Laplace Functional Ordering of Point Processes in Large-Scale Wireless Networks

Total Page:16

File Type:pdf, Size:1020Kb

Laplace Functional Ordering of Point Processes in Large-Scale Wireless Networks Hindawi Wireless Communications and Mobile Computing Volume 2018, Article ID 4307136, 14 pages https://doi.org/10.1155/2018/4307136 Research Article Laplace Functional Ordering of Point Processes in Large-Scale Wireless Networks Junghoon Lee 1 and Cihan TepedelenlioLlu 2 1 Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea 2School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA Correspondence should be addressed to Cihan Tepedelenlio˘glu; [email protected] Received 11 June 2018; Revised 26 September 2018; Accepted 18 October 2018; Published 1 November 2018 Academic Editor: Yu Chen Copyright © 2018 Junghoon Lee and Cihan Tepedelenlio˘glu. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stochastic orders on point processes are partial orders which capture notions like being larger or more variable. Laplace functional ordering of point processes is a useful stochastic order for comparing spatial deployments of wireless networks. It is shown that the ordering of point processes is preserved under independent operations such as marking, thinning, clustering, superposition, and random translation. Laplace functional ordering can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions of such metrics are unavailable. Applications in several network scenarios are also provided where tradeofs between coverage and interference as well as fairness and peakyness are studied. Monte-Carlo simulations are used to supplement our analytical results. 1. Introduction Recently stochastic ordering theory has been used for performance comparison in wireless networks which are Point processes have been used to describe spatial distri- modeled as point processes [16–20]. Directionally convex bution of nodes in wireless networks. Examples include (DCX) ordering of point processes and its integral shot randomly distributed nodes in wireless sensor networks noise felds have been studied in [16]. Te work has been or ad hoc networks [1–4] and the spatial distributions for extended to the clustering comparison of point processes base stations and mobile users in cellular networks [5– with various weaker tools, including void probabilities and 10]. In the case of cognitive radio networks, locations of moment measures, than DCX ordering in [17]. In [18], usual primary and secondary users have been modeled as point stochastic ordering of random variables capturing carrier-to- processes [11–14]. Random translations of point processes interference ratio has been established in cellular systems. have been used for modeling of mobility of networks Ordering results for coverage probability and per user rate in [15]. Stationary Poisson processes provide a tractable have been shown in multiantenna heterogeneous cellular net- framework, but sufer from notorious modeling issues in works [19]. In [20], Laplace functional (LF) ordering of point matching real network distributions. Stochastic ordering of processes has been introduced and used to study interference point processes provides an ideal framework for compar- distributions in wireless networks. Several examples of the LF ing two deployment/usage scenarios even in cases where ordering of specifc point processes have been also introduced the performance metrics cannot be computed in closed in [20], including stationary Poisson, mixed Poisson, Poisson form. Tese partial orders capture intuitive notions like one cluster, and binomial point processes. point process being more dense or more variable. Existing While limited examples of the LF ordering have been works on point process modeling for wireless networks provided in [20], in this paper we apply the LF ordering have paid little attention to how two intractable scenarios concept to several general classes of point processes such can be nevertheless compared to aid in system optimiza- as Cox, homogeneous independent cluster, perturbed lattice, tion. and mixed binomial point processes which have been used 2 Wireless Communications and Mobile Computing to describe distributed nodes of wireless systems in the liter- Ten � is said to be smaller than � in the Laplace transform ature. We also investigate the preservation properties of the (LT) order (denoted by �≤Lt �). For example, when � and � LF ordering of point processes with respect to independent are the instantaneous SNR distributions of a fading channel, operations such as marking, thinning, random translation, (2) can be interpreted as a comparison of average bit error and superposition. We prove that the LF ordering of original rates for exponentially decaying instantaneous error rates point processes still holds afer applying these operations on (as in the case for diferential-PSK (DPSK) modulation and the point processes. To the best of our knowledge, there is Chernof bounds for other modulations) [23]. Te LT order no study on LF ordering of general classes of point processes �≤Lt � is equivalent to and their preservation properties in the literature. Trough the preservation properties of LF ordering with respect to E [� (�)] ≥ E [� (�)] , (3) independent operations on a point process such as marking, thinning, random translation, and superposition which is for all completely monotonic (c.m.) functions �(⋅) [22, pp. 96]. done in our manuscript, we can consider several efects of real By defnition, the