaterials at THz frequencies have been fabricated by well-established 2D fabrication technologies such as electron-beam lithography and evaporation of metal films, and most of them are only one or two functional layers [5—13]. A few efforts have been made to fabricate three to five layers [14— 16], but this is also a 1D design. However, isotropic 3D bulk negative index metamaterial (NIM) designs with low absorption and high transmission that operate at THz and optical frequencies are needed to explore all the potential applications of NIMs. -
Metamaterials with Magnetism and Chirality
1 Topical Review 2 Metamaterials with magnetism and chirality 1 2;3 4 3 Satoshi Tomita , Hiroyuki Kurosawa Tetsuya Ueda , Kei 5 4 Sawada 1 5 Graduate School of Materials Science, Nara Institute of Science and Technology, 6 8916-5 Takayama, Ikoma, Nara 630-0192, Japan 2 7 National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, 8 Japan 3 9 Advanced ICT Research Institute, National Institute of Information and 10 Communications Technology, Kobe, Hyogo 651-2492, Japan 4 11 Department of Electrical Engineering and Electronics, Kyoto Institute of 12 Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan 5 13 RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan 14 E-mail: [email protected] 15 November 2017 16 Abstract. This review introduces and overviews electromagnetism in structured 17 metamaterials with simultaneous time-reversal and space-inversion symmetry breaking 18 by magnetism and chirality. Direct experimental observation of optical magnetochiral 19 effects by a single metamolecule with magnetism and chirality is demonstrated 20 at microwave frequencies. Numerical simulations based on a finite element 21 method reproduce well the experimental results and predict the emergence of giant 22 magnetochiral effects by combining resonances in the metamolecule. Toward the 23 magnetochiral effects at higher frequencies than microwaves, a metamolecule is 24 miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar 25 waveguide. This work opens the door to the realization of a one-way mirror and 26 synthetic gauge fields for electromagnetic waves. 27 Keywords: metamaterials, symmetry breaking, magnetism, chirality, magneto-optical 28 effects, optical activity, magnetochiral effects, synthetic gauge fields 29 Submitted to: J. -
Reconfigurable Electromagnetics Through Metamaterials
International Journal of Antennas and Propagation Reconfigurable Electromagnetics through Metamaterials Guest Editors: Giacomo Oliveri, Douglas Werner, Filiberto Bilotti, and Christophe Craeye Reconfigurable Electromagnetics through Metamaterials International Journal of Antennas and Propagation Reconfigurable Electromagnetics through Metamaterials Guest Editors: Giacomo Oliveri, Douglas Werner, Filiberto Bilotti, and Christophe Craeye Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Antennas and Propagation.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, pro- vided the original work is properly cited. Editorial Board Mohammod Ali, USA Se-Yun Kim, Republic of Korea Matteo Pastorino, Italy Charles Bunting, USA Ahmed A. Kishk, Canada Massimiliano Pieraccini, Italy Felipe Catedra,´ Spain Selvan T. Krishnasamy, India Sembiam R. Rengarajan, USA Dau-Chyrh Chang, Taiwan Ju-Hong Lee, Taiwan Ahmad Safaai-Jazi, USA Deb Chatterjee, USA Byungje Lee, Republic of Korea Safieddin Safavi-Naeini, Canada Z. N. Chen, Singapore Joshua Le-Wei Li, China Magdalena Salazar-Palma, Spain Michael Yan Wah Chia, Singapore J.S. Mandeep, Malaysia Stefano Selleri, Italy Shyh-Jong Chung, Taiwan Atsushi Mase, Japan Zhongxiang Shen, Singapore Lorenzo Crocco, Italy Giuseppe Mazzarella, Italy John J. Shynk, USA TayebA.Denidni,Canada C. F. Mecklenbrauker,¨ Austria Seong-Youp Suh, USA Francisco Falcone, Spain Mark Mirotznik, USA Parveen Wahid, USA Miguel Ferrando Bataller, Spain A. S. Mohan, Australia Yuanxun Ethan Wang, USA Vincenzo Galdi, Italy P. Mo h a n a n , In d i a Tat Soon Yeo, Singapore Wei Hong, China Pavel Nikitin, USA Young Jo ong Yo on, Korea Tamer S. -
Planar Magneto-Photonic and Gradient-Photonic Structures : Crystals and Metamaterials
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Planar magneto-photonic and gradient-photonic structures : crystals and metamaterials. Zhuoyuan Wu Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Physics Commons Copyright 2011 Zhuoyuan Wu Recommended Citation Wu, Zhuoyuan, "Planar magneto-photonic and gradient-photonic structures : crystals and metamaterials.", Dissertation, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/121 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Physics Commons PLANAR MAGNETO-PHOTONIC AND GRADIENT-PHOTONIC STRUCTURES: CRYSTALS AND METAMATERIALS By Zhuoyuan Wu A DISSERTATION Submitted in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY Engineering Physics MICHIGAN TECHNOLOGICAL UNIVERSITY 2010 © 2010 Zhuoyuan Wu This dissertation, “PLANAR MAGNETO-PHOTONIC AND GRADIENT-PHOTONIC STRUCTURES: CRYSTALS AND METAMATERIALS” is hereby approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in the field of Engineering Physics. Department: Physics Signatures: Dissertation Advisor _______________________________________________ Dr. Miguel Levy Committee Members _______________________________________________ Dr. Ranjit Pati _______________________________________________ Dr. Will Cantrell _______________________________________________ Dr. Craig Friedrich Department Chair __________________________________________________ Dr. Ravi Pandey ABSTRACT In the field of photonics, two new types of material structures, photonic crystals and metamaterials, are presently of great interest. Both are studied in the present work, which focus on planar magnetic materials in the former and planar gradient metamaterials in the latter. These planar periodic structures are easy to handle and integrate into optical systems. -
