<<

Teilchenphysik 2 — W/Z/Higgs an Collidern

Sommersemester 2019

Matthias Schroder¨ und Roger Wolf | Vorlesung 2

INSTITUTFUR¨ EXPERIMENTELLE TEILCHENPHYSIK (ETP)

KIT – Die Forschungsuniversitat¨ in der Helmholtz-Gemeinschaft www.kit.edu Programme

Date Room Type Topic

Wed Apr 24. Kl. HS B LE 01 1. Organisation and introduction: at colliders + W/Z/H history Tue Apr 30. 30.23 11/12 — no class Wed May 01. Kl. HS B — no class Tue May 07. 30.23 11/12 LE 02 2.1 & 2.2 The electroweak sector of the SM I Wed May 08. Kl. HS B LE 03, EX 01 2.3 Discovery of the W and Z & EX gauge theories Tue May 14. 30.23 11/12 LE 04 2.4 The Wed May 15. Kl. HS B EX 02 Exercise “SM Higgs mechanism” Tue May 21. 30.23 11/12 — no class Wed May 22. Kl. HS B LE 05 2.5 The electroweak sector of the SM II (Higgs mechanism + Yukawa couplings) Tue May 28. 30.23 11/12 SP 01 Specialisation of 2.4 and 2.5 Wed May 29. Kl. HS B LE 06 3.1 From theory to observables & 3.2 Reconstruction + analysis of exp. data Tue Jun 04. 30.23 11/12 EX 03 Exercise “Trigger efficiency measurement” Wed Jun 05. Kl. HS B LE 07 3.3 Measurements in particle physics (part 1) Tue Jun 11. 30.23 11/12 EX 04 Exercise on statistical methods Wed Jun 12. Kl. HS B LE 08 3.3 Measurements in particle physics (part 2) Tue Jun 18. 30.23 11/12 SP 02 Specialisation “Limit setting” Wed Jun 19. Kl. HS B SP 03 Specialisation “Unfolding” Tue Jun 25. 30.23 11/12 LE 09 4.1 Determination of SM parameters Wed Jun 26. Kl. HS B LE 10 4.2 Measurement and role of W/Z bosons at the LHC Tue Jul 02. 30.23 11/12 EX 05 Paper seminar “Z pole measurements” Wed Jul 03. Kl. HS B LE 11 4.3 Processes with several W/Z bosons Tue Jul 09. 30.23 11/12 EX 06 Paper seminar Higgs Wed Jul 10. Kl. HS B LE 12 5.1 Discovery and first measurements of the Higgs Tue Jul 16. 30.23 11/12 EX 07 Exercise “Machine learning in physics analysis” Wed Jul 17. Kl. HS B LE 13 5.2 Measurement of couplings and kinematic properties Tue Jul 23. 30.23 11/12 EX 08 Presentations: results of ML challenge Wed Jul 24. Kl. HS B LE 14 5.3 Search for Higgs physics beyond the SM & 5.4 Future Higgs physics

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 2/44 Programme

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 3/44 2. The Electroweak Sector of the

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 4/44 2. Electroweak Sector of the Standard Model

2.1 Gauge theory ◦ Global and local phase transformations ◦ Example: QED ◦ Abelian and non-Abelian gauge theories 2.2 The electroweak sector of the Standard Model – I ◦ Properties of the , weak ◦ Formulation of the Standard Model (without masses) 2.3 Discovery of ◦ History towards discovery ◦ Experimental methods 2.4 The Higgs mechanism ◦ Problem of massive gauge bosons and massive ◦ Idea of the Higgs mechanism: examples of spontaneous breaking 2.5 The electroweak sector of the Standard Model – II ◦ The Standard Model Higgs mechanism ◦ Yukawa couplings and masses ◦ The

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 5/44 2. Electroweak Sector of the Standard Model