derivatives of a c.m. function �(�) alternate � � � systems such as propagation efects over wireless channels, in sign: (−1) d �(�)/d� ≥0,for� = 0,1,2,...,and�≥ multiple access schemes, heterogeneous network scenarios, 0. An equivalent defnition is that c.m. functions are positive and mobile networks and compare performances without mixtures of decaying exponentials [22]. A similar result to (3) having to obtain closed form results for a wide range of with a reversal in the inequality states that performance metrics such as coverage probability, achievable rate, and resource allocation under these real system efects. �≤ �⇐⇒E [� (�)] ≤ E [� (�)] , In addition to the performance comparison, the stochastic Lt (4) ordering of point processes provides insights into the system design and evaluation such as network deployment and user for all �(⋅) that have a completely monotonic derivative selection schemes as we summarize in this paper. (c.m.d.). Finally, note that �≤st ��⇒�≤Lt �.Tiscan Te paper is organized as follows: In Section 2, we be shown by invoking the fact that �≤st � is equivalent to introduce mathematical preliminaries. Section 3 introduces E[�(�)] ≤ E[�(�)] whenever �(⋅) is an increasing function [22] ordering of point processes. In Section 4, we show the and that c.m.d. functions in (4) are increasing. preservation properties of LF ordering. Sections 5.1 and 5.2 introduce applications of stochastic ordering of point pro- 2.2. Point Processes and Random Measures. Point processes cesses in wireless networks. We also elaborate the qualitative have been used to model large-scale networks [1, 2, 13, 24– insights of the stochastic ordering of point processes on 29]. Since wireless nodes are usually not colocated, our focus the system design and evaluation in Section 5.3. Section 6 is on simple point processes, where only one point can exist at presents simulations to corroborate our claims. Finally, the a given location. In addition, we assume the point processes paper is summarized in Section 7. are locally fnite; i.e., there are fnitely many points in any bounded set. Unlike [20], stationary and isotropic properties 2. Mathematical Preliminaries are not necessary in this paper. In what follows, we introduce some fundamental notions that will be useful. 2.1. Stochastic Ordering of Random Variables. Before intro- ducing ordering of point processes, we briefy review some common stochastic orders between random variables, which 2.2.1. Campbell’sTeorem. It is ofen necessary to evaluate the can be found in [21, 22]. expected sum of a function evaluated at the point process Φ. Campbell’s theorem helps in evaluating such expectations. For any nonnegative measurable function � which runs over 2.1.1. Usual Stochastic Ordering. Let � and � be two random � the set U of all nonnegative functions on R , variables (RVs) such that � (�>�) ≤�(�>�) ,−∞<�<∞. (1) E [∑� (�)]=∫ � (�) Λ (d�) . (5) � � � Ten is said to be smaller than in the usual stochastic �∈Φ R order (denoted by �≤st �). Roughly speaking, (1) says that � is less likely than � to take on large values. To see the inter- Te intensity measure Λ of Φ in (5) is a characteristic pretation of this in the context of wireless communications, � � analogous to the mean of a real-valued random variable and when and are distributions of instantaneous SNRs due to Λ(�) = E[Φ(�)] �⊂R� fading, (1) is a comparison of outage probabilities. Since �, � defned as for bounded subsets . + Λ(�) � Φ are positive in this case, �∈R is sufcient in (1). Tus, is the mean number of points in .If is stationary, then the intensity measure simplifes as Λ(�) = �|�| � � � for some nonnegative constant , which is called the 2.1.2. Laplace Transform Ordering. Let and be two intensity of Φ,where|�| denotes the � dimensional volume nonnegative RVs such that of �. For stationary point processes, the right side in (5) is L (�) = E [ (−��)]≥E
Recommended publications
  • The Concentration of Measure Phenomenon
    http://dx.doi.org/10.1090/surv/089 Selected Titles in This Series 89 Michel Ledoux, The concentration of measure phenomenon, 2001 88 Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2001 87 Bruno Poizat, Stable groups, 2001 86 Stanley N. Burris, Number theoretic density and logical limit laws, 2001 85 V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, 2001 84 Laszlo Fuchs and Luigi Salce, Modules over non-Noetherian domains, 2001 83 Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, 2000 82 Goro Shimura, Arithmeticity in the theory of automorphic forms, 2000 81 Michael E. Taylor, Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials, 2000 80 Lindsay N. Childs, Taming wild extensions: Hopf algebras and local Galois module theory, 2000 79 Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, 2000 78 Boris A. Kupershmidt, KP or mKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems, 2000 77 Fumio Hiai and Denes Petz, The semicircle law, free random variables and entropy, 2000 76 Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmuller theory, 2000 75 Greg Hjorth, Classification and orbit equivalence relations, 2000 74 Daniel W. Stroock, An introduction to the analysis of paths on a Riemannian manifold, 2000 73 John Locker, Spectral theory of non-self-adjoint two-point differential operators, 2000 72 Gerald Teschl, Jacobi operators and completely integrable nonlinear lattices, 1999 71 Lajos Pukanszky, Characters of connected Lie groups, 1999 70 Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, 1999 69 C.
