Polarization Division Multiple Access with Polarization Modulation for LOS Wireless Communications Bin Cao1,2, Qin-Yu Zhang1* and Lin Jin1,3

Total Page:16

File Type:pdf, Size:1020Kb

Polarization Division Multiple Access with Polarization Modulation for LOS Wireless Communications Bin Cao1,2, Qin-Yu Zhang1* and Lin Jin1,3 Cao et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:77 http://jwcn.eurasipjournals.com/content/2011/1/77 RESEARCH Open Access Polarization division multiple access with polarization modulation for LOS wireless communications Bin Cao1,2, Qin-Yu Zhang1* and Lin Jin1,3 Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS) of electromagnetic (EM) waves for line-of-sight (LOS) communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation) and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate), the discussed polarization division multiple access (PDMA) and polarization modulation (PM) are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system. Keywords: polarized states, polarization division multiple access, polarization modulation, polarization filtering 1. Introduction multiple access (IDMA) which is a promising method Multiple access technique which is oriented from the for the next generation wireless systems [7] are pro- pioneering contributions of Shannon and Abramson posed and implemented in practical military and civil [1-3], is a key feature for modern wireless communica- systems. They use frequency, time, code, and interleaver tions and its networking design. With the exponentially as resources for multiuser allocation. growing demand of users, such as in cellular system, to As known to all, any electromagnetic (EM) waves implement the target of “anybody can communicate radiated by certain antenna with some polarization with anyone at anywhere via any communication mode hold polarization characteristics, and any polar- scheme“, the researchers are focusing on the multiple ized state (PS) can be represented by two orthogonal access technique design, wherein, frequency division components, thereby we know the orthogonally dualpo- multiple access (FDMA) used in the first wireless sys- larized antenna (ODPA). Polarization information tems, time division multiple access (TDMA) used in the denotes the relationship of amplitude and phase differ- second wireless systems [4], code division multiple ence between the two orthogonal components radiated access (CDMA) used in the second and third wireless by the ODPA, such as the vertical polarization and the systems [5], orthogonal frequency division multiple horizontal polarization components or +45° linear polar- access (OFDMA) used in the LTE, WiMAX, and the ization and -45° linear polarization components. Suc- fourth wireless systems [6], and the interleave division cessful application of polarization in the optical communications shows its special merits [8-11], while optical communications are different from wireless com- * Correspondence: [email protected] 1Communication Engineering Research Center, Shenzhen Graduate School, munications due to the transmitting medium and chan- Harbin Institute of Technology, Shenzhen, Guangdong, 518055, P. R. China nel. For wireless communications, channel is the key Full list of author information is available at the end of the article © 2011 Cao et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cao et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:77 Page 2 of 9 http://jwcn.eurasipjournals.com/content/2011/1/77 role to the system design. Therefore, the system design of the polar transmitter is shown as a key enabler of methodology of wireless communications is different future systems using OFDM scheme with high peak- from that of optical communications when taking polar- average-power ratio (PAPR) signals. ization into consideration. In this paper, we take a new angle of view at the Polarization of EM waves holds the unique feature application of polarization for wireless communications. that it is invariant in the time and frequency domains, We propose a novel multiple access and modulation as well as it is independent of frequency and space scheme [polarization division multiple access (PDMA) domains. While polarization does not attract much and polarization modulation (PM)] using polarization attention in wireless communications until some new which is theoretically different from the above-men- findings, such as six-polarization, polarization filtering tioned polar modulation for short range wireless com- (PF) and polarization diversity, have been researched munications, and the application scenario is assumed as and applied [12-23]. Considering the applications of PF a line-of-sight (LOS) wireless communications. If trans- in radar and wireless communications for example mitter and receiver are in non-LOS, then the PS [17-23], the usage of polarization extends the available changes after reflecting, diffracting, and scattering by resource domains when dealing with interference sup- objects, and the phenomenon analysis is considerably pressions and signal separations problems. complicated due to the dielectric parameter of the Commonly used resources are