2.1 Gauge theory ◦ Global and local phase transformations ◦ Example: QED ◦ Abelian and non-Abelian gauge theories 2.2 The electroweak sector of the Standard Model – I ◦ Properties of the weak interaction, ◦ Formulation of the Standard Model (without masses) 2.3 Discovery of W and Z bosons ◦ History towards discovery ◦ Experimental methods 2.4 The Higgs mechanism ◦ Problem of massive gauge bosons and massive fermions ◦ Idea of the Higgs mechanism: examples of spontaneous symmetry breaking 2.5 The electroweak sector of the Standard Model – II ◦ The Standard Model Higgs mechanism ◦ Yukawa couplings and fermion masses ◦ The Higgs boson

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 6/44 2.1 Gauge theory

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 7/44 Symmetries

Fundamental physical theories are based on symmetry principles

Symmetries of a system ◦ Discrete: e. g. under reflection, particle- exchange ◦ Continuous: e. g. under space-time translations or rotations ◦ Noether’s theorem (E. Noether 1918): To each continuous symmetry of ◦ a system, there is a conserved quantity. For example, quantum-mechanical phase of a charged particle cannot be ◦ observed, i. e. system is symmetric under rotations of the phase (phase transformation) conservation −→

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 8/44 Symmetries

Standard Model: interactions as consequence of symmetries ◦

universe-review.ca

Postulation: equations of motion stay invariant under local phase transformations Consequence: existence of fundamental interactions →

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 9/44 Global Phase Transformations

The Lagrangians for fermions and bosons are invariant under global ◦ phase transformations The phase is the same at each space-time point : α = const ◦ For example, Lagrangian of free fermions ◦ ψ(x) ψ0(x) = eiαψ(x) → ψ(x) ψ0(x) = ψ(x)e−iα →

µ Proof: 0 = ψ (iγ ∂ m)ψ0 L 0 µ − iα µ iα = ψe− (iγ ∂ m) e ψ µ − = ψ(iγµ∂ m)ψ = µ − L X

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 10/44 Local Phase Transformations

But: Lagrangian is not invariant under local phase transformations ◦ Different phases at each space-time point α = α(x)? ◦

ψ(x) ψ0(x) = eiα(x)ψ(x) → ψ(x) ψ0(x) = ψ(x)e−iα(x) →

µ Proof: 0 = ψ (iγ ∂ m)ψ0 L 0 µ − iα(x) µ iα(x) = ψe− (iγ ∂ m) e ψ µ − = ψ(iγµ(∂ +i∂ α(x)) m)ψ= µ µ − 6 L ψ(x+∆x)−ψ(x) breaks invariance due to ∂µ = lim∆ → in x 0 ∆x L (connects neighbouring space-time points)

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 11/44 Covariant Derivative Invariance can be achieved by introducing the ◦ covariant derivative ∂µ Dµ = ∂µ + iqAµ → with arbitrary gauge field Aµ and transformation behaviour

ψ(x) ψ0(x) = eiα(x)ψ(x) → ψ(x) ψ0(x) = ψ(x)e−iα(x) → 0 1 A(x)µ A (x)µ = A(x)µ ∂µα(x) → − q

µ Proof: 0 = ψ (iγ D0 m)ψ0 L 0 µ − µ = ψ (iγ (∂ + iqA0 ) m)ψ0 0 µ µ − iα(x) µ iα(x) = ψe− (iγ (∂ + iqA i∂ α(x)) m) e ψ µ µ − µ − = ψ (iγµ(∂ + i∂ α(x) + iqA i∂ α(x)) m) ψ µ µ µ − µ − = ψ(iγµD m)ψ = µ − L X Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 12/44 The Gauge

Covariant derivative introduces gauge field Aµ ◦ Allows arbitrary phase α(x) of ψ(x) at each space-time point x ◦ Aµ ‘transports’ this information from point to point ◦ (physical: no instantaneous information exchange)

