On Logical Relativity Achille C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logical Fallacies Moorpark College Writing Center
Logical Fallacies Moorpark College Writing Center Ad hominem (Argument to the person): Attacking the person making the argument rather than the argument itself. We would take her position on child abuse more seriously if she weren’t so rude to the press. Ad populum appeal (appeal to the public): Draws on whatever people value such as nationality, religion, family. A vote for Joe Smith is a vote for the flag. Alleged certainty: Presents something as certain that is open to debate. Everyone knows that… Obviously, It is obvious that… Clearly, It is common knowledge that… Certainly, Ambiguity and equivocation: Statements that can be interpreted in more than one way. Q: Is she doing a good job? A: She is performing as expected. Appeal to fear: Uses scare tactics instead of legitimate evidence. Anyone who stages a protest against the government must be a terrorist; therefore, we must outlaw protests. Appeal to ignorance: Tries to make an incorrect argument based on the claim never having been proven false. Because no one has proven that food X does not cause cancer, we can assume that it is safe. Appeal to pity: Attempts to arouse sympathy rather than persuade with substantial evidence. He embezzled a million dollars, but his wife had just died and his child needed surgery. Begging the question/Circular Logic: Proof simply offers another version of the question itself. Wrestling is dangerous because it is unsafe. Card stacking: Ignores evidence from the one side while mounting evidence in favor of the other side. Users of hearty glue say that it works great! (What is missing: How many users? Great compared to what?) I should be allowed to go to the party because I did my math homework, I have a ride there and back, and it’s at my friend Jim’s house. -
Here the Handbook of Abstracts
Handbook of the 4th World Congress and School on Universal Logic March 29 { April 07, 2013 Rio de Janeiro, Brazil UNILOG'2013 www.uni-log.org Edited by Jean-Yves B´eziau,Arthur Buchsbaum and Alexandre Costa-Leite Revised by Alvaro Altair Contents 1 Organizers of UNILOG'13 5 1.1 Scientific Committee . .5 1.2 Organizing Committee . .5 1.3 Supporting Organizers . .6 2 Aim of the event 6 3 4th World School on Universal Logic 8 3.1 Aim of the School . .8 3.2 Tutorials . .9 3.2.1 Why Study Logic? . .9 3.2.2 How to get your Logic Article or Book published in English9 3.2.3 Non-Deterministic Semantics . 10 3.2.4 Logic for the Blind as a Stimulus for the Design of Inno- vative Teaching Materials . 13 3.2.5 Hybrid Logics . 16 3.2.6 Psychology of Reasoning . 17 3.2.7 Truth-Values . 18 3.2.8 The Origin of Indian Logic and Indian Syllogism . 23 3.2.9 Logical Forms . 24 3.2.10 An Introduction to Arabic Logic . 25 3.2.11 Quantum Cognition . 27 3.2.12 Towards a General Theory of Classifications . 28 3.2.13 Connecting Logics . 30 3.2.14 Relativity of Mathematical Concepts . 32 3.2.15 Undecidability and Incompleteness are Everywhere . 33 3.2.16 Logic, Algebra and Implication . 33 3.2.17 Hypersequents and Applications . 35 3.2.18 Introduction to Modern Mathematics . 36 3.2.19 Erotetic Logics . 37 3.2.20 History of Paraconsistent Logic . 38 3.2.21 Institutions . -
Argumentum Ad Populum Examples in Media
Argumentum Ad Populum Examples In Media andClip-on spare. Ashby Metazoic sometimes Brian narcotize filagrees: any he intercommunicatedBalthazar echo improperly. his assonances Spense coylyis all-weather and terminably. and comminating compunctiously while segregated Pen resinify The argument further it did arrive, clearly the fallacy or has it proves false information to increase tuition costs Fallacies of emotion are usually find in grant proposals or need scholarship, income as reports to funders, policy makers, employers, journalists, and raw public. Why do in media rather than his lack of. This fallacy can raise quite dangerous because it entails the reluctance of ceasing an action because of movie the previous investment put option it. See in media should vote republican. This fallacy examples or overlooked, argumentum ad populum examples in media. There was an may select agents and are at your email address any claim that makes a common psychological aspects of. Further Experiments on retail of the end with Displaced Visual Fields. Muslims in media public opinion to force appear. Instead of ad populum. While you are deceptively bad, in media sites, weak or persuade. We often finish one survey of simple core fallacies by considering just contain more. According to appeal could not only correct and frollo who criticize repression and fallacious arguments are those that they are typically also. Why is simply slope bad? 12 Common Logical Fallacies and beige to Debunk Them. Of cancer person commenting on social media rather mention what was alike in concrete post. Therefore, it contain important to analyze logical and emotional fallacies so one hand begin to examine the premises against which these rhetoricians base their assumptions, as as as the logic that brings them deflect certain conclusions. -