time, frequency, space reflector. For the analysis of dielectric parameter, it is and code domains, and the corresponding applications out of scope of this work. Hence, we analyze the appli- are TDMA, FDMA, space division multiple access cation of the proposed PDMA-PM in LOS scenario. (SDMA), CDMA, OFDMA, and IDMA. Recently, some The proposed scheme holds no relationship with the designs based on polarization are researched and devel- parameters of the signals, because the polarization is oped [24-31], such as polar modulation in the enhance independent of the waveform. The bit information is data rates for global evolution (EDGE) system focusing carried by a pair of orthogonal PS of EM waves in the on overcoming the problems of high power consump- binary modulation, while bits of quaternary modulation tion, low efficiency, excessive heat and short battery life is implemented by a set of orthogonal polarization and due to the requirement of linear power amplifier when cross-polarization, and other high-order modulation 3π schemes can be extended in a straightforward way. Dif- adopting -8PSK modulation technique. In the exiting 8 ferent users can be distinguished through making use of polar modulation introduced into EDGE, the orthogonal different PS. Furthermore, we can also combine the pro- output from I/Q channels is transformed into the polari- posed PDMA with the FDMA, i.e., PDMA-FDMA, or to zation format, i.e., one is the amplitude component and overcome the problem of high PAPR in OFDMA sys- the other is the phase component before being sent to tems, we can also utilize PDMA-OFDMA. It is proved the transmitter, as shown in Figure 1. This makes the that the desired signal can be achieved and demodulated radio frequency circuit (in saturation mode) and the by taking advantage of PF technique. From another power amplifier can modulate the linear but non-con- point of view, it can be used independently besides the stant-envelope signal which has the advantages of small time, frequency, space and code domains. Furthermore, electric current and high utilization efficiency. Another high spectrum utilization efficiency is expected to be aspect of the use of polar modulation is that future obtained. Some theoretical deduction and analysis are wireless communications requires multimode radio done to demonstrate the feasibility of the suggested transceivers, i.e., flexible capability with low power con- method, and the simulation results are made to show sumption. In [31], the authors discussed the multimode the effectiveness of the proposed scheme. capability and low power consumption of polar modula- To the best of our knowledge, this is the first work tion based systems by a prototype design of a GSM, that applies PS to wireless communications for modula- EDGE, and WCDMA polar transmitter. The efficiency tion and multiple access design. The existing application Figure 1 Transmitter block diagram of the polar modulation systems. Cao et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:77 Page 3 of 9 http://jwcn.eurasipjournals.com/content/2011/1/77 of PS is in the field of optical communications, and where arg{x} indicates the argument of vector x. After Polar modulation is used to solve problems of high being radiated by the ODPA, the EM wave may produce power consumption, low efficiency, excessive heat and the so-called cross-polarization (XP) component whose short batter life due to the requirement
Recommended publications
  • Use Style: Paper Title
    AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications Proposal of Power Saving Techniques for Wireless Terminals Using CAZAC-OFDM Scheme Takanobu Onoda, Ryota Ishioka and Masahiro Muraguchi Department of Electrical Engineering, Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-0051, Japan E-mail: [email protected], [email protected], [email protected] Abstract— A major drawback of Orthogonal Frequency spectral efficiency, and additional power consumption of Division Multiplexing (OFDM) signals is extremely high DSPs. Peak-to-Average Power Ratio (PAPR). Signals with high On the other approach to overcome the problem, some PAPR lead to a lowering of the energy efficiency of the circuit topology for high-efficiency OFDM power amplifier Power Amplifiers (PAs) and the shortened operation time design have been proposed [2]. Here, a polar modulation PA, causes a serious problem in battery-powered wireless or an envelope tracking PA, is the most promising one. In the terminals. In this paper, we propose a new power saving polar modulation, OFDM signal is separated into phase technique for wireless terminals. It is the combination of modulation (PM) component and amplitude modulation a polar modulation technique and Constant Amplitude (AM) one. The PM component is input to the PA as the Zero Auto-Correlation (CAZAC) equalizing technique. quadrature signal with constant amplitude. On the other, the Proposed the polar modulation technique for the PA AM component is used as envelope tracking data, which employs a current control by changing the common-gate supplies to the PA as drain DC biasing from adaptive output stage bias in a cascade amplifier circuit.
