Homology and Homoplasy of Swimming Behaviors and Neural Circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

Total Page:16

File Type:pdf, Size:1020Kb

Homology and Homoplasy of Swimming Behaviors and Neural Circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia) Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia) James M. Newcomba, Akira Sakuraib, Joshua L. Lillvisb, Charuni A. Gunaratneb, and Paul S. Katzb,1 aDepartment of Biology, New England College, Henniker, NH 03242; and bNeuroscience Institute, Georgia State University, Atlanta, GA 30302 Edited by John C. Avise, University of California, Irvine, CA, and approved April 23, 2012 (received for review February 29, 2012) How neural circuit evolution relates to behavioral evolution is not individually identifiable neurons, allowing the neural circuitry well understood. Here the relationship between neural circuits underlying the swimming behaviors to be determined with and behavior is explored with respect to the swimming behaviors cellular precision. of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudi- Here we will summarize what is known about the phylogeny of pleura is a diverse monophyletic clade of sea slugs among which Nudipleura, their swimming behaviors, and the neural circuits only a small percentage of species can swim. Swimming falls into underlying swimming. We will also provide data comparing the a limited number of categories, the most prevalent of which are roles of homologous neurons. We find that neural circuits un- rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral derlying the behaviors of the same category are composed of body flexions (DV). The phylogenetic distribution of these behav- overlapping sets of neurons even if they most likely evolved in- iors suggests a high degree of homoplasy. The central pattern dependently. In contrast, neural circuits underlying categorically generator (CPG) underlying DV swimming has been well charac- distinct behaviors use nonoverlapping sets of neurons. Further- terized in Tritonia diomedea and in Pleurobranchaea californica. more, homologous neurons can have different functions in dif- The CPG for LR swimming has been elucidated in Melibe leonina ferent behaviors and even in similar behaviors. and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of Phylogeny of Nudipleura nonoverlapping sets of homologous identified neurons, whereas The Nudipleura form a monophyletic clade within Opistho- the categorically similar behaviors share some homologous iden- branchia (Gastropoda) that contains two sister clades: Pleuro- tified neurons, although the exact composition of neurons and branchomorpha and Nudibranchia (19–21) (Fig. 1). Molecular synapses in the neural circuits differ. The roles played by homolo- evidence suggests that the two sister groups separated approxi- gous identified neurons in categorically distinct behaviors differ. mately 125 Mya (21). Nudibranchia (or, informally, nudi- However, homologous identified neurons also play different roles branchs), which are shell-less and have a slug-shaped appearance even in the swim CPGs of the two LR swimming species. Individual with “naked gills,” were traditionally classified as their own or- neurons can be multifunctional within a species. Some of those der. The most recently agreed upon taxonomic classification functions are shared across species, whereas others are not. system for nudibranchs uses unranked clades instead of orders, The pattern of use and reuse of homologous neurons in various suborders, and superfamilies (22). There are at least 2,000 to forms of swimming and other behaviors further demonstrates 3,000 identified nudibranch species (23). Studies that used that the composition of neural circuits influences the evolution morphological and molecular data support the monophyly of of behaviors. Nudibranchia (19–21, 24–26). Within Nudibranchia, there are two monophyletic clades (19): evolvability | neuromodulation | rhythmic movement | Euctenidiacea (Anthobranchia) (27, 28) and Cladobranchia (25). species differences | neuroethology Euctenidiacea includes Doridacea, which is larger than Clado- branchia, subdividing into 25 families (28). Within Cladobranchia, ehavior and neural mechanisms can be considered to rep- Bornellidae forms a sister group to the other subclades (25). Bresent two different levels of biological organization (1–4). Aeolidida is a monophyletic clade with Lomanotidae as a sister Nevertheless, the evolution of behavior and the evolution of group (25). What was traditionally called Dendronotida forms neural circuits underlying behavior are intertwined. For example, a paraphyletic grouping. A recent study was unable to include it has been suggested that the properties of neural circuits affect the nudibranch Melibe in Cladobranchia because of a 12-bp de- the evolvability of behavior; the evolution of particular