An Acylindrical Group Action? Thomas Koberda Communicated by Cesar Silva

Total Page:16

File Type:pdf, Size:1020Kb

An Acylindrical Group Action? Thomas Koberda Communicated by Cesar Silva THE GRADUATE STUDENT SECTION WHAT IS… an Acylindrical Group Action? Thomas Koberda Communicated by Cesar Silva The group ℤ acts on the real line ℝ by translation. It is for example, oftentimes contain torsion elements such as difficult to find a nontrivial group action which is easier to rotations, and finite order isometries of Euclidean or hy- understand: the orbit of every point moves off to infinity perbolic spaces always have a fixed point. By considering at a steady and predictable rate, and the group action quotients of Euclidean and hyperbolic spaces by discrete preserves the usual Euclidean metric on ℝ. Of course, this groups of isometries, one naturally obtains the class of action is a covering space action, and the quotient space Euclidean and hyperbolic orbifolds, thus enlarging the of the action is the circle, which is completely free of any class of Euclidean and hyperbolic manifolds. Orbifolds topological pathologies. enjoy many of the salient features of manifolds, so that Regular covering a mild relaxation of freeness of group actions still allows spaces in algebraic for reasonable geometry to persist. topology give rise One can relax the Relaxing proper discontinuity can lead to some patho- to prototypically nice logical phenomena, for instance quotient maps whose group actions. Among freeness of an quotient topologies fail to be Hausdorff or even fail to the most important action without have any nontrivial open sets. Consider, for example, a features of a deck group of rotations of the circle generated by an irrational group action on a cov- introducing multiple of 휋. Since the circle is compact, this action of ering space is that it ℤ cannot be properly discontinuous—indeed, every orbit is free (i.e. no non- insurmountable is countably infinite and dense. Hence, the quotient is an trivial element of the uncountable space with no open sets except the empty set deck group has a fixed difficulties. and the whole space. Nevertheless, group actions which point) and properly are not properly discontinuous abound in mathematics discontinuous (i.e. for every compact subset 퐾 of the and have led to the development of entire fields, such cover, there are at most finitely many deck group ele- as noncommutative geometry in the sense of A. Connes. ments 푔 such that 푔⋅퐾∩퐾 ≠ ∅, at least in the case where Group actions which are not properly discontinuous are the base space is locally compact). also important and common in geometric group theory, For certain purposes in topology and geometry, one can with the following example being of central importance: relax the freeness of an action while keeping discreteness, Let 푆 be an orientable surface and let 훾 ⊂ 푆 be without introducing insurmountable difficulties. Discrete a simple closed curve, as illustrated in Figure 1 or in groups of isometries of Euclidean and hyperbolic space, Figure 2. A curve is essential if it is not contractible to a point, and nonperipheral if it is not homotopic to a Thomas Koberda is assistant professor of mathematics at the puncture or boundary component of 푆. The curve graph University of Virginia. His email address is thomas.koberda of 푆, denoted 풞(푆), is the graph whose vertices are @gmail.com. nontrivial homotopy classes of essential, nonperipheral, For permission to reprint this article, please contact: simple closed curves, and whose edge relation is given [email protected]. by disjoint realization. That is, 훾1 and 훾2 are adjacent if DOI: http://dx.doi.org/10.1090/noti1624 they admit representatives which are disjoint. Thus, the January 2018 Notices of the AMS 31 THE GRADUATE STUDENT SECTION Figure 3. The subgraph of 풞(푆) spanned by the curves in Figure 2. The colored curves are represented by vertices of the corresponding color. The graph metric distance from the purple curve to the red curve in 풞(푆) is exactly two. of 푆, and is written Mod(푆). Mapping class groups are of central interest to geometric group theorists, as well as of significant interest to algebraic geometers, topologists, and homotopy theorists. From the point of view of geo- metric group theory, mapping class groups are studied via the geometric objects on which they act. Homeomor- Figure 1. A surface of genus 5. The blue curve is phisms of 푆 act on the set of embedded loops on 푆, and essential and nonseparating. The green curve is similarly homotopy classes of homeomorphisms act on inessential. The purple curve bounds a puncture or homotopy classes of embedded loops on 푆, and hence boundary component, denoted by a red 푥, and is of simple closed curves. Since the adjacency relation in therefore peripheral. 