Direct Calculation of Thermodynamic Wet-Bulb Temperature As a Function of Pressure and Elevation

Total Page:16

File Type:pdf, Size:1020Kb

Direct Calculation of Thermodynamic Wet-Bulb Temperature As a Function of Pressure and Elevation AUGUST 2013 S A D E G H I E T A L . 1757 Direct Calculation of Thermodynamic Wet-Bulb Temperature as a Function of Pressure and Elevation SAYED-HOSSEIN SADEGHI AND TROY R. PETERS Washington State University, Prosser, Washington DOUGLAS R. COBOS Decagon Devices, Pullman, Washington HENRY W. LOESCHER National Ecological Observatory Network, and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado COLIN S. CAMPBELL Decagon Devices, Pullman, Washington (Manuscript received 6 September 2012, in final form 29 January 2013) ABSTRACT A simple analytical method was developed for directly calculating the thermodynamic wet-bulb temper- ature from air temperature and the vapor pressure (or relative humidity) at elevations up to 4500 m above MSL was developed. This methodology was based on the fact that the wet-bulb temperature can be closely approximated by a second-order polynomial in both the positive and negative ranges in ambient air tem- perature. The method in this study builds upon this understanding and provides results for the negative range of air temperatures (2178 to 08C), so that the maximum observed error in this area is equal to or smaller than 20.178C. For temperatures $08C, wet-bulb temperature accuracy was 60.658C, and larger errors corre- sponded to very high temperatures (Ta $ 398C) and/or very high or low relative humidities (5% , RH , 10% or RH . 98%). The mean absolute error and the root-mean-square error were 0.158 and 0.28C, respectively. 1. Introduction from the measured volume of air (Monteith 1965). The importance of this first principle is better realized when First principles dictate that for any given ambient air the T and T measured at both a surface level (boundary mass, the difference between aspirated (well coupled) a w condition) and at different heights, that is, reference air temperature that includes ambient water vapor (dry- levels, can be used to estimate the evapotranspiration bulb temperature T ) and the temperature of the same a vertically through these two levels, for example, through air mass (wet-bulb temperature T ) at saturation pro- w a leaf or a canopy surface (Slatyer and McIlroy 1961; vides a direct measurement of the amount of water vapor Alves et al. 2000; Balogun et al. 2002a,b). that air mass contains. This estimate can be determined Wet-bulb temperature is a basic hydrostatic, physical as both relative and absolute quantities (Loescher et al. quantity that can be used to estimate basic physical 2009). In other words, T is the temperature that a vol- w weather parameters (Stull 2011). Some applied appli- ume of air would have if cooled adiabatically to satura- cations of T include linking surface and boundary layer tion at a constant pressure where all the heat energy came w flows (Wai and Smith 1998) and interpreting surface scalar fluxes using physical properties (Loescher et al. Corresponding author address: Troy Peters, Washington State 2006), while practical applications may be determining University, 24106 N. Bunn Rd., Prosser, WA 99350. the efficiency of industrial coolers (Gan and Riffat 1999), E-mail: [email protected] managing hydrological resources (Dunin and Greenwood DOI: 10.1175/JTECH-D-12-00191.1 Ó 2013 American Meteorological Society Unauthenticated | Downloaded 09/23/21 02:57 PM UTC 1758 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 30 1986), and identifying saturated adiabats on thermody- 2 1 2 5 ea es(Tw*) gPa(Ta Tw*) 0, (4) namic isopleths (Stull 2000). 2 Another commonplace and important application of where g is the psychometric constant (8C 1) defined by 21 21 Tw is in agricultural research and management, and its g 5 Cp/Ly ’ 0.4[gwater (kgair) K ] (where Cp is the determination has important implications on agronomic specific heat of moist air at constant pressure and Ly is economies. For instance, Tw is used to determine (i) the latent heat of vaporization). The historical approach the amount of time and energy required to dry grain of using B in Eq. (1) converts the temperature depression to a stable storage moisture content (Schmidt and into vapor pressure deficit through the estimation of Waite 1962), (ii) frost protection for fruit crops (e.g., empirical coefficients and empirical quantification of the G. Hoogenboom 2012, personal communication), and latent energy. Substituting gPa for B in Eq. (4) takes the (iii) minimum temperature forecasts on relatively clear same form of unit conversion but removes the uncer- nights (Angstrom€ 1920, abstracted in Smith 