    [Show full text]
  • Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications
    Design and Implementation of a Broadband RF-DAC Transmitter for Wireless Communications Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Niklas Zimmermann aus Münster Berichter: Universitätsprofessor Dr.-Ing. Stefan Heinen Universitätsprofessor Dr.-Ing. Gerd Ascheid Tag der mündlichen Prüfung: 1. Juli 2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. ISBN 978-3-8439-0042-3 D 82 (Diss. RWTH Aachen University, 2011) © Verlag Dr. Hut, München 2011 Sternstr. 18, 80538 München Tel.: 089/66060798 www.dr.hut-verlag.de Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene fehlerhafte Angaben und deren Folgen. Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor. 1. Auflage 2011 To the memory of my father, Gebhard Zimmermann Acknowledgment First of all, I want to thank Prof. Dr.-Ing. Stefan Heinen. This thesis would not have been possible without him, as he gave me the opportunity to work on this exciting topic and shared his rich experience in the field of RF and analog circuit and system design with me.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications a Dissertation Submitt
    UNIVERSITY OF CALIFORNIA, SAN DIEGO CMOS RF Power Amplifier Design Approaches for Wireless Communications A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) by Sataporn Pornpromlikit Committee in charge: Professor Peter M. Asbeck, Chair Professor Prabhakar R. Bandaru Professor Andrew C. Kummel Professor Lawrence E. Larson Professor Paul K.L. Yu 2010 Copyright Sataporn Pornpromlikit, 2010 All rights reserved. The dissertation of Sataporn Pornpromlikit is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Chair University of California, San Diego 2010 iii DEDICATION To my family. iv EPIGRAPH ”Education is what remains after one has forgotten what one has learned in school.” — Albert Einstein v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph.......................................v Table of Contents.................................. vi List of Figures.................................... viii List of Tables.................................... xi Acknowledgements................................. xii Vita......................................... xiv Abstract of the Dissertation............................. xv Chapter 1 Introduction.............................1 1.1 CMOS Technology and Scaling...............2 1.2 Toward Fully-Integrated CMOS Transceivers........4 1.3 Power Amplifier Design...................5
    [Show full text]
  • Pulse-Width Modulated RF Transmitters
    Linköping Studies in Science and Technology Thesis No 1822 Pulse-Width Modulated RF Transmitters Muhammad Fahim Ul Haque Division of Computer Engineering Department of Electrical Engineering Linköping University SE–581 83 Linköping, Sweden Linköping 2017 Linköping Studies in Science and Technology Thesis No 1822 Muhammad Fahim Ul Haque [email protected] www.da.isy.liu.se Division of Computer Engineering Department of Electrical Engineering Linköping University SE–581 83 Linköping, Sweden Copyright © 2017 Muhammad Fahim Ul Haque, unless otherwise noted. All rights reserved. ISBN 978-91-7685-598-0 ISSN 0345-7524 IEEE holds the copyright for Papers B, E, and F. Printed by LiU-Tryck, Linköping, Sweden 2017 To my mother, father, and uncle (mamoo), Abstract The market for wireless portable devices has grown significantly over the recent years. Wireless devices with ever-increased functionality require high rate data transmission and reduced costs. High data rate is achieved through communi- cation standards such as LTE and WLAN, which generate signals with high peak-to-average-power ratio (PAPR), hence requiring a power amplifier (PA) that can handle a large dynamic range signal. To keep the costs low, modern CMOS processes allow the integration of the digital, analog and radio functions on to a single chip. However, the design of PAs with large dynamic range and high efficiency is challenging due to the low voltage headroom. To prolong the battery life, the PAs have to be power-efficient as they consume a sizable percentage of the total power. For LTE and WLAN, traditional transmitters operate the PA at back-off power, below their peak efficiency, whereas pulse-width modulation (PWM) transmitters use the PA at their peak power, resulting in a higher efficiency.