풞(푆) is a topological property, Mod(푆) acts by graph automorphisms and hence by graph metric isometries on 풞(푆). As natural as the action of Mod(푆) on 풞(푆) is, its curve graph encodes the combinatorial topology of one- geometry is extremely complicated. For one, the quotient dimensional submanifolds of 푆. Note that for relatively 풞(푆)/ Mod(푆) is finite, since two simple closed curves 훾 simple surfaces, 풞(푆) may be empty or may fail to 1 and 훾 are in the same mapping class group orbit if and have any edges as they are defined here. For sufficiently 2 only if 푆\훾 and 푆\훾 are homeomorphic to each other, complicated surfaces however, 풞(푆) has a very intricate 1 2 as follows easily from the classification of surfaces. Thus, and interesting structure. the action of Mod(푆) on 풞(푆) is highly transitive. This is in spite of the fact that 풞(푆) is locally infinite, as mentioned above: if 풞(푆) has at least one edge, then each vertex of 풞(푆) has infinite degree. Thus, the action of Mod(푆) on 풞(푆) is far from properly discontinuous. Note that proper discontinuity (as we have defined it at least) is perhaps not the best property to require from the action, since 풞(푆) is not locally compact (by virtue of being a locally infinite graph). A better notion which is meaningful for actions on spaces like 풞(푆) is properness. If 퐺 is a group generated by a finite set 푆, then 퐺 can be viewed as a metric space by declaring 푔 and ℎ to have distance one if 푔 = ℎ ⋅ 푠 for some 푠 ∈ 푆, and in general defining the distance between 푔 and ℎ to be the least 푛 such that 푔 = ℎ ⋅ 푠1 ⋯ 푠푛 for elements {푠1, … , 푠푛} ⊂ 푆. The reader may recognize this as the graph metric on the (right) Cayley graph of 퐺 with respect to 푆. If 퐺 acts on Figure 2. A surface of genus 5 with four essential a metric space 푋, the action is proper if (roughly) for all curves drawn. The subgraph of 풞(푆) spanned by 푥 ∈ 푋, the orbit map 퐺 → 푋 given by 푔 ↦ 푔 ⋅ 푥 is a proper them is given in Figure 3. map of metric spaces. The first example considered in this article, i.e. the translation action of ℤ on ℝ, is a proper Whereas the curve graph as defined here is a manifestly action. Note that we can build another action of ℤ on ℝ, combinatorial object, it is also a geometric object with where a generator of ℤ acts by multiplication by 2. This the metric being given by the graph metric. action of ℤ on ℝ is not proper. Returning to the situation It is an interesting exercise for the reader to prove that at hand, since vertices of 풞(푆) have infinite stabilizers in if 풞(푆) admits at least one edge, then 풞(푆) is connected, Mod(푆), the action of Mod(푆) on 풞(푆) is not proper. is locally infinite, and has infinite diameter. One way to see this is to observe the following: let The mapping class group of 푆 is the group of homo- 훾 ⊂ 푆 be an essential, nonperipheral, simple closed curve topy classes of orientation preserving homeomorphisms as in Figure 4. The surface 푆\훾 is a surface with boundary, 32 Notices of the AMS Volume 65, Number 1 THE GRADUATE STUDENT SECTION Figure 5. A path-metric space (such as a connected Figure 4. By considering an essential, nonperipheral, graph) is hyperbolic if there exists a 훿 ≥ 0 such that simple closed curve in red on this surface of genus 2, for every geodesic triangle, a 훿-neighborhood of two we can see that the action of Mod(푆) on 풞(푆) cannot sides contains the third side. be proper. Fortunately, it satisfies a weaker property: it is acylindrical. proper on sufficiently distant pairs of points.” Drop- ping the uniformity condition (i.e. replacing the uniform albeit simpler (in the sense that the Euler characteristic constant 푁 by a requirement that the relevant subset of is strictly larger). 퐺 is finite), one gets the closely related notion of a weakly The surface 푆\훾 generally properly discontinuous action. This latter notion appears admits many homotopically The next best in a 2002 paper of M. Bestvina and K. Fujiwara. nontrivial homeomorphisms Observe that, like many concepts in geometric group which act by the identity near thing after theory and coarse geometry, acylindricity is blind to 훾, which therefore extend to phenomena on a bounded scale. For instance, a group homeomorphisms of 푆 which properness. action on a bounded metric space is always acylindrical: fix 훾. Moreover, one can build just let 푅 be greater than the diameter of 푋. the Dehn twist about 훾, which Bowditch proved the following fundamental result: is given by cutting 푆 open along 훾 and regluing with a full twist.