1920). tainty from the empirical coefficients. The determination of the theoretical thermodynamic Because Eq. (1) [or Eq. (4)] has no direct solution for wet-bulb temperature can be solved by the following Tw (or Tw*), typically a trial-and-error process is carried equation (ASABE 2006): out to find an accurate estimation. Using computers, this requires considerable amounts of CPU time to analyze 2 5 2 es(Tw) ea B(Tw Ta), (1) large weather databases. Alternatively, one can employ a graphical solution by through the use psychrometric where e is the ambient vapor pressure (kPa), T is the a a diagrams (ASHRAE 1997). This latter method, however, dry-bulb temperature (K), e (T ) is the saturated vapor s w has large associated uncertainties because of human er- pressure at T (kPa), and B is the thermodynamic psy- w rors (Brooker 1967) and must use a priori, predetermined chometric constant given by curve fits for each value of the atmospheric pressure. e Noniterative and analytical approaches have been m[e (T ) 2 P ] 1 1 n a s w a suggested to calculate Tw. Sreekanth et al. (1998) used Pa B 5 . (2) artificial neural networks that require relative humidity qhfg (RH) and the dewpoint temperature (Td) estimates as input variables. Chappell et al. (1974) calculated Tw by In Eq. (2), m, n, and q are empirical coefficients; Pa is the estimating the amount of dry air needed to dry a given atmospheric pressure head (kPa); and hfg is the latent 2 heat of vaporization of water at T (J kg 1) defined by mass of moist air through an isobaric and adiabatic pro- w 6 8 Brooker (1967) and where cedure, and they reported an accuracy of 1 C across ambient ranges of atmospheric temperature and pressure 5 2 2 : when wet-bulb depressions were ,308C. Chau (1980) hfg r s(Tw 273 16). (3a) presented empirical equations to find the Tw by dividing Both r and s are empirically determined coefficients. the psychrometric chart into seven arbitrary ranges that 2 8 8 2 8 Equation (3a) is valid when 08 # Tw # 65.68C. For neg- span Ta values of 32 to 260 CandTd values of 32 to 8 ative values of Tw (217.88 # Tw # 08C), hfg in Eq. (2) must 40 C, but found this technique only to be accurate (and be replaced by the latent heat of sublimation (hig)atTw valid) at sea level. (Brooker 1967), such that The crux of all of the above-mentioned solutions re- quires known Td temperatures to derive Tw. Alterna- 5 2 2 : hig t u(Tw 255 38), (3b) tively, some studies have combined estimates of Ta and RH with either a third-order polynomial equation for where both r and s are empirically determined coef- es(Tw*) [as in the case with Tejeda-Martı´nez (1994)] or ficients. Also, Pa can be determined as (Campbell and with gene-expression programming (i.e., Stull 2000) to Norman 1998) derive the wet-bulb temperature. Both studies found this methodology was not valid for ambient conditions 2H with low values of T (i.e., ,108C), and/or with low values P 5 101:3 exp , (3c) a a 8200 of RH (i.e., Stull 2000). The Stull (2000) methodology was also only valid at sea level. with H being the elevation (m). Additional uncertainties are the result in the choice of If we assume that the thermodynamic wet-bulb tem- which value of the psychrometric constant is used, par- perature [from Eq. (1)] and the wet-bulb temperature Tw* ticularly when (i) a constant value is chosen [e.g., 6.53 3 2 2 2 (empirical, measured by a thermometer) are approxi- 10 4 8C 1 (Tejeda-Martı´nez 1994), 6.67 3 10 4 (Schurer 2 2 2 2 mately the same, then Eq. (1) takes the following form: 1981), and 5.68 3 10 4 8C 1 to 6.42 3 10 4 8C 1 when Unauthenticated | Downloaded 09/23/21 02:57 PM UTC AUGUST 2013 S A D E G H I E T A L . 1759 ~ Tw # 08 and 08,Tw , 308C(Simoes-Moreira 1999)] and TABLE 1. Coefficients for calculating saturated vapor pressure of (ii) theoretical estimations of g outlined in Eq. (1) are pure water as a function of temperature after Buck (1981). ~ being questioned empirically (Simoes-Moreira 1999; Temp interval (8C) ab c Loescher et al. 2009). As such, these studies have em- 0 to 50 0.611 17.368 238.88 pirically shown that g is independent of Ta and Pa 240 to 0 0.611 17.966 247.15 (Simoes-Moreira~ 1999; Loescher et al. 2009), and they have demonstrated its value is strongly dependent on T (Simoes-Moreira^ 1999) and the wet-bulb depression w 2 8 # , 8 8 # # 8 (Loescher et al. 2009). Tw* ranges, that is, 30 Tw* 0 C and 0 Tw* 40 C, The objective of this study is to derive a direct solution and in preliminary analyses, Eq. (6) closely followed the shape of a second-order polynomial (Fig. 1). Not sur- for calculating the Tw at any desired elevation while maintaining the high levels of accuracy needed for most prisingly, this relationship was more curvilinear for applications.