Which Quantifiers Are Logical? a Combined Semantical and Inferential Criterion Solomon Feferman1
Which Quantifiers are Logical? A combined semantical and inferential criterion Solomon Feferman1 Abstract. The aim of logic is to characterize the forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter; thus its concerns combine semantical and inferential notions in an essential way. Up to now most proposed characterizations of logicality of sentence generating operations have been given either in semantical or inferential terms. This paper offers a combined semantical and inferential criterion for logicality (improving one originally proposed by Jeffery Zucker) and shows that any quantifier that is to be counted as logical according to that criterion is definable in first order logic. The aim of logic is to characterize the forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter. The sentences involved are analyzed according to their logical (as opposed to grammatical) structure, i.e. how they are compounded from their parts by means of certain operations on propositions and predicates, of which the familiar ones are the connectives and quantifiers of first order logic. To spell this out in general, one must explain how the truth of compounds under given operations is determined by the truth of the parts, and characterize those forms of rules of inference for the given operations that insure preservation of truth. The so-called problem of “logical constants” (Gomez-Torrente 2002) is to determine all such operations. -
Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives
information Article Logic-Based Technologies for Intelligent Systems: State of the Art and Perspectives Roberta Calegari 1,* , Giovanni Ciatto 2 , Enrico Denti 3 and Andrea Omicini 2 1 Alma AI—Alma Mater Research Institute for Human-Centered Artificial Intelligence, Alma Mater Studiorum–Università di Bologna, 40121 Bologna, Italy 2 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 47522 Cesena, Italy; [email protected] (G.C.); [email protected] (A.O.) 3 Dipartimento di Informatica–Scienza e Ingegneria (DISI), Alma Mater Studiorum–Università di Bologna, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected] Received: 25 February 2020; Accepted: 18 March 2020; Published: 22 March 2020 Abstract: Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future. -
The Nature of Logical Constants
Aporia vol. 27 no. 1—2017 The Nature of Logical Constants LAUREN RICHARDSON haracterizing the distinction between the “logical” and “non-logical” expressions of a language proves a challenging task, and one Cwith significant implications for the nature and scope of logic itself. It is often claimed that logical truths are statements that are “true by virtue of form,” and, likewise, that arguments are logically valid because of their respective “forms,” not because of their contents (Sider 2).1 Take, for example, a straightforward piece of reasoning: (P1) Maria is in Berlin or she is in Vienna. (P2) Maria is not in Berlin. (C) Maria is in Vienna. If this argument is valid—which, of course, in classical logic, it is—then it is typically held to be valid because of the structure of the argument and not because of certain material facts about the world. So it seems as if we should 1 Contrast the idea of truth preservation by virtue of form with the idea of an argument that is truth- preserving by virtue of the meaning of certain terms: (P1*):Nick is a bachelor. (C*): Nick is an unmarried man. We might think that the truth of (P1*) guarantees the truth of (C*), but it is not by virtue of the form of the argument; it is by virtue of the meaning of the expressions “bachelor” and “unmarried man.” Lauren Richardson is studying philosophy at the University of Chicago and will graduate in 2018. Her philosophical interests include philosophy of language, logic, metaethics, and feminism. After graduation, Lauren intends to pursue a graduate degree in philosophy. -
Understanding the Logical Constants and Dispositions