Recommended publications
  • Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19Th, 2020
    Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19th, 2020 Group Isomorphism Theorems + Group Actions The Isomorphism Theorems for Groups Group Actions Polynomial Invariants and An This material represents x3.2.3-3.3.2 from the course notes. Quotients and Homomorphisms, I Like with rings, we also have various natural connections between normal subgroups and group homomorphisms. To begin, observe that if ' : G ! H is a group homomorphism, then ker ' is a normal subgroup of G. In fact, I proved this fact earlier when I introduced the kernel, but let me remark again: if g 2 ker ', then for any a 2 G, then '(aga−1) = '(a)'(g)'(a−1) = '(a)'(a−1) = e. Thus, aga−1 2 ker ' as well, and so by our equivalent properties of normality, this means ker ' is a normal subgroup. Thus, we can use homomorphisms to construct new normal subgroups. Quotients and Homomorphisms, II Equally importantly, we can also do the reverse: we can use normal subgroups to construct homomorphisms. The key observation in this direction is that the map ' : G ! G=N associating a group element to its residue class / left coset (i.e., with '(a) = a) is a ring homomorphism. Indeed, the homomorphism property is precisely what we arranged for the left cosets of N to satisfy: '(a · b) = a · b = a · b = '(a) · '(b). Furthermore, the kernel of this map ' is, by definition, the set of elements in G with '(g) = e, which is to say, the set of elements g 2 N. Thus, kernels of homomorphisms and normal subgroups are precisely the same things.
    [Show full text]
  • The Fundamental Groupoid of the Quotient of a Hausdorff
    The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action Ronald Brown,∗ Philip J. Higgins,† Mathematics Division, Department of Mathematical Sciences, School of Informatics, Science Laboratories, University of Wales, Bangor South Rd., Gwynedd LL57 1UT, U.K. Durham, DH1 3LE, U.K. October 23, 2018 University of Wales, Bangor, Maths Preprint 02.25 Abstract The main result is that the fundamental groupoidof the orbit space of a discontinuousaction of a discrete groupon a Hausdorffspace which admits a universal coveris the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in 1985 and was published in sections 9 and 10 of Chapter 9 of the first author’s book on Topology [3]. This is a somewhat edited, and in one point (on normal closures) corrected, version of those sections. Since the book is out of print, and the result seems not well known, we now advertise it here. It is hoped that this account will also allow wider views of these results, for example in topos theory and descent theory. Because of its provenance, this should be read as a graduate text rather than an article. The Exercises should be regarded as further propositions for which we leave the proofs to the reader.