Recommended publications
  • 1 Supplementary Material the Blue Water Footprint of Electricity from Hydropower B Corresponding Author
    Supplementary material The blue water footprint of electricity from hydropower Mesfin M. Mekonnena,b and Arjen Y. Hoekstraa aDepartment of Water Engineering and Management, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands b corresponding author: [email protected] Method The water footprint of electricity (WF, m3/GJ) generated from hydropower is calculated by dividing the amount of water evaporated from the reservoir annually (WE, m3/yr) by the amount of energy generated (EG, GJ/yr): WE WF (1) EG The total volume of evaporated water (WE, m3/yr) from the hydropower reservoir over the year is: 365 WE 10 E A t1 (2) where E is the daily evaporation (mm/day) and A the area of the reservoir (ha). There are a number of methods for the measurement or estimation of evaporation. These methods can be grouped into several categories including (Singh and Xu, 1997): (i) empirical, (ii) water budget, (iii) energy budget, (iv) mass transfer and (v) a combination of the previous methods. Empirical methods relate pan evaporation, actual lake evaporation or lysimeter measurements to meteorological factors using regression analyses. The weakness of these empirical methods is that they have a limited range of applicability. The water budget methods are simple and can potentially provide a more reliable estimate of evaporation, as long as each water budget component is accurately measured. However, owing to difficulties in measuring some of the variables such as the seepage rate in a water system the water budget methods rarely produce reliable results in practice (Lenters et al., 2005, Singh and Xu, 1997).
    [Show full text]
  • Asce Standardized Reference Evapotranspiration Equation
    THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION Task Committee on Standardization of Reference Evapotranspiration Environmental and Water Resources Institute of the American Society of Civil Engineers January, 2005 Final Report ASCE Standardized Reference Evapotranspiration Equation Page i THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION PREPARED BY Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute TASK COMMITTEE MEMBERS Ivan A. Walter (chair), Richard G. Allen (vice-chair), Ronald Elliott, Daniel Itenfisu, Paul Brown, Marvin E. Jensen, Brent Mecham, Terry A. Howell, Richard Snyder, Simon Eching, Thomas Spofford, Mary Hattendorf, Derrell Martin, Richard H. Cuenca, and James L. Wright PRINCIPAL EDITORS Richard G. Allen, Ivan A. Walter, Ronald Elliott, Terry Howell, Daniel Itenfisu, Marvin Jensen ENDORSEMENTS Irrigation Association, 2004 ASCE-EWRI Task Committee Report, January, 2005 ASCE Standardized Reference Evapotranspiration Equation Page ii ABSTRACT This report describes the standardization of calculation of reference evapotranspiration (ET) as recommended by the Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute of the American Society of Civil Engineers. The purpose of the standardized reference ET equation and calculation procedures is to bring commonality to the calculation of reference ET and to provide a standardized basis for determining or transferring crop coefficients for agricultural and landscape use. The basis of the standardized reference ET equation is the ASCE Penman-Monteith (ASCE-PM) method of ASCE Manual 70. For the standardization, the ASCE-PM method is applied for two types of reference surfaces representing clipped grass (a short, smooth crop) and alfalfa (a taller, rougher agricultural crop), and the equation is simplified to a reduced form of the ASCE–PM.