    [Show full text]
  • Electron. Commun. Probab. 0 (2016), No. 0, DOI: 10.1214/ECP
    Electron. Commun. Probab. 0 (2016), no. 0, 1–16. ELECTRONIC DOI: 10.1214/ECP.10.1214/YY-TN COMMUNICATIONS ISSN: 1083-589X in PROBABILITY Point processes in a metric space* Yuwei Zhao† Abstract As a useful and elegant tool of extreme value theory, the study of point processes on a metric space is important and necessary for the analyses of heavy-tailed functional data. This paper focuses on the definition and properties of such point processes. A complete convergence result for a regularly varying iid sequence in a metric space is proved as an example of the application in extreme value theory. Keywords: point process; functional data; M0-convergence; regular variation. AMS MSC 2010: 60G55; 60G70;60G57. Submitted to ECP on NA, final version accepted on NA. 1 Introduction Point process theory is considered as a useful tool in the analyses of extremal events of stochastic processes due to its close connection to the concept of regular variation, which plays an important role in modelling extremal events. For example, for an iid copies (Xi)i>1 of a random element X, it is well known that regular variation of X is equivalent to the convergence of point processes n X Nn = δ(i=n;Xi=an) i=1 towards a suitable Poisson point process. This result is referred to as the complete convergence result; see for example [17]. A large number of literatures focus on the extension of this result and its applications; see [9, 10, 1, 3], to name a few. There are also a large amount of literatures on the applications of regular variation in extreme value theory, such as [12, 18, 2, 11], to name a few.
    [Show full text]
  • Heavy Tailed Analysis Eurandom Summer 2005
    HEAVY TAILED ANALYSIS EURANDOM SUMMER 2005 SIDNEY RESNICK School of Operations Research and Industrial Engineering Cornell University Ithaca, NY 14853 USA [email protected] http://www.orie.cornell.edu/»sid & Eurandom http://www.eurandom.tue.nl/people/EURANDOM_chair/eurandom_chair.htm 1 80 SIDNEY RESNICK 11. The Laplace functional. The Laplace functional is a transform technique which is useful for manipulating distri- butions of random measures and point processes. When applied to Poisson processes and empirical measures, algebraic manipulations become familiar to ones used with either char- acteristic functions or Laplace transforms applied to sums of iid random variables. Continue to assume the state space of the random measures or point processes is the nice space E. For a non-negative, bounded measureable function f : E 7! R+ and for ¹ 2 M+(E), we continue to use the notation Z ¹(f) = f(x)d¹(x): x2E P For a point measure m = i ²xi , this is Z X m(f) = f(x)m(dx) = f(xi): x2E i If we think of f ranging over all the non-negative bounded functions, m(f) yields all the information contained in m; certainly we learn about the value of m on each set A 2 E since we can always set f = 1A. So integrals of measures with respect to arbitrary test functions contain as much information as evaluating the measures on arbitrary sets. De¯nition 3 (Laplace functional). Suppose B+ are the non-negative, bounded, measurable functions from E 7! R+ and let » : (­; A; P) 7! (M+(E); M+(E)) be a random measure.