    [Show full text]
  • Pseudo-Polar Modulation for Radio Transmitters Pseudopolare Modulation Für Funksender Modulation Pseudopolaire Pour Emetteurs Radio
    (19) TZZ_66_ __T (11) EP 1 661 241 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H03C 5/00 (2006.01) 05.12.2012 Bulletin 2012/49 (86) International application number: (21) Application number: 04778052.3 PCT/US2004/022345 (22) Date of filing: 13.07.2004 (87) International publication number: WO 2005/020430 (03.03.2005 Gazette 2005/09) (54) PSEUDO-POLAR MODULATION FOR RADIO TRANSMITTERS PSEUDOPOLARE MODULATION FÜR FUNKSENDER MODULATION PSEUDOPOLAIRE POUR EMETTEURS RADIO (84) Designated Contracting States: (72) Inventor: DENT, Paul, W. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Pittsboro, NC 27312 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR (74) Representative: Lundqvist, Alida Maria Therése et (30) Priority: 11.08.2003 US 639164 al BRANN AB (43) Date of publication of application: P.O. Box 12246 31.05.2006 Bulletin 2006/22 102 26 Stockholm (SE) (60) Divisional application: (56) References cited: 10179396.6 / 2 278 703 EP-A- 1 035 701 GB-A- 2 363 535 US-A- 5 420 536 US-B1- 6 194 963 (73) Proprietor: Telefonaktiebolaget L M Ericsson (Publ) 12625 Stockholm (SE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid.
    [Show full text]
  • Digital Polar Transmitter for Multi-Band OFDM Ultra-Wideband
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS DIGITAL POLAR TRANSMITTER FOR MULTI-BAND OFDM ULTRA-WIDEBAND LOKE WING FAI A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 ABSTRACT Multi-Band Orthogonal Frequency Division Modulation (MB-OFDM) Ultra- Wideband (UWB) suffers from a large peak-to-average ratio (PAR). Systems with large PAR require the linear power amplifier (PA) to back off from its maximum output power to ensure that the peak of the power is within the linear range of operation, hence, resulting in poor efficiency. Although the problem of low power efficiency and high PAR may be solved by polar modulation, the performance of polar transmitter is often degraded by non-ideal implementations. This thesis studies the requirements for the envelope and phase signals in polar transmitter for UWB at system level. Results show that the bandwidth of the phase in the polar transmitter needs to be several times the bandwidth of in-phase (I) and quadrature phase (Q) in order to pass the Error Vector Magnitude (EVM) requirement in ECMA standard. On the other hand, the bandwidth of the amplitude does not need to have a bandwidth as large as the bandwidth of the phase – it needs to be only slightly larger than the bandwidth of I/Q. To take advantage of the advancement of deep-submicron semiconductor technology which favors more digital circuitries, a new digital polar transmitter (DPT) for MB- OFDM UWB is proposed.