    [Show full text]
  • Introduction to Psychrometry 1A1–1A 1A1–1B Introduction To
    Chapter 1 Page Page Chapter 1 – Introduction to Psychrometry 1a1–1a 1a1–1b Introduction to Notes Notes Psychrometry Learning Outcomes Learning Outcomes: When you have studied this chapter you should be able to: 1 Explain what is meant by the term ‘Psychrometry’. 2. Relate ‘Dalton’s law of Partial Pressures’ to the term ‘Atmospheric Pressure’. Introduction 3. Explain what is meant by the term ‘Saturated Vapour Pressure’. to 4. Use a ‘Psychrometric Chart to find: a. A saturated vapour pressure for a given temperature. — Psychrometry Find, for a given air sample, the following: b. The moisture content c. The percentage saturation d. The relative humidity. 5. Explain what is meant by the ‘wet-bulb’ temperature and its use in the ‘psychrometric equation’. 6. Show how the Psychrometric Chart is used to determine: a. Dew-point temperature b. Specific Enthalpy Suggested Study Time: (a) For study of chapter material; Chapter 1 (i) Initial on-screen study 1 hour (ii) Printing of notes and subsequent in-depth study 2 hours (b) For completion of the quick revision study guide ½ hour Total estimated study time 3½ hours Page2a1–2a Page2a1–2b Chapter 1 – Introduction to Psychrometry Notes Notes Chapter Contents Item page Learning Outcomes 1-1b Introduction to Psychrometry 1-3a The Atmosphere 1-3a Water Vapour 1-4a Saturated Vapour Pressure 1-5a Psychrometric Chart (Theory) 1-5b Moisture content 1-6a Relative humidity 1-6b Percentage saturation 1-7a Relationship between g, m and rh 1-7b — Comparision of percentage saturation & rh 1-8a Wet-bulb temperature 1-8b 1. The Sling Wet-bulb 1-8b 2.
    [Show full text]
  • Good Agricultural Practices for Greenhouse Vegetable Crops - Principles for Mediterranean Climate Areas FAO 491 I3284E/1/04.13 076 in This Region
    I3284E-copertina-final.pdf 1 03/06/2013 16:41:59 FAO PLANT PRODUCTION AND PROTECTION PAPER 217 Good Agricultural Practices for Greenhouse Vegetable Crops - Principles for Mediterranean Climate Areas FAO Good Agricultural Practices for Greenhouse Vegetable Good Agricultural Practices This publication capitalizes on the experience of scientists from the North Africa and Near East countries, in collaboration with experts from around the world, specialized in the different aspects of greenhouse crop for greenhouse vegetable crops production. It provides a comprehensive description and assessment of the greenhouse production practices in use in Mediterranean climate areas that have helped diversify vegetable production and increase productivity. Principles for Mediterranean climate areas C Guidance is provided on potential areas for improvement of greenhouse cultivation. More specifically the document aims at strengthening technical M capacity in the use of Good Agriculture Practices (GAP) as a means to Y improve product quality and safety, and achieve sustainable production CM intensification of greenhouse vegetables in countries in Mediterranean MY climate areas. The publication is also meant to be used as a reference and tool for trainers and growers as well as other CY actors in the greenhouse vegetables value chain CMY in this region. K ISBN 978-92-5-107649-1 Ministry of Agriculture 9 789251 076 491 I3284E/1/04.13 NCARE I3284E-copertina-final.pdf 1 03/06/2013 16:41:59 217 C M Y CM MY CY CMY K FAO information products are available on the
    [Show full text]
  • Methods of Oabservation At
    WORLD METEOROLOGICAL ORGANIZATION TECHNICALTECHNICAL NOTE NOTE No. No. 123 2 THEMETHODS ASSESSMENT OF OABSERVATION OF HUMAN BIOCLIMATE AT SEA A LIMITED REVIEW OF PHYSICAL PARAMETERS PART I – SEA SURFACE TEMPERATURE by Professor H.E. LANDSBERG WMO-No.WMO-No. 26. 331 TP. 8 Secretariat of the World Meteorological Organization – Geneva – Switzerland WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 123 THE ASSESSMENT OF HUMAN BIOCLIMATE A LIMITED REVIEW OF PHYSICAL PARAMETERS by Professor H. E. Landsberg eel Rapporteur for Human Biometeorology IWMO - No. 331 I Secretariat of the World Meteorological Organization .. Geneva .. Switzerland 1972 © 1972, World Meteorological Organization NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the "World Meteorological Organization concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. CONTENTS Page Foreword . V Summary (English, French, Russian, Spanish). VII Introduction .. XI Historical notes .. I Basic considerations 2 Some physiological aspects 4 Meteorological measures to represent environmental stress. 12 Bioclimatic classification attempts . 22 The expanding scope of human bioclimatology 30 References . 33 FOREWORD At its fourth session (Stockholm, 1965), the WMO Commission for Climatology (now Commission for Special Applications of Meteorology and Climatology) appointed Professor H. E. Landsberg as Rapporteur for Human Bio­ meteorology. In this capacity Professor Landsberg prepared a comprehensive survey paper on physical bioclimatology dealing with the expression in physical laws of the thermal influences of climate. At its fifth session (Geneva, 1969), the Commission expressed its satisfaction with this report and recommended that it be published as a WMO Technical Note.