Aµ couples to property q of spinor field ψ(x) ◦ q can be identified with ψ ◦ µ = ψ (iγ Dµ m) ψ L − iqγµ µ µ − 1 µν Aµ = ψ (iγ ∂µ m) ψ q(ψγ ψ)Aµ 4 F Fµν | {z− } −| {z } − free fermion interaction ψ

Aµ can be identified with field ◦ i Dynamics of Aµ given by Fµν = ∂µAν ∂νAµ = [Dµ, Dν] ◦ − q 1 µν kin = F Fµν (→Proca equation for massless vector boson) L − 4

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 13/44 Lagrange Density of QED

Postulation of local U(1) gauge symmetry leads to Lagrangian of QED ◦

µ 1 µν QED = ψ (iγ Dµ m) ψ F Fµν L − − 4 µ µ 1 µν = ψ (iγ ∂µ m) ψ q(ψγ ψ)Aµ 4 F Fµν | {z− } − | {z } − | {z } free fermion interaction gauge field

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 14/44 Lagrange Density of QED

Postulation of local U(1) gauge symmetry leads to Lagrangian of QED ◦

µ 1 µν QED = ψ (iγ Dµ m) ψ F Fµν L − − 4 µ µ 1 µν = ψ (iγ ∂µ m) ψ q(ψγ ψ)Aµ 4 F Fµν | {z− } − | {z } − | {z } free fermion interaction gauge field

Electromagnetic interaction consequence of local gauge invariance

Continuous transformations U = eiα(x) form Abelian group U(1) ◦ under multiplication and thus commute, i. e. [Ui , Uj ] = 0

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 15/44 Yang–Mills Theories

Extension of the gauge principle to non-Abelian groups ◦ Standard Model: in particular SU(2) and SU(3) ◦ SU(n) transformations ψ exp[i 1 gαa(x)τ a]ψ ◦ → 2 n2 1 generators τ a ◦ − Non-Abelian algebra [τ a, τ b] = if abc τ c with structure constants f abc ◦ Analogue to QED: invariance under local SU(n) transformations by ◦ introducing covariant derivative and field-strength tensor

a a Dµ = ∂µ + igτ Aµ with Aa Aa + 1 ∂ αa(x) + f abc αb(x)Ac µ → µ g µ µ [D , D ]a = igF a , F a = ∂ Aa ∂ Aa + gf abc Ab Ac µ ν µν µν µ ν − ν µ µ ν Non-zero structure constants lead to self-interaction ◦ NB: above relations also hold for U(1) ◦

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 16/44 Example: Invariance Under Local SU(2) Generators: 3 Pauli matrices τ a with f abc = abc ◦  ν  Act on isospin doublets, e. g. ψ = ◦ e 3 vector fields F a: 3 vector bosons ◦ µ Additional terms in field-strength tensor (from non-zero commutator): ◦ a a a abc b c F = ∂µA ∂νA + g A A vector boson self-interaction µν ν − µ µ ν → Lagrangian boson propagation ◦ fermion-boson interaction and self-interaction = ψ(i∂/ m)ψ g ψγµτ aψ Aa 1 F a F aµν LSU(2) − − µ − 4 µν

g g g2

fermion-boson int. boson self-interaction

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 17/44 Summary

Symmetry as basic principle of physical theories ◦ Concept of local gauge theories: invariance of Lagrangian under ◦ local gauge transformations Requires introduction of vector fields (gauge bosons) with specific ◦ coupling structure QED: symmetry under U(1) gauge group introduction of photon ◦ → Yang–Mills theories: non-Abelian gauge groups more complex ◦ → structure, e. g. self-interactions of gauge bosons

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 18/44 2.2 The electroweak sector of the SM — I

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 19/44 The Standard Model Constituents and Interactions

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 20/44 The Standard Model Constituents and Interactions: Electroweak Sector

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 21/44 2.2.1. Properties of the weak interaction

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 22/44 Weak Interaction: Change of Flavour e.o.hs 6(04 o3 1037 no.3, (2014) 86 Rev.Mod.Phys.