behaviors letion in its genome (25). However, its natural affinity with Tethys could be constrained or promoted by the organization of neural in terms of shared derived characteristics strongly suggests that it circuits (5–9). Darwin and the early ethologists recognized that belongs in Cladobranchia, as we have indicated in Fig. 1. There behaviors, like anatomical features, are heritable characters that are several additional unresolved relations in Nudibranchia, most are amenable to a phylogenetic approach (10–13). The use of behavioral traits to determine phylogenies has been validated several times (14–17), and the historical debates about homology This paper results from the Arthur M. Sackler Colloquium of the National Academy of and homoplasy of behavior have been thoroughly reviewed (2–4, Sciences, “In the Light of Evolution VI: Brain and Behavior,” held January 19–21, 2012, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engi- 15, 17, 18). Examining the neural bases for independently neering in Irvine, CA. The complete program and audio files of most presentations are evolved (i.e., homoplastic) behaviors within a clade could pro- available on the NAS Web site at www.nasonline.org/evolution_vi. vide insight into fundamental aspects of neural circuit organi- Author contributions: J.M.N., A.S., J.L.L., C.A.G., and P.S.K. designed research; J.M.N., A.S., zation. However, it is difficult enough to determine the neural J.L.L., and C.A.G. performed research; J.M.N., A.S., J.L.L., C.A.G., and P.S.K. analyzed data; basis for behavior in one species. Doing this in several species and J.M.N., A.S., J.L.L., C.A.G., and P.S.K. wrote the paper. with quantifiable behaviors is even more challenging. The authors declare no conflict of interest. Studies of the neural bases of swimming behaviors in the This article is a PNAS Direct Submission. Nudipleura (Mollusca, Gastropoda, Opisthobranchia) offer such 1To whom correspondence should be addressed. E-mail: [email protected]. a possibility. These sea slugs exhibit well differentiated catego- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ries of swimming behaviors, and their nervous systems have large 1073/pnas.1201877109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1201877109 PNAS Early Edition | 1of8 Downloaded by guest on October 3, 2021 Clade Family Genus Cephalopyge trematoides (33). This is also true for gastropods in Bornellidae Bornella -LR general; there are ∼40,000 marine gastropod species but only approximately 150 are pelagic (33). Dironidae Dirona -NS In addition to crawling, a limited number of benthic species Tritonia - DV Tritoniidae Marionia - DV can also swim (34). We classify swimming in the Nudipleura into Tochuina -NS seven general categories: (i) left–right flexion (LR), (ii) dorsal– ventral flexion (DV), (iii) left–right undulation (LU), (iv) dorsal– Notobryon - LR Scyllaeidae Scyllaea -LR ventral undulation (DU), (v) asymmetric undulation (AU), (vi) Dendronodae Dendronotus -LR breaststroke (BS), and (vii) flapping (F) (Table S1). Dendronoda Melibe -LR LR swimming is characterized by the flattening of the body in Tethydidae Cladobranchia Tethys -LR the sagittal plane and repeated left–right bending near the Phylliroë -LU Phylliroidae midpoint of the body axis with the head and tail coming together Cephalopyge -LU laterally (Fig. 2A). This movement propels the animal through Lomanodae Lomanotus -LR the water. Some animals, such as Melibe leonina, exhibit foot-first Cumanotus - BS Flabellinidae Flabellina cynara - BS directionality, presumably because the dorsal cerata create drag. Flabellina iodinea - LR Other animals, such as Tambja eliora, proceed headfirst, with the Flabellina telja - LR tail lagging slightly, causing the body to take on an “S” form (34). Flabellina trophina - NS Animals in the genus Plocamopherus typically have a dorsal crest Aeolidida Aeolidiidae Aeolidella - BS at the posterior end of the body that may act as a paddle and Nudibranchia Hermissenda - LR Glaucidae Pteraeolidia - LR cause the head to proceed the tail (35). Plocamopherus ceylonicus (35, 36) and Plocamopherus maderae Armina - NS (37) swim with LR flexions when dislodged from a substrate or Dorididae Aphelodoris - DV disturbed in some way. Tambja appears to use LR swimming as Diaulula - NS an escape response; contact with the predacious nudibranch Discodorididae Discodoris - DV Roboastra will elicit swimming in Tambja (34, 38). LR swim- Sebadoris - DV/DU ming in Melibe and Dendronotus iris can be initiated in response Archidoris - NS to loss of contact with the substrate or in response to the touch Doridoidea Chromodoridae Hypselodoris - NS Cadlina - NS of a predatory sea star (39, 40). Melibe may also swim seasonally
Recommended publications
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Phylum MOLLUSCA
    285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p.