    [Show full text]
  • 4 Water Vapor Is One of the Gases in Air. Unlike
    chapter 4 Copyright © 2011, 2015 by Roland Stull. Meteorology for Scientists and Engineers, 3rd Ed. Moisture contents Water vapor is one of the gases in air. Unlike nitrogen and oxygen, water-vapor concen- Saturation Vapor Pressure 87 tration can vary widely in time and space. Vapor Pressure 87 4 Most people are familiar with relative humidity as Saturation 87 a measure of water-vapor concentration because it Humidity Variables 91 affects our body’s moisture regulation. But other Mixing Ratio 91 humidity variables are much more useful in other Specific Humidity 91 contexts. Absolute Humidity 91 Storms get much of their energy from water va- Relative Humidity 92 por, because when water vapor condenses or freezes Dew-Point Temperature 92 Saturation Level or Lifting Condensation Level it releases latent heat. For this reason we carefully (LCL) 93 track water vapor as it rises in buoyant thermals or Wet-Bulb Temperature 94 is carried by horizontal winds. The amount of mois- More Relationships Between Moisture Variables 96 ture available to a storm also regulates the amount Total Water 97 of rain or snow precipitating out. Liquid and Solid Water 97 What allows air to hold water as vapor in one Total-Water Mixing Ratio 97 case, but forces the vapor to condense in another? Precipitable Water 98 This depends on a concept called “saturation”. Lagrangian Budgets 99 Water Conservation 99 Lagrangian Water Budget 99 Thermo Diagrams – Part 2: Isohumes 100 Heat Conservation for Saturated Air 101 saturation Vapor pressure Saturated Adiabatic Lapse Rate 101 Thermo Diagrams – Part 3: Saturated Vapor pressure Adiabats 102 All the gases in air contribute to the total pres- Liquid-Water, Equivalent, and Wet-Bulb Potential sure.
    [Show full text]
  • National Petroleum Reserve-Alaska DRAFT Integrated Activity Plan/Environmental Impact Statement I Contents
    National Petroleum Reserve-Alaska DRAFT Integrated Activity Plan/ Environmental Impact Statement Volume 4 Chapter 5, Appendices, Glossary, Bibliography Prepared by: U.S. Department of the Interior Bureau of Land Management Anchorage, Alaska In cooperation with: North Slope Borough State of Alaska U.S. Bureau of Ocean Energy Management U.S. Fish and Wildlife Service March 2012 How the Draft IAP/EIS is Organized The format of this IAP/EIS follows guidance provided by the Council on Environmental Quality and the BLM NEPA Handbook H-1790-1 (USDOI BLM 2008). Below is a list of the types of information found in each volume of the IAP/EIS. VOLUME 1 Chapter 1 – Introduction: Summarizes the purpose of and need for this IAP/EIS and decisions to be made. Chapter 2 – Alternatives: Describes and compares proposed management alternatives. Chapter 3 – Affected Environment: Presents existing natural and socioeconomic resources in the NPR-A and trends, including those associated with climate change. VOLUME 2 Chapter 4 – Environmental Consequences (sections 4.1 – 4.6): Evaluates impacts of the alternatives on resources and uses in the NPR-A and the cumulative and other effects relevant to making a decision among the alternatives. VOLUME 3 Chapter 4 – Environmental Consequences (continued: sections 4.7 – 4.12). VOLUME 4 Chapter 5 – Consultation and Coordination: Describes public and government (including tribal) consultation undertaken for this plan and the development of alternatives and lists the plan’s preparers. Appendices Appendix A: ANILCA Section