    [Show full text]
  • GROUP ACTIONS 1. Introduction the Groups Sn, An, and (For N ≥ 3)
    GROUP ACTIONS KEITH CONRAD 1. Introduction The groups Sn, An, and (for n ≥ 3) Dn behave, by their definitions, as permutations on certain sets. The groups Sn and An both permute the set f1; 2; : : : ; ng and Dn can be considered as a group of permutations of a regular n-gon, or even just of its n vertices, since rigid motions of the vertices determine where the rest of the n-gon goes. If we label the vertices of the n-gon in a definite manner by the numbers from 1 to n then we can view Dn as a subgroup of Sn. For instance, the labeling of the square below lets us regard the 90 degree counterclockwise rotation r in D4 as (1234) and the reflection s across the horizontal line bisecting the square as (24). The rest of the elements of D4, as permutations of the vertices, are in the table below the square. 2 3 1 4 1 r r2 r3 s rs r2s r3s (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23) If we label the vertices in a different way (e.g., swap the labels 1 and 2), we turn the elements of D4 into a different subgroup of S4. More abstractly, if we are given a set X (not necessarily the set of vertices of a square), then the set Sym(X) of all permutations of X is a group under composition, and the subgroup Alt(X) of even permutations of X is a group under composition. If we list the elements of X in a definite order, say as X = fx1; : : : ; xng, then we can think about Sym(X) as Sn and Alt(X) as An, but a listing in a different order leads to different identifications 1 of Sym(X) with Sn and Alt(X) with An.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Definition 1.1. a Group Is a Quadruple (G, E, ⋆, Ι)
    GROUPS AND GROUP ACTIONS. 1. GROUPS We begin by giving a definition of a group: Definition 1.1. A group is a quadruple (G, e, ?, ι) consisting of a set G, an element e G, a binary operation ?: G G G and a map ι: G G such that ∈ × → → (1) The operation ? is associative: (g ? h) ? k = g ? (h ? k), (2) e ? g = g ? e = g, for all g G. ∈ (3) For every g G we have g ? ι(g) = ι(g) ? g = e. ∈ It is standard to suppress the operation ? and write gh or at most g.h for g ? h. The element e is known as the identity element. For clarity, we may also write eG instead of e to emphasize which group we are considering, but may also write 1 for e where this is more conventional (for the group such as C∗ for example). Finally, 1 ι(g) is usually written as g− . Remark 1.2. Let us note a couple of things about the above definition. Firstly clo- sure is not an axiom for a group whatever anyone has ever told you1. (The reason people get confused about this is related to the notion of subgroups – see Example 1.8 later in this section.) The axioms used here are not “minimal”: the exercises give a different set of axioms which assume only the existence of a map ι without specifying it. We leave it to those who like that kind of thing to check that associa- tivity of triple multiplications implies that for any k N, bracketing a k-tuple of ∈ group elements (g1, g2, .
    [Show full text]
  • Ideal Classes and SL 2
    IDEAL CLASSES AND SL2 KEITH CONRAD 1. Introduction A standard group action in complex analysis is the action of GL2(C) on the Riemann sphere C [ f1g by linear fractional transformations (M¨obiustransformations): a b az + b (1.1) z = : c d cz + d We need to allow the value 1 since cz + d might be 0. (If that happens, az + b 6= 0 since a b ( c d ) is invertible.) When z = 1, the value of (1.1) is a=c 2 C [ f1g. It is easy to see this action of GL2(C) on the Riemann sphere is transitive (that is, there is one orbit): for every a 2 C, a a − 1 (1.2) 1 = a; 1 1 a a−1 so the orbit of 1 passes through all points. In fact, since ( 1 1 ) has determinant 1, the action of SL2(C) on C [ f1g is transitive. However, the action of SL2(R) on the Riemann sphere is not transitive. The reason is the formula for imaginary parts under a real linear fractional transformation: az + b (ad − bc) Im(z) Im = cz + d jcz + dj2 a b a b when ( c d ) 2 GL2(R). Thus the imaginary parts of z and ( c d )z have the same sign when a b ( c d ) has determinant 1. The action of SL2(R) on the Riemann sphere has three orbits: R [ f1g, the upper half-plane h = fx + iy : y > 0g, and the lower half-plane. To see that the action of SL2(R) on h is transitive, pick x + iy with y > 0.