    [Show full text]
  • Stochastic Ordering of Interferences in Large-Scale Wireless Networks
    1 Stochastic Ordering of Interference in Large-scale Wireless Networks Junghoon Lee and Cihan Tepedelenlioglu,˘ Member, IEEE Abstract Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of interference distributions in large-scale networks modeled as point processes. Interference is a major performance- limiting factor in most wireless networks, thus it is important to characterize its statistics. Since closed- form results for the distribution of interference for such networks are only available in limited cases, it is of interest to compare network interference using stochastic orders, for two different point processes with different fading or path-loss scenarios between the interferers and the receiver. In this paper, conditions on the fading distribution and path-loss model are given to establish stochastic ordering between interferences. Moreover, Laplace functional ordering is defined between point processes and applied for comparing interference. Monte-Carlo simulations are used to supplement our analytical results. arXiv:1204.6341v2 [cs.IT] 24 Oct 2012 Index Terms Interference, point process, stochastic order. The authors are with the School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA. (Email:{junghoon.lee,cihan}@asu.edu). April 19, 2021 DRAFT 2 I. INTRODUCTION Since interference is the main performance-limiting factor in most wireless networks, it is crucial to characterize its statistics. The interference mainly depends on the fading channel (interfering power distribution), the path-loss model (signal attenuation with distance), and network geometry (spatial distribution of concurrently transmitting nodes). The spatial location of the interferers can be modeled either deterministically or stochastically.
    [Show full text]
  • Lecture-27: Properties of Poisson Point Processes
    Lecture-27: Properties of Poisson point processes 1 Laplace functional For a realization of a simple point process S, we observe that dN(x) = 0 for all x 2/ S and dN(x) = d dx1fx2Sg. Hence, for any function f : R ! R, we have Z f (x)dN(x) = f (S )1 = f (S ). ∑ i fSi2Ag ∑ i x2A i2N Si2A Definition 1.1. The Laplace functional L of a point process S and associated counting process N is defined for all non-negative function f : Rd ! R as Z LS( f ) , Eexp − f (x)dN(x) . Rd Remark . f (x) = k t 1 For simple function ∑i=1 i1fx2Aig, we can write the Laplace functional k Z ! k ! LS( f ) = Eexp − ∑ ti dN(x) = Eexp − ∑ ti N(Ai) , i=1 Ai i=1 as a function of the vector (t1,t2,...,tk), a joint Laplace transform of the random vector (N(A1),..., N(Ak)). This way, one can compute all finite dimensional distribution of the counting process N. Proposition 1.2. The Laplace functional of the Poisson process with intensity measure L is Z − f (x) LS( f ) = exp − (1 − e )dL(x) . Rd d Proof. For a bounded Borel measurable set A 2 B(R ), consider g(x) = f (x)1fx2Ag. Then, Z Z LS(g) = Eexp(− g(x)dN(x)) = Eexp(− f (x)dN(x)). Rd A ( ) = L ( ) = E − ( ) Clearly dN x dx1fx2Sg and hence we can write S g exp ∑Si2S\A f Si . We know that the probability of N(A) = jS(A)j = n points in set A is given by L(A)n PfN(A) = ng = e−L(A) .
    [Show full text]
  • Arxiv:0803.1266V3 [Math-Ph] 10 Nov 2009 N N Mrvmn Eursabte Nesadn Fted the of Understanding Randomness
    DIFFRACTION OF STOCHASTIC POINT SETS: EXPLICITLY COMPUTABLE EXAMPLES MICHAEL BAAKE, MATTHIAS BIRKNER, AND ROBERT V. MOODY Abstract. Stochastic point processes relevant to the theory of long-range aperiodic order are considered that display diffraction spectra of mixed type, with special emphasis on explic- itly computable cases together with a unified approach of reasonable generality. The latter is based on the classical theory of point processes and the Palm distribution. Several pairs of autocorrelation and diffraction measures are discussed which show a duality structure analogous to that of the Poisson summation formula for lattice Dirac combs. 1. Introduction The discoveries of quasicrystals [53], aperiodic tilings [47, 39], and complex metallic alloys [60] have greatly increased our awareness that there is a substantial difference between the notions of periodicity and long-range order. Although pinning an exact definition to the con- cept of long-range order is not yet possible (nor perhaps desirable at this intermediate stage, compare the discussion in [56]), there is still some general agreement that the appearance of a substantial point-like component in the diffraction of a structure is a strong, though not a necessary, indicator of the phenomenon. Mathematically, the diffraction – say of a point set Λ in R3 – is the measure γ on R3 which is the Fourier transform of the volume averaged autocorrelation γ of Λ (or, more precisely, of its Dirac comb δΛ = x∈Λ δx). Over the past 20 years or so, considerableb effort has been put into understanding the mathematics of diffraction, especially conditions P under which Λ is pure point diffractive, in the sense that γ is a pure point measure, compare [32, 16, 55, 2, 8, 29, 42, 43].