Baltic International Yearbook of Cognition, Logic and Communication Volume 5 MEANING, UNDERSTANDING AND KNOWLEDGE Article 2 2009 Understanding the Logical Constants and Dispositions Corine Besson St Hugh's College, Oxford Follow this and additional works at: https://newprairiepress.org/biyclc This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Besson, Corine (2009) "Understanding the Logical Constants and Dispositions," Baltic International Yearbook of Cognition, Logic and Communication: Vol. 5. https://doi.org/10.4148/biyclc.v5i0.279 This Proceeding of the Symposium for Cognition, Logic and Communication is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Baltic International Yearbook of Cognition, Logic and Communication by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Understanding the Logical Constants and Dispositions 2 The Baltic International Yearbook of not explore here how that explanatory connection might be accounted Cognition, Logic and Communication for. But however it is accounted for, it seems that the following min- imal constraint should be met by any account of competence with an October 2010 Volume 5: Meaning, Understanding and Knowledge expression: pages 1-24 DOI: 10.4148/biyclc.v5i0.279 (CT) An account of speakers’ understanding of an expres- sion should be consistent with their correct performances CORINE BESSON with that expression. St Hugh’s College, Oxford This is a weak constraint, since the connection between competence and performance is much tighter. But this will suffice for the purposes UNDERSTANDING THE LOGICAL CONSTANTS AND of this paper. -
Chapter 5: Informal Fallacies II
Essential Logic Ronald C. Pine Chapter 5: Informal Fallacies II Reasoning is the best guide we have to the truth....Those who offer alternatives to reason are either mere hucksters, mere claimants to the throne, or there's a case to be made for them; and of course, that is an appeal to reason. Michael Scriven, Reasoning Why don’t you ever see a headline, “Psychic wins lottery”? Internet Joke News Item, June 16, 2010: A six story statue of Jesus in Monroe city, Ohio was struck by lightning and destroyed. An adult book store across the street was untouched. Introduction In the last chapter we examined one of the major causes of poor reasoning, getting off track and not focusing on the issues related to a conclusion. In our general discussion of arguments (Chapters 1-3), however, we saw that arguments can be weak in two other ways: 1. In deductive reasoning, arguments can be valid, but have false or questionable premises, or in both deductive and inductive reasoning, arguments may involve language tricks that mislead us into presuming evidence is being offered in the premises when it is not. 2. In weak inductive arguments, arguments can have true and relevant premises but those premises can be insufficient to justify a conclusion as a reliable guide to the future. Fallacies that use deductive valid reasoning, but have premises that are questionable or are unfair in some sense in the truth claims they make, we will call fallacies of questionable premise. As a subset of fallacies of questionable premise, fallacies that use tricks in the way the premises are presented, such that there is a danger of presuming evidence has been offered when it has not, we will call fallacies of presumption. -
The Constituents of the Propositions of Logic Kevin C
10 The Constituents of the Propositions of Logic Kevin C. Klement 1 Introduction Many founders of modern logic—Frege and Russell among them—bemoan- ed the tendency, still found in most textbook treatments, to define the subject matter of logic as “the laws of thought” or “the principles of inference”. Such descriptions fail to capture logic’s objective nature; they make it too dependent on human psychology or linguistic practices. It is one thing to identify what logic is not about. It is another to say what it is about. I tell my students that logic studies relationships between the truth-values of propositions that hold in virtue of their form. But even this characterization leaves me uneasy. I don’t really know what a “form” is, and even worse perhaps, I don’t really know what these “propositions” are that have these forms. If propositions are considered merely as sentences or linguistic assertions, the definition does not seem like much of an improvement over the psychological definitions. Language is a human invention, but logic is more than that, or so it seems. It is perhaps forgiveable then that at certain times Russell would not have been prepared to give a very good answer to the question “What is Logic?”, such as when he attempted, but failed, to compose a paper with that title in October 1912. Given that Russell had recently completed Principia Mathematica, a work alleging to establish the reducibility of mathematics to logic, one might think this overly generous. What does the claim that mathematics reduces to logic come to if we cannot independently speci- Published in Acquaintance, Knowledge and Logic: New Essays on Bertrand Russell’s Problems of Philosophy, edited by Donovan Wishon and Bernard Linsky. -
The Bounds of Logic Part 2