    [Show full text]
  • Marine Science
    Western Indian Ocean JOURNAL OF Marine Science Volume 18 | Issue 1 | Jan – Jun 2019 | ISSN: 0856-860X Chief Editor José Paula Western Indian Ocean JOURNAL OF Marine Science Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal Copy Editor Timothy Andrew Editorial Board Lena GIPPERTH Aviti MMOCHI Sweden Tanzania Serge ANDREFOUËT Johan GROENEVELD France Cosmas MUNGA South Africa Kenya Ranjeet BHAGOOLI Issufo HALO Mauritius South Africa/Mozambique Nyawira MUTHIGA Kenya Salomão BANDEIRA Christina HICKS Mozambique Australia/UK Brent NEWMAN Betsy Anne BEYMER-FARRIS Johnson KITHEKA South Africa USA/Norway Kenya Jan ROBINSON Jared BOSIRE Kassim KULINDWA Seycheles Kenya Tanzania Sérgio ROSENDO Atanásio BRITO Thierry LAVITRA Portugal Mozambique Madagascar Louis CELLIERS Blandina LUGENDO Melita SAMOILYS Kenya South Africa Tanzania Pascale CHABANET Joseph MAINA Max TROELL France Australia Sweden Published biannually Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of Marine Science features state-of-the-art review articles and short communications.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Table of Contents
    ALL INDIA CO-ORDINATED PROJECT ON TAXONOMY OF MOLLUSCA ANNUAL REPORT (December 2016 – May 2018) GUJARAT STATE BOMBAY NATURAL HISTORY SOCIETY Dr. Deepak Apte Director Dr. Dishant Parasharya Dr. Bhavik Patel Scientist – B Scientist – B All India Coordinated Project on Taxonomy – Mollusca , Gujarat State Acknowledgements We are thankful to the Department of Forest and Environment, Government of Gujarat, Mr. G. K. Sinha, IFS HoFF and PCCF (Wildlife) for his guidance and cooperation in the work. We are thankful to then CCF Marine National Park and Sanctuary, Mr. Shyamal Tikader IFS, Mr. S. K. Mehta IFS and their team for the generous support, We take this opportunity to thank the entire team of Marine National Park and Sanctuary. We are thankful to all the colleagues of BNHS who directly or indirectly helped us in our work. We specially thank our field assistant, Rajesh Parmar who helped us in the field work. All India Coordinated Project on Taxonomy – Mollusca , Gujarat State 1. Introduction Gujarat has a long coastline of about 1650 km, which is mainly due to the presence of two gulfs viz. the Gulf of Khambhat (GoKh) and Gulf of Kachchh (GoK). The coastline has diverse habitats such as rocky, sandy, mangroves, coral reefs etc. The southern shore of the GoK in the western India, notified as Marine National Park and Sanctuary (MNP & S), harbours most of these major habitats. The reef areas of the GoK are rich in flora and fauna; Narara, Dwarka, Poshitra, Shivrajpur, Paga, Boria, Chank and Okha are some of these pristine areas of the GoK and its surrounding environs.
    [Show full text]
  • Nudibranch Molluscs of the Genus Dendronotus Alder Et Hancock, 1845 (Heterobranchia: Dendronotina) from Northwestern Sea of Japan with Description of a New Species
    Invertebrate Zoology, 2016, 13(1): 15–42 © INVERTEBRATE ZOOLOGY, 2016 Nudibranch molluscs of the genus Dendronotus Alder et Hancock, 1845 (Heterobranchia: Dendronotina) from Northwestern Sea of Japan with description of a new species I.A. Ekimova1,2, D.M. Schepetov3,4,5, O.V. Chichvarkhina6, A.Yu. Chichvarkhin2,6 1 Biological Faculty, Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia. E-mail: [email protected] 2 Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia. 3 Koltzov Institute of Developmental Biology RAS, Vavilov Str. 26, 119334 Moscow, Russia. 4 Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140 Moscow, Russia. 5 National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia. 6 A.V. Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia. ABSTRACT: Species of the genus Dendronotus are among the most common nudibranchs in the northern Hemisphere. However, their distribution and composition in the North-west Pacific remain poorly explored. In the present study, we observed Dendronotus composi- tion in northwestern part of the Sea of Japan, using an integrative approach, included morphological and molecular phylogenetic analyses and molecular species delimitation methods. These multiple methods revealed high cryptic diversity within the genus. Two specimens of Dendronotus frondosus were found in Amursky Bay and therefore its amphiboreal status was confirmed. In three locations of the Sea of Japan we found specimens, which are very close externally to D. frondosus, but show significant distance according to molecular analysis. We show that these specimens belong to a new species Dendronotus dudkai sp.n.
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • The Morphology of Ismaila Monstrosa Bergh (Copepoda)
    AN ABSTRACT OF THE THESIS OF FRANCIS PETER BELCIK for the M. S. inZoology (Name) (Degree) (Major) Date thesis is presented l'/ Ak I Title THE MORPHOLOGY OF ISMAILA MONSTROSA BERGH (COPEPODA) Abstract approvedRedacted for Privacy The morphology of a rather rare parasitic copepod was studied.Ismaila monstrosa Bergh, an endoparasitic copepod was found in the nudibranch, Antiopella fusca,at Coos Bay, Oregon. Many anatomical features were found, which were different from previous descriptions.Males were described for the first time. Young males lacked the gonadal lobes found on the dorsal sides of adult males.Both sexes had similar mouthparts, differing only in size.These mouthparts consisted, like those of Splanchnotrophus, of a bifid lab rum, a pair of simple mandibles, a pair of maxillae and a triangular labium with side processes.There was only a single pair of maxillae and they are unusual in that they were found to be setigerous and two-jointed.The distal portion of this characteristic maxilla was biramous, the smaller member often obscure.Because of this and other anatomical factors, I proposed a new variety Ismaila monstrosa var. pacifica and a newsubfamily, the Ismailinae. Although the female possessed three pairs of lateral appendages, the male lacked these, having only the two pairs of ventral appendages. In the female specimens there were two pairs of ventral appendages or !?stomach_armsh?.The first pair was bifurcate, the second pair trifurcate.In the male specimens the first pair was uniramous and the second pair unequally biramous. The dige.stive system was found to be incomplete in both sexes.