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 23/44 Weak Interaction: Parity Violation arXiv:0810.2212

W bosons couple only to left-handed particles (and right-handed ◦ ): weak interaction is maximally parity violating Also CP violating, e. g. K0 system ◦

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 24/44 Weak Interaction: Heavy Mediators oue10 at4 Part 110, Volume Series Conference Physics: of Journal

NC

CC

Heavy mediators: short range/weakness of interaction ◦ Propagator suppressed by large mass in denominator ◦ Resolves divergencies in 4-point contact-interaction model (Fermi theory) ◦

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 25/44 Electroweak Unification oue10 at4 Part 110, Volume Series Conference Physics: of Journal

NC

CC

Electroweak unification: same coupling at high energies ◦ + Also: resolves divergencies in e e− WW by contributions from ◦ → triple-gauge couplings γWW , ZWW (prediction of Z boson!)

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 26/44 Electroweak Gauge Group oue10 at4 Part 110, Volume Series Conference Physics: of Journal

NC

CC

Simplest combination of gauge-symmetry groups for unified ◦ :SU (2)L U(1)Y SU(2) : weak isospin acts on left-handed× particles only ◦ L U(1) : acts on all particles (= U(1) gauge group of QED!) ◦ Y 6 Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 27/44 Electroweak Gauge Group

Particle content: distinguish left-handed and right-handed particles ◦ Left-handed particles: weak isospin doublets (I = 1/2, I = 1/2) ◦ 3 ±  ν   u  ψ = e ,..., ,... L e d − L L

Right-handed particles: weak isospin singlets (I = I = 0) ◦ 3

ψR = eR−,..., uR, dR,...

Left- and right-handed (!) components of fermions can be ◦ projected with

1 5 5 0 1 2 3 ψ 1 γ ψ ψ = ψL + ψR γ iγ γ γ γ L/R ≡ 2 ∓ ⇒ ≡ Important equality: scalar bilinear form ψψ = ψ ψ + ψ ψ ◦ L R R L

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 28/44 Electroweak Gauge Group

g a a Gauge transformation of SU(2)L: U(x) = exp[i α (x)τ ] ◦ 2 Coupling constant g ◦ Acts on isospin doublets ◦ i 3 generators: Pauli matrices τ a = σ 3 gauge bosons W ◦ a → µ g0 Gauge transformation of U(1)Y: U(x) = exp[i Y α(x)] ◦ 2 Coupling constant g0 ◦ Y (additive ) ◦ Acts on isospin doublets and singlets ◦ Single gauge boson B ◦ µ Require that SU(2)L doublets are U(1)Y singlets ◦ 1 Gell-Mann–Nishijima formula I3 = Q Y → − 2

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 29/44 Particles and Quantum Numbers Particles and Quantum Numbers

Fermion Chirality Isospin (I, I3) Hypercharge Y Charge Q (e)

L (1/2, +1/2) –1 0 : �e, �µ, �� R Not part of the standard model

Charged L (1/2, –1/2) –1 –1 : e, µ, � R (0, 0) –2 –1

up-type L (1/2, +1/2) +1/3 +2/3 : u, c, t R (0, 0) +4/3 +2/3

down-type L (1/2, –1/2) +1/3 –1/3 quarks: d, s, b R (0, 0) –2/3 –1/3

322 Particle Physics I (4022031) – Lecture #8 Winter Semester 2017/2018

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 30/44 Electroweak Lagrangian (without gauge-boson mass terms)

µ µ 1 µν 1 a a,µν EWK = iψ γ DµψL + iψ γ DµψR BµνB W W L L R − 4 − 4 µν

1. Covariant derivatives

 g a a g0  DµψL = ∂µ i τ W i YL12Bµ ψL − 2 µ − 2  g0  DµψR = ∂µ i YRBµ ψR − 2

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 31/44 Covariant Derivative of SU(2) U(1) L × Y Covariant derivative corresponding to SU(2) acts on isospin doublet only