    [Show full text]
  • A 2.4 Ghz Phase Modulator for a Wlan Ofdm Polar Transmitter in 0.18 Um Cmos
    A 2.4 GHZ PHASE MODULATOR FOR A WLAN OFDM POLAR TRANSMITTER IN 0.18 UM CMOS A Dissertation by SHOKOUFEH ARBABI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Kamran Entesari Committee Members, Sunil Khatri Samuel Palermo Ben Zoghi Head of Department, Chanan Singh December 2014 Major Subject: Electrical Engineering Copyright 2014 Shokoufeh Arbabi ABSTRACT This research focuses on the design and implementation of a digital active phase modulator path of a polar transmitter in the case of orthogonal frequency division multiplex WLAN application. The phase modulation path of the polar transmit- ter provides a constant envelope phase modulated signal to the Power amplifier (PA) , operating in nonlinear high efficient switching mode. The core design of the phase modulator is based on linear vector-sum phase shifting topology to differential quadrature input signals. The active phase shifter consists of a DAC that generates binary weighted currents for I and Q branches and differential signed adder that vector-sums the generated quadrature currents to generate the phase at the output.6 bits control the phase shifter, creating 64 states with the resolution of 5:625 ◦ for the whole 360 ◦. The linear (binary weighted) vector-sum technique generates a reduc- tion in the resultant amplitude that should be taken into consideration in case of nonlinear PA in polar transmission. On the other hand, the digital phase informa- tion is applied as the control bits to the phase shifter that determine the weightings and the signs of the I and Q vectors.
    [Show full text]
  • Class E Amplifiers and Their Modulation Behaviour
    Class E Amplifiers and their Modulation Behaviour David Paul Kimber A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Electronic, Electrical and Computer Engineering School of Engineering The University of Birmingham December 2005 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The Class E power amplifier has very high drain efficiency under quasi-static conditions, and is a good candidate for Envelope Elimination and Restoration (EER) or other polar techniques. Unfortunately it has an unusual carrier frequency response, for which no analytic expression was known; this may have limited commercial use of the circuit. Two new steady state analyses are presented, which give the carrier frequency response in simple form, together with expressions for component values. Good agreement with measured data and existing numerical solutions is seen. Previous attempts at characterising the amplitude modulation (AM) behaviour of this circuit have assumed that it can be modelled as a first order low pass filter. It is shown that Class E AM can be modelled as an equivalent circuit, which behaves as a second order low pass filter.
    [Show full text]
  • Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures
    Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures Jason Thaine Stauth Seth R. Sanders Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-22 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-22.html February 4, 2009 Copyright 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures by Jason Thaine Stauth B.A. (Colby College) 1999 B.E. (Dartmouth College) 2000 M.S. (University of California, Berkeley) 2006 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in Charge Professor Seth R. Sanders, Chair Professor Ali M. Niknejad Professor Paul K. Wright Fall 2008 The dissertation of Jason Thaine Stauth is approved: Chair Date Date Date University of California, Berkeley Fall 2008 JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR1`VH R1$1 :CQR%C: 1QJ `H.1 VH %`V Q]7`1$. 7 :QJ.:1JV :% . 1 G `:H JV`$7``1H1VJ 1`VCV`:JI1 V`7QC:`:JR 1`VH R 1$1 :C"QR%C: 1QJ #`H.1 VH %`V 7 :QJ.:1JV :% .
    [Show full text]
  • A Fully-Integrated All-Digital Outphasing Transmitter for Wireless
    A Fully-Integrated All-Digital Outphasing Transmitter for Wireless Communications A Dissertation Presented to The Academic Faculty by Kwan-Woo Kim In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2009 Copyright 2009 by Kwan-Woo Kim A Fully-Integrated All-Digital Outphasing Transmitter for Wireless Communications Approved by: Dr. Joy Laskar, Advisor Dr. Emmanouil M. Tentzeris School of Electrical and Computer School of Electrical & Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Chang-Ho Lee Dr. David E. Schimmel School of Electrical & Computer School of Electrical & Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Ravi V. Bellamkonda Department of Biomedical Engineering Date Approved: Nov. 06, 2009 Georgia Institute of Technology ACKNOWLEDGEMENTS First, I would like to appreciate the enthusiastic supervision of my research advisor, Professor Joy Laskar. He has always supported my research with great motivation and provided an excellent research environment. Without his guidance and support, this research would not be completed. I am also grateful to my committee members, Professor Emmanouil M. Tentzeris, Professor Chang-Ho Lee, Professor David E. Schimmel, and Professor Ravi V. Bellamkonda for their time in reviewing my thesis. I would like to specially thank Dr. Kyutae Lim for his helpful guidance, deep discussion through the research work. I also would like to thank Dr. Chang-Ho Lee again for his generous support for my research. I am greatly indebted my colleague members in Microwave Application Group (MAG) for making good environment as a team supporting each other.