    [Show full text]
  • IMO Publication, 78. Provisional Guide to Meteorological Instrument And
    r . • - C•L-f, tVlC ORGANISATION METEOROLOGIQUE INTERNATIONALE Publication No 78 . '\0-r I :--{' ·;.·' ', ,,,," ~ y \ 1J iv: it1 c·,, \ :~, .·: ~ :, ~! . i .- ,, / ~<:,· ' : , PROVISIONAL GUIDE TO INTERNATIONAL METEOROLOGICAL INSTRUMENT AND OBSERVING PRACTICE CHAPTERS I to 10 PRICE : Sw. Fr. 8.- (Chapters 1 to 10 including cover) IMPRIMERIE LA CONCORDE - LAUSANNE (SUISSE) 1950 ( ( )J11 / h~! •.J ,, t . ' J O? ftZ -~ f/o l. CONTENTS Page PREFACE .. .... 10 1 CHAPTER I - GENERAL 1.1 Historical 13 1.2 Scope of the Guide 13 1 .3 Classification of stations 14 1.4 Times of observations . 14 1 .4.1 Time standard . 14 1.4.2 Times of surface observations 14 1.4.3 Times of upper air observations 15 1.5 General requirements of a meteorological station 15 1.5.1 Instrumental equipment . 15 1 .5.2 Site and exposure of the instruments 15 1 .5.3 Observers 15 1.5.4 Inspection of stations . 16 1.6 General requirements of instruments 16 1.6.1 Desirable characteristics . 16 1.6.2 Recording instruments 16 1 .6.3 Recording drums and clocks 17 1 .6.4 Standardisation of instruments 17 1.7 Units and constants 18 1 .7 .1 Units 18 1.7.2 Constants 18 2 CHAPTER 2 - CLOUD AND WEATHER OBSERVATIONS 2.1 General . 19 2.2 Cloud forms . 19 2.3 Cloud amount 19 2.4 Cloud height . 20 2.4.1 Definitions and methods 20 2 .4.2 Pilot balloons . 21 2 .4.3 Light beam projectors 21 2.4.4 Range finder and allied methods 22 2 .4 .5 Estimation of cloud heights .
    [Show full text]
  • Biometeorology, ESPM 129, Water, Humidity and Trace Gases
    Biometeorology, ESPM 129, Water, humidity and trace gases Lecture 15, Water, Humidity, Pressure and Trace Gases, Part 2 October 6, 2014 Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science, Policy and Management 345 Hilgard Hall University of California, Berkeley Berkeley, CA 94720 [email protected] Topics to be covered: 1. Atmospheric measures of humidity 2. Observations of humidity 1. diurnal and seasonal patterns 2. vertical gradients Vapor Pressure Deficit: The saturation vapor pressure deficit is an important variable in biometeorology, as it defines the potential for mass transfer. The vapor pressure deficit is defined below and is related to relative humidity: DeTe sasr() eT ()(1 h ) Over the course of a day the vapor pressure deficit is maximal late in the day, as it coincides with the time of maximum temperature and es. 1 Biometeorology, ESPM 129, Water, humidity and trace gases 2 1 D (kPa) 0 0 500 1000 1500 2000 Time (hours) Figure 1 Diurnal course of vapor pressure deficit over a wheat crop in eastern Oregon Typically vpd is low under cloudy days and high under clear skies. Quantification of this effect is shown below 2000 Aspen, solar angles 50 to 60 degrees data of Black et al.; analysis of Gu 1500 Coefficients: b[0] 1631.23 b[1] -1105.3 r ² 0.792 VPD (Pa) 1000 500 0.25 0.50 0.75 1.00 Diffuse PAR / total PAR 2 Biometeorology, ESPM 129, Water, humidity and trace gases o -1 Slope of the saturation vapor pressure-temperature relation, des(T)/dT (kPa C ) Vapor pressure deficit is an important variable for computing evaporation, as via the the Penman-Monteith Equation.