    [Show full text]
  • Chapter 9: Group Actions
    Chapter 9: Group actions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Spring 2014 M. Macauley (Clemson) Chapter 9: Group actions Math 4120, Spring 2014 1 / 27 Overview Intuitively, a group action occurs when a group G \naturally permutes" a set S of states. For example: The \Rubik's cube group" consists of the 4:3 × 1019 actions that permutated the 4:3 × 1019 configurations of the cube. The group D4 consists of the 8 symmetries of the square. These symmetries are actions that permuted the 8 configurations of the square. Group actions help us understand the interplay between the actual group of actions and sets of objects that they \rearrange." There are many other examples of groups that \act on" sets of objects. We will see examples when the group and the set have different sizes. There is a rich theory of group actions, and it can be used to prove many deep results in group theory. M. Macauley (Clemson) Chapter 9: Group actions Math 4120, Spring 2014 2 / 27 Actions vs. configurations 1 2 The group D can be thought of as the 8 symmetries of the square: 4 4 3 There is a subtle but important distinction to make, between the actual 8 symmetries of the square, and the 8 configurations. For example, the 8 symmetries (alternatively, \actions") can be thought of as e; r; r 2; r 3; f ; rf ; r 2f ; r 3f : The 8 configurations (or states) of the square are the following: 1 2 4 1 3 4 2 3 2 1 3 2 4 3 1 4 4 3 3 2 2 1 1 4 3 4 4 1 1 2 2 3 When we were just learning about groups, we made an action diagram.
    [Show full text]
  • Group Action on Quantum Field Theory
    International Mathematical Forum, Vol. 14, 2019, no. 4, 169 - 179 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.9728 Group Action on Quantum Field Theory Ahmad M. Alghamdi and Roa M. Makki Department of Mathematical Sciences Faculty of Applied Sciences Umm Alqura University P.O. Box 14035, Makkah 21955, Saudi Arabia This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright c 2019 Hikari Ltd. Abstract The main aim of this paper is to develop some tools for understand- ing and explaining the concept of group action on a space and group action on algebra by using subgroups with finite index and both re- striction and transfer maps. We extend this concept on quantum field theory. 0 Introduction Group action is a very important tool in mathematics. Namely, if a certain group acts on a certain object, then many results and phenomena can be resolved. Let G be a group, the object can be a set and then we have the notion of a group acts on a set see [7]. Such object can be a vector space which results the so called G-space or G-module see for instance [6]. In some cases, the object can be a group and then we have the notion of group acts on a group see [3]. The topic of a group acting on an algebra can be seen in [5, 9]. This approaches open many gates in the research area called the G-algebras over a field. If we have an action from the group G to an object, then there is a fixed point under this action.
    [Show full text]
  • Proper Groupoids and Momentum Maps: Linearization, Affinity, and Convexity
    PROPER GROUPOIDS AND MOMENTUM MAPS: LINEARIZATION, AFFINITY, AND CONVEXITY NGUYEN TIEN ZUNG Abstract. We show that proper Lie groupoids are locally linearizable. As a consequence, the orbit space of a proper Lie groupoid is a smooth orbispace (a Hausdorff space which locally looks like the quotient of a vector space by a linear compact Lie group action). In the case of proper (quasi-)symplectic groupoids, the orbit space admits a natural locally flat integral affine structure, which makes it into an affine manifold with locally convex polyhedral bound- ary, and the local structure near each boundary point is isomorphic to that of a Weyl chamber of a compact Lie group. We then apply these results to the study of momentum maps of Hamiltonian actions of proper (quasi-)symplectic groupoids, and show that these momentum maps preserve natural transverse affine structures with local convexity properties. Many convexity theorems in the literature can be recovered from this last statement and some elementary results about affine maps. Dedicated to Alan Weinstein on the occasion of his 60th birthday Contents 1. Introduction 2 2. Proper groupoids 2 2.1. Linearization of proper groupoids 2 2.2. The averaging process 7 2.3. Spaces of maps and Ck-norms 9 2.4. C0 estimates 11 2.5. Ck estimates 13 2.6. Proof of Theorem 2.5 15 3. Momentum maps 19 3.1. Affine structure on base spaces 19 3.2. Affinity and local convexity of momentum maps 21 3.3. Global convexity of momentum maps 24 References 28 Date: third version, 30/Aug/2004.