    [Show full text]
  • Concentration of Measure for the Analysis of Randomised Algorithms
    Concentration of Measure for the Analysis of Randomised Algorithms Devdatt P. Dubhashi Alessandro Panconesi October 21, 2005 DRAFT 2 DRAFT Contents 1 Chernoff–Hoeffding Bounds 17 1.1 Whatis“ConcentrationofMeasure”?. 17 1.2 TheBinomialDistribution . 19 1.3 TheChernoffBound ......................... 19 1.4 HeterogeneousVariables . 21 1.5 TheHoeffdingExtension . 22 1.6 UsefulFormsoftheBound. 22 1.7 AVarianceBound .......................... 24 1.8 BibliographicNotes. .. .. 26 1.9 Problems................................ 27 2 Interlude: Probabilistic Recurrences 33 3 Applying the CH-bounds 39 3.1 Probabilistic Amplification . 39 3.2 LoadBalancing ............................ 40 3.3 DataStructures:SkipLists . 41 3.3.1 SkipLists: TheDataStructure . 41 3.3.2 Skip Lists: Randomization makes it easy . 42 3 DRAFT 4 CONTENTS 3.3.3 Quicksort ........................... 45 3.4 PacketRouting ............................ 47 3.5 RandomizedRounding . 49 3.6 BibliographicNotes. .. .. 49 3.7 Problems................................ 50 4 Chernoff-Hoeffding Bounds in Dependent Settings 55 4.1 NegativeDependence. 55 4.2 LocalDependence........................... 59 4.3 Janson’sInequality . .. .. 61 4.4 LimitedIndependence . 64 4.5 MarkovDependence ......................... 67 4.5.1 Definitions........................... 67 4.5.2 StatementoftheBound . 68 4.5.3 Application: Probability Amplification . 68 4.6 BibliographicNotes. .. .. 70 4.7 Problems................................ 71 5 Martingales and Azuma’s Inequality 73 5.1 Review of Conditional Probabilities and Expectations . ...... 74 5.2 Martingales and Azuma’s Inequality. 76 5.3 Generalizing Martingales and Azuma’s Inequality. ..... 81 5.4 The Method of Bounded Differences . 83 5.5 BibliographicNotes. .. .. 87 5.6 Problems................................ 88 DRAFT CONTENTS 5 6 The Method of Bounded Differences 91 6.1 Chernoff–HoeffdingRevisited . 91 6.2 Stochastic Optimization: Bin Packing . 92 6.3 Game Theory and Blackwell’s Approachability Theorem .