    [Show full text]
  • Aquaponics Food Production Systems
    Simon Goddek Alyssa Joyce Benz Kotzen Gavin M. Burnell Editors Aquaponics Food Production Systems Combined Aquaculture and Hydroponic Production Technologies for the Future Aquaponics Food Production Systems Simon Goddek • Alyssa Joyce • Benz Kotzen • Gavin M. Burnell Editors Aquaponics Food Production Systems Combined Aquaculture and Hydroponic Production Technologies for the Future Funded by the Horizon 2020 Framework Programme of the European Union Editors Simon Goddek Alyssa Joyce Mathematical and Statistical Methods Department of Marine Science (Biometris) University of Gothenburg Wageningen University Gothenburg, Sweden Wageningen, The Netherlands Gavin M. Burnell Benz Kotzen School of Biological, Earth School of Design and Environmental Sciences University of Greenwich University College Cork London, UK Cork, Ireland ISBN 978-3-030-15942-9 ISBN 978-3-030-15943-6 (eBook) https://doi.org/10.1007/978-3-030-15943-6 © The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    [Show full text]
  • 523 1-Methylcyclopropene (1-MCP), 466, 477 1-Propenyl(Vinyl-Methyl), 976 2:4:6 Strategy, 229 2,4-Dichlorophenoxipropionic Acid (
    Index 1-methylcyclopropene (1-MCP), 466, 477 Abutilon, 767 1-propenyl(vinyl-methyl), 976 Abu Zaccaria, 160 2:4:6 strategy, 229 Abū Zakariyā Yaḥyā ibn Muḥammad, 1266 2,4-dichlorophenoxipropionic acid (2,4-DP), Acacia, 721, 723 183 Acacia baileyana, 440 2,4-dichlorophenoxyacetic acid, 185 Acacia colei, 723 3,5,6-trichloro-2-pyridyloxiacetic acid Academic achievement, 800 (3,5,6-TPA), 183 Academic performance, 772 3-mercaptohexanol, 249 Acanthopanax, 627 5-propyl cysteine sulphoxides, 977 Acanthus, 1208 10:10:24 model, 229 Acclimatation, 1297 ß-carotene, 383 Acclimation, 777, 819, 833 Α-tocopherol, 383 Acclimatization, 777 Β-carotene, 338, 339, 351 Acclimatize, 782 Β-galactosidases (ß-GAL), 118 ACC oxidase (ACO), 117 β-thioglucosidase, 973 Accreditation, 508 β-thioglucosyl, 973 ACC synthase (ACS), 117 βXCarotene, 984 Acer, 627, 697 Acer saccharum, 722 A Acer spp., 437 Aalsmeer, 421, 431 Acetaldehyde, 211, 245 Aalsmeer auction, 782 Acetic acid, 215, 244, 247 ABA-glucose, 980 Acetic/lactic bacteria, 282 ABA metabolites, 980 Acetogenins, 139 Abbotsbury, 716 Acetylcholinesterase, 989 Abies spp., 439, 456 A. cherimola, 140, 141 Abiotic, 830 Achillea spp., 409 Abiotic factors, 974 Acid growth hypothesis, 183 Abiotic stress, 77, 83, 392, 830, 967, 1290 Acidification, 614, 615 Abrasion injury, 752 Acidity, 382 Abscisic acid (ABA), 79, 98, 181, 201, 208 Acid lime, 844 Abscission, 114, 188 A. colei, 723 Abscission process, 188 Acridotheres tristis, 1030 Absenteeism, 771–773 Acrocephalus scirpaceus, 1035 Absolute velocity, 360 Actinomorphic, 408 Absorbance, 330 Activated carbon, 477 G. R. Dixon, D. E. Aldous (eds.), Horticulture: Plants for People and Places, Volume 1, 523 DOI 10.1007/978-94-017-8578-5, © Springer Science+Business Media Dordrecht 2014 524 Index Active cooling, 361 Aggression, 6, 803 Active ingredient, 506, 610 Aggressiveness, 17 Active lifestyle, 17 Aging, 1047, 1049, 1053 A.
    [Show full text]
  • On the Exchange of Sensible and Latent Heat Between the Atmosphere and Melting Snow
    On the exchange of sensible and latent heat between the atmosphere and melting snow Authors: Paul C. Stoy, Erich Peitzsch, David Wood, Daniel Rottinghaus, Georg Wohlfahrt, Michael Goulden, and Helen Ward NOTICE: this is the author’s version of a work that was accepted for publication in Agricultural and Forest Meteorology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Agricultural and Forest Meteorology, Volume 252, April 2018, DOI#10.1016/j.agrformet.2018.01.028 Stoy, Paul C. , Erich Peitzsch, David Wood, Daniel Rottinghaus, Georg Wohlfahrt, Michael Goulden, and Helen Ward. "On the exchange of sensible and latent heat between the atmosphere and melting snow." Agricultural and Forest Meteorology 252 (April 2018): 167-174. DOI:10.1016/j.agrformet.2018.01.028. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu On the exchange of sensible and latent heat between the atmosphere and T melting snow ⁎ Paul C. Stoya, , Erich Peitzschb,c, David Wooda,c, Daniel Rottinghausa, Georg Wohlfahrtd, Michael Gouldene, Helen Wardf,g a Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA b Department of Earth Sciences, Montana State University, Bozeman, MT, 59717 USA c U.S. Geological Survey Northern Rocky
    [Show full text]