    µ g a a g0 µ g0 = iψ γ ∂µ + i τ W + i YLBµ ψL+iψ γ ∂µ + i YRBµ ψR L L 2 µ 2 R 2

a a + +  3 3 τ Wµ = √2 τ Wµ + τ −Wµ− + τ Wµ   1 1 2 + 1 1 2 0 1 W± = (W iW ), τ (τ + iτ ) = (ascending operator) µ √2 µ ∓ µ ≡ 2 0 0   1 1 2 0 0 τ − (τ iτ ) = (descending operator) ≡ 2 − 1 0  1 0  τ 3 = 0 1 −

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 32/44 Charged Currents [Example: 1. Generation Leptons]

h i √g µ + µ − CC = (νeγ eL) Wµ + (eLγ νe) Wµ L − 2 | {z } | {z } µ,+ µ,− JCC JCC h i = √g ν γµ 1 (1 γ ) eW+ + eγµ 1 (1 γ ) ν W− 2 e 2 5 µ 2 5 e µ − | {z− } | {z− } V-A V-A

+ Operator Wµ : annihilates W+ or creates W−

Transitions within isospin doublets ◦ Simultaneous change of charge (by e) and flavour (e ν ) ◦ ± ↔ e Parity violation: W boson couples only to left-handed particles ◦ Only left-handed particles carry “weak isospin charge” under I ◦ 3 V-A interaction (“vector minus axial vector current”) ◦ Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 33/44 Covariant Derivative of SU(2) U(1) L × Y Covariant derivative corresponding to SU(2) acts on isospin doublet only

    µ g a a g0 µ g0 = iψ γ ∂µ + i τ W + i YLBµ ψL+iψ γ ∂µ + i YRBµ ψR L L 2 µ 2 R 2

a a + +  3 3 τ Wµ = √2 τ Wµ + τ −Wµ− + τ Wµ   1 1 2 + 1 1 2 0 1 W± = (W iW ), τ (τ + iτ ) = (ascending operator) µ √2 µ ∓ µ ≡ 2 0 0   1 1 2 0 0 τ − (τ iτ ) = (descending operator) ≡ 2 − 1 0  1 0  τ 3 = 0 1 −

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 34/44 Covariant Derivative of SU(2) U(1) L × Y Covariant derivative corresponding to SU(2) acts on isospin doublet only

    µ g a a g0 µ g0 = iψ γ ∂µ + i τ W + i YLBµ ψL+iψ γ ∂µ + i YRBµ ψR L L 2 µ 2 R 2

YL/R I3 Q

ν 1 +1/2 0 − e 1 1/2 1 L − − − Covariant derivative eR 2 0 1 − − corresponding to U(1) acts on isospin doublet and on YL/R: hypercharge I3: isospin isospin singlet Q: electric charge

Y Q = I3 + 2 (Gell-Mann–Nishijima)

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 35/44 Neutral Currents [Example: 1. Generation Leptons]

0 0 h g 3 g i µ h g 3 g i µ µ NC = 2 Wµ 2 Bµ (νγ ν) + 2 Wµ + 2 Bµ (eLγ eL) + g0Bµ (eRγ eR) L − | {z− } | {z } |{z} c Z [c Z + c A ][c Z + c A ] − 1 µ 2 µ 4 µ 3 µ 4 µ

 Z   cos θ sin θ   W3  Weinberg rotation: µ = W − W µ Aµ sin θW cos θW Bµ

g0 g sin θW , cos θW ≡ √g2+g02 ≡ √g2+g02

√g2+g02 = Z (νγµν) LNC − 2 µ √g2+g02 h i + cos2 θ sin2 θ Z +2 sin θ cos θ A (e γµe ) 2 W − W µ W W µ L L √g2+g02 h i + 2 sin2 θ Z +2 sin θ cos θ A (e γµe ) 2 − W µ W W µ R R

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 36/44 Electromagnetic Interaction [Example: ]