    [Show full text]
  • AD9914 (Rev. E)
    3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC Data Sheet AD9914 FEATURES FUNCTIONAL BLOCK DIAGRAM 3.5 GSPS internal clock speed AD9914 HIGH SPEED PARALLEL Integrated 12-bit DAC MODULATION Frequency tuning resolution to 190 pHz PORT 16-bit phase tuning resolution 12-bit amplitude scaling Programmable modulus Automatic linear and nonlinear frequency sweeping LINEAR SWEEP 3.5GSPS DDS CORE 12-BIT DAC capability BLOCK 32-bit parallel datapath interface 8 frequency/phase offset profiles Phase noise: −128 dBc/Hz (1 kHz offset at 1396 MHz) Wideband SFDR < −50 dBc Serial or parallel input/output control REF CLK 1.8 V/3.3 V power supplies MULTIPLIER TIMING AND CONTROL Software and hardware controlled power-down 88-lead LFCSP package PLL REF CLK multiplier SERIAL OR PARALLEL Phase modulation capability DATA PORT Amplitude modulation capability 10836-001 APPLICATIONS Figure 1. Agile LO frequency synthesis Programmable clock generator FM chirp source for radar and scanning systems Test and measurement equipment Acousto-optic device drivers Polar modulator Fast frequency hopping Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2012–2016 Analog Devices, Inc.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,826,554 B2 Haque Et Al
    US007826554B2 (12) United States Patent (10) Patent No.: US 7,826,554 B2 Haque et al. (45) Date of Patent: Nov. 2, 2010 (54) DIGITAL TRANSMITTER 6,560,296 B1 5/2003 Glaset al. 6,587,010 B2 * 7/2003 Wagh et al. ................. 332,105 (75) Inventors: Tanbir Haque, Jackson Heights, NY 6,801,784 B1 10, 2004 Rozenblit et al. ... 455,522 (US); Leonid Kazakevich, Plainview, 7,092,269 B1* 8/2006 Westberg .................... 363 132 NY (US) 7,158,494 B2 1/2007 Sander et al. 2004/0081252 A1 4/2004 Hsu 2004/0203472 A1* 10, 2004 Chien .......................... 455.68 (73) Assignee: estigital Technology Corporation, 2005/0123029 A1* 6/2005 Vorenkamp et al. ......... 375.222 Wilmington, DE (US) 2005/0135282 A1* 6/2005 Miyoshi et al. ............. 370,278 (*) Notice: Subject to any disclaimer, the term of this 2007/0030.19657. A1A 6'572/2007 Jenkins"... et al. ........... 3427357.1 455,522 patent is extended or adjusted under 35 2009/0034660 A1* 2/2009 May et al. ................... 375/340 U.S.C. 154(b) by 665 days. 2009/0275290 A1* 11/2009 Hosokawa ............... 455/67.13 (21) Appl. No.: 11/685,003 * cited by examiner 1-1. Primary Examiner David C Payne (22) Filed: Mar 12, 2007 Assistant Examiner—Leon-Viet Q Nguyen (65) Prior Publication Data (74) Attorney, Agent, or Firm Volpe and Koenig PC US 2007/0211821 A1 Sep. 13, 2007 (57) ABSTRACT Related U.S. Application Data In a digital Cartesian modulation transmitter, an encodergen erates 1-bit logic signals from in-phase and quadrature sig (60) Provisional application No.
    [Show full text]