    [Show full text]
  • Lectures on the Poisson Process
    Lectures on the Poisson Process Gunter¨ Last and Mathew Penrose, Version from 21 August 2017, Commercial reproduction prohibited, to be published as IMS Textbook by Cambridge University Press, c Gunter¨ Last and Mathew Penrose Gunter¨ Last Institut f¨urStochastik, Karlsruhe Institute of Technology, Englerstraße 2, D-76128 Karlsruhe, Germany, [email protected] Mathew Penrose Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom, [email protected] Contents Preface page x List of Symbols xiii 1 Poisson and Other Discrete Distributions 1 1.1 The Poisson Distribution1 1.2 Relationships Between Poisson and Binomial Distributions3 1.3 The Poisson Limit Theorem4 1.4 The Negative Binomial Distribution5 1.5 Exercises7 2 Point Processes 9 2.1 Fundamentals9 2.2 Campbell’s Formula 12 2.3 Distribution of a Point Process 14 2.4 Point Processes on Metric Spaces 16 2.5 Exercises 18 3 Poisson Processes 19 3.1 Definition of the Poisson Process 19 3.2 Existence of Poisson Processes 20 3.3 Laplace Functional of the Poisson Process 23 3.4 Exercises 24 4 The Mecke Equation and Factorial Measures 26 4.1 The Mecke Equation 26 4.2 Factorial Measures and the Multivariate Mecke Equation 28 4.3 Janossy Measures 32 4.4 Factorial Moment Measures 34 4.5 Exercises 36 v vi Contents 5 Mappings, Markings and Thinnings 38 5.1 Mappings and Restrictions 38 5.2 The Marking Theorem 39 5.3 Thinnings 42 5.4 Exercises 44 6 Characterisations of the Poisson Process 46 6.1 Borel Spaces 46 6.2 Simple Point Processes 49 6.3 Renyi’s´ Theorem 50
    [Show full text]
  • Stochastic Geometry and Wireless Networks: Volume I Theory Contents
    Foundations and TrendsR in Networking Vol. 3, Nos. 3-4 (2009) 249–449 c 2009 F. Baccelli and B. Blaszczyszyn DOI: 10.1561/1300000006 Stochastic Geometry and Wireless Networks: Volume I Theory By Fran¸cois Baccelli and Bartlomiej Blaszczyszyn Contents I Classical Stochastic Geometry 259 1 Poisson Point Process 261 1.1 Definition and Characterizations 262 1.2 Laplace Functional 266 1.3 Operations Preserving the Poisson Law 269 1.4 Palm Theory 276 1.5 Strong Markov Property 282 1.6 Stationarity and Ergodicity 284 2 Marked Point Processes and Shot-Noise Fields 291 2.1 Marked Point Processes 291 2.2 Shot-Noise 300 2.3 Interference Field as Shot-Noise 305 2.4 Extremal Shot-Noise 316 3 Boolean Model 318 3.1 Boolean Model as a Coverage Process 318 3.2 Boolean Model as a Connectivity Model 329 4 Voronoi Tessellation 338 4.1 Introduction 338 4.2 The Inverse Formula of Palm Calculus 340 4.3 The Neveu Exchange Formula 343 4.4 Neighbors in the Voronoi Tessellation, Delaunay Triangulation 345 4.5 The Voronoi Tessellation Model for Cellular Access Networks 347 Bibliographical Notes on Part I 350 II Signal-to-Interference Ratio Stochastic Geometry 351 5 Signal-to-Interference Ratio Cells 353 5.1 Introduction 353 5.2 The Signal-to-Interference Ratio Cell is Well-Defined 355 5.3 Standard Stochastic Scenario and First Order Cell Characteristics 355 5.4 Fading in Signal-to-Interference Ratio Cell and Higher Order Characteristics 360 5.5 Noise or Interference Limited Cell: Towards a Boolean or Voronoi Shape 362 6 Interacting Signal-to-Interference Ratio Cells
    [Show full text]
  • Instructional Conference on Combinatorial Aspects of Mathematical Analysis Edinburgh, 25 March-5 April 2002
    Instructional Conference on Combinatorial Aspects of Mathematical Analysis Edinburgh, 25 March-5 April 2002 and Summer School on Singular Phenomena and Scaling in Mathematical Models Bonn, 10-13 June, 2003 MEASURE CONCENTRATION, TRANSPORTATION COST, AND FUNCTIONAL INEQUALITIES M. Ledoux University of Toulouse, France Abstract. — In these lectures, we present a triple description of the concentration of measure phenomenon, geometric (through Brunn- Minkoswki inequalities), measure-theoretic (through transportation cost inequalities) and functional (through logarithmic Sobolev inequalities), and investigate the relationships between these various viewpoints. Spe- cial emphasis is put on optimal mass transportation and the dual hy- percontractive bounds on solutions of Hamilton-Jacobi equations that offer a unified treatment of these various aspects. These notes survey recent developments around the concentration of measure phenomenon through various descriptions, geometric, measure theoretic and functional. These descriptions aim to analyze measure concentration for both product and (strictly) log-concave measures, with a special emphasis on dimension free bounds. Inequalities independent of the number of variables are indeed a key information in the study of a number of models in probability theory and statistical mechanics, with a view towards infinite dimensional analysis. To this task, we review the geometric tool of Brunn- Minkowski inequalities, transportation cost inequalities, and functional logarithmic Sobolev inequalities and semigroup methods. Connections are developed on the basis of optimal mass transportation and dual hypercontractive bounds on solutions of Hamilton-Jacobi equations, providing a synthetic view of these recent developments. Results and methods are only outlined in the simplest and basic setting. References to recent PDE extensions are briefly discussed in the last part of the notes.