√g2+g02 h i = 2 sin θ cos θ A (e γµe ) + (e γµe ) Lem 2 W W · µ · L L R R 0 gg µ = Aµ (eγ e) √g2+g02 · · = q A jµ e · µ · em

QED vector current jµ recovered → em charge related to electroweak ◦ coupling constants g and g0

0 gg 0 qe = p = g sin θW = g cos θW g2 + g02

Photon field Aµ couples “as desired” ◦ Photon couples to all charged particles ◦ Symmetric coupling for left-handed and right-handed components ◦

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 37/44 Z-Boson Exchange [Example: 1. Generation Leptons]

√g2+g02 = Jµ Z LZ − 2 NC µ g h µ 2 2  µ 2 µ i = νeγ νe cos θW sin θW eLγ eL + 2 sin θW eRγ eR Zµ − 2 cos θW − − g h µ 1 µ 1 2 µ i = νeγ (1 γ5)νe eγ (1 γ5)e + 2 sin θW (eγ e) Zµ − 2 cos θW 2 − − 2 − g h ν 1 µ e µ 1 i µ = I3 νe γ (1 γ5)νe + I3 eγ (1 γ5)e Zµ qe tan θW eγ e Zµ − cos θW 2 − 2 − −

Left-handed (V-A) couplings Vector couplings

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 38/44 Example: Z-Boson Coupling to Electrons

g h µ 1 2 µ i Ze = eγ (1 γ5)e + 2 sin θW (eγ e) Zµ L − 2 cos θW − 2 − g h µ 2 i = eγ (4 sin θW 1 + γ5) e Zµ − 4 cos θW − g µ  = eγ CV + CAγ5 e Zµ − 4 cos θW

C = 4 sin2 θ 1 (vector coupling) V W − CA = 1 (axial-vector coupling)

2 With sin θW = 0.22: CV is small electron couples mostly via axial-vector couplings to the Z boson →

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 39/44 Covariant Derivative of SU(2) U(1) L × Y Charged-current interactions (W boson exchange)

Left-handed (V-A) couplings

Neutral-current interactions (photon and Z boson exchange)

Vector couplings Left-handed (V-A) couplings Vector couplings

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 40/44 Electroweak Lagrangian (without gauge-boson mass terms)

µ µ 1 µν 1 a a,µν EWK = iψ γ DµψL + iψ γ DµψR BµνB W W L L R − 4 − 4 µν

1. Covariant derivatives

 g a a g0  DµψL = ∂µ i τ W i YL12Bµ ψL − 2 µ − 2  g0  DµψR = ∂µ i YRBµ ψR − 2 2. Field strength tensors

Bµν = ∂µBν ∂νBµ − i i i ijk j k Wµν = ∂µWν ∂νWµ g WµWν − − | {z } gauge boson self-interaction

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 41/44 Gauge-Boson Self-Interaction

Triple gauge couplings W+ W+

e γ e cot θW Z

W− W−

Quartic gauge couplings W+ γ W+ Z W+ Z W+ W+

2 2 2 2 2 e e cot θW e cot θW g

γ γ W− W− W− Z W− W−

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 42/44 Summary

Standard Model: all fundamental interactions as consequence of ◦ local gauge invariance Invariance requires introduction of gauge fields ◦ Geometrical interpretation: gauge bosons transport phase information ◦ between space-time points

Gauge groups of the Standard Model: SU(3)C SU(2)L U(1)Y ◦ × × Electroweak gauge group SU(2)L U(1)Y has peculiar structure ◦ × Physical gauge boson (W ±, Z, γ) superposition of underlying gauge ◦ a fields W (from SU(2)L) and B (from U(1)Y ) Interaction different for left- and right-handed states, leading to e. g. parity ◦ violation

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 43/44 The Standard Model — Part 1

Matthias Schroder¨ – W/Z/Higgs an Collidern (Sommersemester 2019) Vorlesung 2 44/44