To Ik a Logical Term 37 Chapter 3 To Be a Logical Ternl logic; at the same time, the principles developed by Tarski in the 1930s are still the principles underlying logic in the early 1990s. My interest in Tarski is, Ileedless to say, not historical. I am interested in the modern conception of logic as it evolved out of Tarski's early work in semantics. The Task of Logic and the Origins of Semantics In "The Concept of Truth in Formalized Languages" (1933). "On the Concept of Logical Consequence" (1936a), and "The Establishment of Scientific Semantics" (1936b), Tarski describes the semantic project as comprising two tasks: Since the discovery ofgeneralized quantifiers by A. Mostowski (1957), the I. Definition of the gelleral concept of truth for formalized languages question "What is a logical term?" has taken on a significance it did not 2. Dclinition of the logical concepts of truth, consequence, consistency. have before. Are Mostowski's quantifiers Hlogical" quantifiers'! Do they etc. , differ in any significant way from the standard existential and universal The main purpose of (I) is to secure meta logic against semantic para I quantifiers? What logical operators, if any, has he left out? What. ill doxes. Tarski worried lest the ullcritical usc of semantic concepts prior to I all, are the first- and second-level predicates and rcla tions that can be his work concealed an inconsistency: a hidden fallacy would undermine construed as logical? the cntire venturc. Be therefore sought precise, materially, as well as One way in which I do not want to ask the question is, "What, ill Ihe formally, correct definitions of "truth" and related notions to serve as a I nature ofthings, makes a property or a relation logical'!" On this road lie hedge against paradox. -
Axiomatization of Logic. Truth and Proof. Resolution
H250: Honors Colloquium – Introduction to Computation Axiomatization of Logic. Truth and Proof. Resolution Marius Minea [email protected] How many do we need? (best: few) Are they enough? Can we prove everything? Axiomatization helps answer these questions Motivation: Determining Truth In CS250, we started with truth table proofs. Propositional formula: can always do truth table (even if large) Predicate formula: can’t do truth tables (infinite possibilities) ⇒ must use other proof rules Motivation: Determining Truth In CS250, we started with truth table proofs. Propositional formula: can always do truth table (even if large) Predicate formula: can’t do truth tables (infinite possibilities) ⇒ must use other proof rules How many do we need? (best: few) Are they enough? Can we prove everything? Axiomatization helps answer these questions Symbols of propositional logic: propositions: p, q, r (usually lowercase letters) operators (logical connectives): negation ¬, implication → parentheses () Formulas of propositional logic: defined by structural induction (how to build complex formulas from simpler ones) A formula (compound proposition) is: any proposition (aka atomic formula or variable) (¬α) where α is a formula (α → β) if α and β are formulas Implication and negation suffice! First, Define Syntax We define a language by its symbols and the rules to correctly combine symbols (the syntax) Formulas of propositional logic: defined by structural induction (how to build complex formulas from simpler ones) A formula (compound proposition) is: any -
A Program for the Semantics of Science
MARIO BUNGE A PROGRAM FOR THE SEMANTICS OF SCIENCE I. PROBLEM, METHOD AND GOAL So far exact semantics has been successful only in relation to logic and mathematics. It has had little if anything to say about factual or empirical science. Indeed, no semantical theory supplies an exact and adequate elucidation and systematization of the intuitive notions of factual referen- ce and factual representation, or of factual sense and partial truth of fact, which are peculiar to factual science and therefore central to its philosophy. The semantics of first order logic and the semantics of mathematics (i.e., model theory) do not handle those semantical notions, for they are not interested in external reference and in partial satisfaction. On the other hand factual science is not concerned with interpreting a theory in terms of another theory but in interpreting a theory by reference to things in the real world and their properties. Surely there have been attempts to tackle the semantic peculiarities of factual science. However, the results are rather poor. We have either vigorous intuitions that remain half-baked and scattered, or rigorous formalisms that are irrelevant to real science. The failure to pass from intuition to theory suggests that semanticists have not dealt with genuine factual science but with some oversimplified images of it, such as the view that a scientific theory is just a special case of set theory, so that model theory accounts for factual meaning and for truth of fact. If we wish to do justice to the semantic peculiarities of factual science we must not attempt to force it into any preconceived Procrustean bed: we must proceed from within science.