    [Show full text]
  • Bayesian Nonparametrics Spring 2014
    Stat 362: Bayesian Nonparametrics Spring 2014 Bayesian nonparametrics 5 Feature models 5.1 Motivation A feature allocation table is a binary matrix which characterizes a set of objects (rows), with different features (columns). For example, consider Table 1. Female protagonist Action Comedy Biopic Gattaca 0 0 0 0 Side effects 1 1 0 0 The Iron Lady 1 0 0 1 Skyfall 0 1 0 0 Zero Dark Thirty 1 1 0 0 Table 1: Example of a feature allocation table for movies Given a feature allocation table (Zi`; 1 ≤ i ≤ n; 1 ≤ ` ≤ m), we can model a variety of data associated to the objects. The simplest example would be a linear regression model with normal random effects for each feature. Example (Gaussian linear model). Suppose there is a data point Xi for each object i. We assume m ! iid X Xi j Zi; (µ`) ∼ N Zi`µ`; 1 i = 1; : : : ; n `=1 iid µ` ∼ N (0; 1) ` = 1; : : : ; m: For example, Xi could be the amount of money grossed by movie i, and µ` an additive effect for each feature. We will be concerned with the situation where the features are not known and neither is the feature allocation table. We will assign a prior to (Zi`) and infer the latent features that best describe the data. Thus, our task has more in common with Principal Components Analysis than with linear regression, even though the resulting models can be useful for prediction. 1 Stat 362: Bayesian Nonparametrics Spring 2014 Clustering vs. feature allocation. We have discussed the Dirichlet Pro- cess as a tool for clustering data.
    [Show full text]
  • Course Notes for EE 87021 Advanced Topics in Random Wireless Networks
    Course Notes for EE 87021 Advanced Topics in Random Wireless Networks Martin Haenggi November 1, 2010 c Martin Haenggi, 2010 ii Contents I Point Process Theory 1 1 Introduction 3 1.1 Motivation . 3 1.2 Asymptotic Notation . 3 2 Description of Point Processes 5 2.1 One-dimensional Point Processes . 5 2.2 General Point Processes . 5 2.3 Basic Point Processes . 6 2.3.1 One-dimensional Poisson processes . 6 2.3.2 Spatial Poisson processes . 7 2.3.3 General Poisson point processes . 7 2.4 Distributional Characterization . 7 2.4.1 The distribution of a point process . 8 2.4.2 Comparison with numerical random variables . 8 2.4.3 Distribution of a point process viewed as a random set . 9 2.4.4 Finite-dimensional distributions and capacity functional . 9 2.4.5 Measurable decomposition . 10 2.4.6 Intensity measure . 11 2.5 Properties of Point Processes . 11 2.6 Point Process Transformations . 12 2.6.1 Shaping an inhomogeneous Poisson point process . 12 2.7 Distances . 14 2.8 Marked point processes . 14 3 Sums over Point Processes 17 3.1 Notation . 17 3.2 Campbell’s Theorem for the Mean . 18 3.3 The Probability Generating Functional . 19 3.3.1 The moment-generating function of the sum . 19 3.3.2 The characteristic or Laplace functional for the Poisson point process . 21 3.3.3 The probability generating functional for the Poisson point process . 21 3.3.4 Relationship between moment-generating function and the functionals . 22 3.4 Applications . 23 3.4.1 Mean interference in stationary point process .
    [Show full text]