    [Show full text]
  • Defenses of Caribbean Sponges Against Predatory Reef Fish. I
    MARINE ECOLOGY PROGRESS SERIES Vol. 127: 183-194.1995 Published November 2 Mar Ecol Prog Ser Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency Joseph R. Pawlikl,*,Brian Chanasl, Robert J. ~oonen',William ~enical~ 'Biological Sciences and Center for Marine Science Research. University of North Carolina at Wilmington, Wilmington, North Carolina 28403-3297, USA 2~niversityof California, San Diego, Scripps Institution of Oceanography, La Jolla. California 92093-0236. USA ABSTRACT: Laboratory feeding assays employing the common Canbbean wrasse Thalassoma bifas- ciatum were undertaken to determine the palatability of food pellets containing natural concentrations of crude organic extracts of 71 species of Caribbean demosponges from reef, mangrove, and grassbed habitats. The majority of sponge species (69%) yielded deterrent extracts, but there was considerable inter- and intraspecific vanability in deterrency. Most of the sponges of the aspiculate orders Verongida and Dictyoceratida yielded highly deterrent extracts, as did all the species in the orders Homoscle- rophorida and Axinellida. Palatable extracts were common among species in the orders Hadromerida, Poecilosclerida and Haplosclerida. Intraspecific variability was evident, suggesting that, for some spe- cies, some individuals (or portions thereof) may be chemically undefended. Reef sponges generally yielded more deterrent extracts than sponges from mangrove or grassbed habitats, but 4 of the 10 most common sponges on reefs yielded palatable extracts
    [Show full text]
  • Australasian Nudibranch News
    australasian nudibranchNEWS No.6 February 1999 Ceratosoma brevicuadatum Editors Notes Abraham, 1867 Helmut Debilius’s second edition of Nudibranchs and Sea Snails is now This species is endemic to the temper- available (see review page 4). Neville Coleman has supplied the updated spe- ate southern Australia, from Cape Byron in cies list for his Nudibranchs of the South Pacific (see page 3). For the full up- the east to Houtman Abrolhos in the west. It date, including the new distribution notes, send an email and we will forward a is the dominate species in Victorian waters. copy. The body and mantle colour can be The Port Stephens nudibranch list has drawn some attention, a film maker bright red, pink, orange, pale brown or yel- recently contacted us after seeing the list on our web site. We are now looking low and bear red, blue or purple spots often at how we can assist him in making a documentory on the Rocky Shore. All with white rings. The rhinophores and specimens are to be photographed and then released unharmed. tripinnate gills are the same colour as the Surfing the nudibranch sites recently I came across a site created by Lim mantle and foot. Yun Ping. Have a look at http://arl.nus.edu.sg/mandar/yp/EPIC/nudi.html The body is firm, high, slender and in- flexible. The mantle has a continuous wavy notal ridge which develops into a posterior Feedback mantle projection. This distinguishes it from In answer to Lindsay Warren's request for information: tropical species which have elongated and Helmut's book (Edition one): recurved projections.This species can grow page 139 (middle): is Philinopsis cyanea.
    [Show full text]
  • Taxonomic Revision of Tritonia Species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island
    Rossi, M. E. , Avila, C., & Moles, J. (2021). Orange is the new white: taxonomic revision of Tritonia species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island. Polar Biology, 44(3), 559- 573. https://doi.org/10.1007/s00300-021-02813-8 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s00300-021-02813-8 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s00300-021-02813-8 .Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Polar Biology (2021) 44:559–573 https://doi.org/10.1007/s00300-021-02813-8 ORIGINAL PAPER Orange is the new white: taxonomic revision of Tritonia species (Gastropoda: Nudibranchia) from the Weddell Sea and Bouvet Island Maria Eleonora Rossi1,2 · Conxita Avila3 · Juan Moles4,5 Received: 9 December 2019 / Revised: 22 January 2021 / Accepted: 27 January 2021 / Published online: 22 February 2021 © The Author(s) 2021 Abstract Among nudibranch molluscs, the family Tritoniidae gathers taxa with an uncertain phylogenetic position, such as some species of the genus Tritonia Cuvier, 1798. Currently, 37 valid species belong to this genus and only three of them are found in the Southern Ocean, namely T.
    [Show full text]