Intensity-Dependent Modulation of Optically Active Signals in a Chiral Metamaterial
ARTICLE Received 4 Jul 2016 | Accepted 12 Jan 2017 | Published 27 Feb 2017 DOI: 10.1038/ncomms14602 OPEN Intensity-dependent modulation of optically active signals in a chiral metamaterial Sean P. Rodrigues1,2,*, Shoufeng Lan1,*, Lei Kang2, Yonghao Cui2, Patrick W. Panuski1, Shengxiang Wang1,3, Augustine M. Urbas4 & Wenshan Cai1,2 Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than l/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. 1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. 2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. 3 School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073, China. 4 Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA. * These authors contributed equally to this work. -
Emerging Trends in Terahertz Metamaterial Applications
Copyright © 2014 Tech Science Press CMC, vol.39, no.3, pp.179-215, 2014 Emerging Trends in Terahertz Metamaterial Applications Balamati Choudhury1, Sanjana Bisoyi1, Pavani Vijay Reddy1, Manjula S.1 and R. M. Jha1 Abstract: The terahertz spectrum of electromagnetic waves is finding its position in various applications of day to day life because of its unique properties, includ- ing the penetration through opaque materials. Naturally occurring materials in this range are rare due to the display of a natural breakpoint of both electric, and mag- netic resonances in these materials. However recent advances in artificially engi- neered materials, which show resonance in this region are able to harness desirable properties in the terahertz region. In this paper, terahertz design and fabrication issues have been explored along with their applications. A brief review of metama- terial terahertz applications has been carried out including metamaterial absorbers, filters, modulators, switches, lenses, and cloaking structures. The various patterns of metamaterial unit cells are discussed elaborately along with the possibility of flexible active terahertz structures. Keywords: Terahertz, TDS, metamaterial, absorbers, lenses. 1 Introduction Terahertz electromagnetic spectrum refers to the range of frequencies that lies with- in the microwave and infra-red bands, i:e: 0.1-10 THz (Figure 1). While systems and applications operating in the micro-wave and IR ranges have been well es- tablished over decades, the development of terahertz technology has been slow. Despite its slow growth in the past, research and development of terahertz technol- ogy is now growing rapidly. By extending the potential applications of terahertz to biomedical imaging, security etc., this technology is now influencing everyday lives. -
Tunable Terahertz Metamaterial Using an Electric Split-Ring Resonator with Polarization-Sensitive Characteristic
applied sciences Article Tunable Terahertz Metamaterial Using an Electric Split-Ring Resonator with Polarization-Sensitive Characteristic Tao Xu and Yu-Sheng Lin * State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] * Correspondence: [email protected] Received: 14 June 2020; Accepted: 1 July 2020; Published: 6 July 2020 Abstract: We present a tunable terahertz (THz) metamaterial using an electric split-ring resonator (eSRR), which exhibits polarization-sensitive characteristics. The proposed eSRR is composed of double symmetrical semicircles and two central metal bars. By changing the lengths of two metal bars, the electromagnetic responses can be tuned and switched between dual-band and triple-band resonances in transverse magnetic (TM) mode. Furthermore, by moving the bottom metal bar to change the gap between the two metal bars, the first resonance is stable at 0.39 THz, and the second resonance is gradually blue-shifted from 0.83 to 1.33 THz. The tuning range is 0.50 THz. This means that the free spectrum ranges (FSR) could be broadened by 0.50 THz. This proposed device exhibits a dual-/triple-band switch, tunable filter, tunable FSR and polarization-dependent characteristics. It provides an effective approach to perform tunable polarizer, sensor, switch, filter and other optoelectronics in THz-wave applications. Keywords: metamaterial; terahertz optics; optical switch; optical filter; tunable resonator 1. Introduction It is generally accepted that the terahertz (THz) range is the frequency range of 0.1–10 THz. In recent years, THz technology has attracted growing attention with the progress of THz sources and instrumentation [1,2].