    [Show full text]
  • The General Linear Group Over the field Fq, Is the Group of Invertible N × N Matrices with Coefficients in Fq
    ALGEBRA - LECTURE II 1. General Linear Group Let Fq be a finite field of order q. Then GLn(q), the general linear group over the field Fq, is the group of invertible n × n matrices with coefficients in Fq. We shall now compute n the order of this group. Note that columns of an invertible matrix give a basis of V = Fq . Conversely, if v1, v2, . vn is a basis of V then there is an invertible matrix with these vectors as columns. Thus we need to count the bases of V . This is easy, as v1 can be any non-zero vector, then v2 any vector in V not on the line spanned by v1, then v3 any vector in V not n n on the plane spanned by v1 and v2, etc... Thus, there are q − 1 choices for v1, then q − q n 2 choices for v2, then q − q choices for v3, etc. Hence the order of GLn(q) is n−1 Y n i |GLn(q)| = (q − q ). i=0 2. Group action Let X be a set and G a group. A group action of G on X is a map G × X → X (g, x) 7→ gx such that (1) 1 · x = x for every x in X. (Here 1 is the identity in G.) (2) (gh)x = g(hx) for every x in X and g, h in G. Examples: n (1) G = GLn(q) and X = Fq . The action is given by matrix multiplication. (2) X = G and the action is the conjugation action of G.
    [Show full text]
  • The Modular Group and the Fundamental Domain Seminar on Modular Forms Spring 2019
    The modular group and the fundamental domain Seminar on Modular Forms Spring 2019 Johannes Hruza and Manuel Trachsler March 13, 2019 1 The Group SL2(Z) and the fundamental do- main Definition 1. For a commutative Ring R we define GL2(R) as the following set: a b GL (R) := A = for which det(A) = ad − bc 2 R∗ : (1) 2 c d We define SL2(R) to be the set of all B 2 GL2(R) for which det(B) = 1. Lemma 1. SL2(R) is a subgroup of GL2(R). Proof. Recall that the kernel of a group homomorphism is a subgroup. Observe ∗ that det is a group homomorphism det : GL2(R) ! R and thus SL2(R) is its kernel by definition. ¯ Let R = R. Then we can define an action of SL2(R) on C ( = C [ f1g ) by az + b a a b A:z := and A:1 := ;A = 2 SL (R); z 2 : (2) cz + d c c d 2 C Definition 2. The upper half-plane of C is given by H := fz 2 C j Im(z) > 0g. Restricting this action to H gives us another well defined action ":" : SL2(R)× H 7! H called the fractional linear transformation. Indeed, for any z 2 H the imaginary part of A:z is positive: az + b (az + b)(cz¯ + d) Im(z) Im(A:z) = Im = Im = > 0: (3) cz + d jcz + dj2 jcz + dj2 a b Lemma 2. For A = c d 2 SL2(R) the map µA : H ! H defined by z 7! A:z is the identity if and only if A = ±I.
    [Show full text]
  • Groups Acting on Sets
    Groups acting on sets 1 Definition and examples Most of the groups we encounter are related to some other structure. For example, groups arising in geometry or physics are often symmetry groups of a geometric object (such as Dn) or transformation groups of space (such as SO3). The idea underlying this relationship is that of a group action: Definition 1.1. Let G be a group and X a set. Then an action of G on X is a function F : G × X ! X, where we write F (g; x) = g · x, satisfying: 1. For all g1; g2 2 G and x 2 X, g1 · (g2 · x) = (g1g2) · x. 2. For all x 2 X, 1 · x = x. When the action F is understood, we say that X is a G-set. Note that a group action is not the same thing as a binary structure. In a binary structure, we combine two elements of X to get a third element of X (we combine two apples and get an apple). In a group action, we combine an element of G with an element of X to get an element of X (we combine an apple and an orange and get another orange). Example 1.2. 1. The trivial action: g · x = x for all g 2 G and x 2 X. 2. Sn acts on f1; : : : ; ng via σ · k = σ(k) (here we use the definition of multiplication in Sn as function composition). More generally, if X is any set, SX acts on X, by the same formula: given σ 2 SX and x 2 X, define σ · x = σ(x).
    [Show full text]