Common Dandelion Is an Introduced Weed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf. -
SMOOTH OXEYE Fibrous Rooted Caudex That Develops Stout Rhizomes
Plant Guide (m) in height. The smooth, unbranched stem arises from a SMOOTH OXEYE fibrous rooted caudex that develops stout rhizomes. The leaves are oppositely attached to the stem and have Heliopsis helianthoides (L.) Sweet coarsely serrated margins. The leaves are triple nerved, Plant Symbol = HEHE5 petiolate (have short leaf petioles) and are broadly lance shaped tapering to a sharp point at the tip and are abruptly Contributed by: USDA NRCS Manhattan Plant Materials rounded at the base. The leaves are dark green above and Center lighter green below with siliceous based hairs that provide a rough texture on both surfaces. The stem apex may contain a single flower head or branch into multiple stems with many yellow flowers (Owensby, 1989). The flowers of Heliopsis have both orange-yellow center disk and yellow ray flowers. Individual flowers have 10 or more ray flowers. The ray flowers are fertile with a forked pistil (female flower parts) at their base, but contain no male flower parts (Lommasson, 1973). The central disk flowers are perfect in that they contain both male and female flower parts (Runkel and Roosa, 1989). The fruit is a smooth three or four angled achene, usually without a pappus or crown of hairs that aids in wind dissemination (Runkel and Roosa, 1989). Ray flowers produce the three angled achene and disk flower produce the more common 4 angled achene. Distribution: For current distribution, please consult the Plant Profile page for this species on the PLANTS Web R. Alan Shadow USDA NRCS East Texas Plant Materials Center site. Alternate Names Oxeye Daisy, False Sunflower, Oxeye, Habitat: It is located in dry areas, edges of woods, Heliopsis Sunflower, sunflower Heliopsis roadsides, open woods, edges of fields and thickets. -
Dandelion Taraxacum Officinale
Dandelion Taraxacum officinale DESCRIPTION: Dandelion is a hardy perennial with a thick, fleshy taproot and no stem. Leaves grow in a rosette from the crown. They are long, narrow, irregularly lobed, and lance shaped. The lobed tips are often opposite each other and pointing toward the crown. Leaves are often purple at the base and emit a milky latex when broken. The deep golden yellow flowers are borne in heads on long hollow stalks. Blossoms soon mature into spherical clusters of whitish fruits, like white puffballs, composed of parachute-like seeds. Seeds are carried by wind. Type of plant: broadleaf Life cycle: Perennial Growth habit: Bunch type Aggressiveness (1-10 scale; 7 10=most aggressive): Leaf attachment whorled Leaf color: Dark green Flower description: Deep yellow, with only one flower per seed stalk Seed description: Spherical clusters that appear as white puffballs. The seed resembles a parachute Reproduces by: Seed, rootstock U.S. states found in: Throughout the U.S. Countries found in: Mexico, South and Central America, Africa, Europe, Asia Golf course areas found in: Tees, fairways, roughs, low maintenance areas MONITORING: Begin scouting when average air temperatures reach 55 F (13 C) IPM Planning Guide 1 Dandelion Taraxacum officinale MANAGEMENT STRATEGIES: Always check labels to determine turfgrass sensitivity to herbicides. For updated management information, see North Carolina State’s “Pest control for Professional Turfgrass Managers” Follow resistance management guidelines by rotating products as outlined in Weed Science Society of America’s Herbicide Site of Action Classification List Always consult the most recent version of all product labels before use. -
Adapted Dandelions Increase Seed Dispersal When They Are Attacked By
bioRxiv preprint doi: https://doi.org/10.1101/551630; this version posted February 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Adapted dandelions increase seed dispersal when they are attacked by 2 root herbivores 3 4 Zoe Bont1 ([email protected]), Marc Pfander1 ([email protected]), Christelle 5 A. M. Robert1 ([email protected]), Meret Huber2 ([email protected]), Erik 6 H. Poelman3 ([email protected]), Ciska E. RaaiJmakers4 ([email protected]) 7 and Matthias Erb1 ([email protected]) 8 9 1Institute of Plant Sciences, University of Bern, Bern, Switzerland 10 2Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany 11 3Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands 12 4Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The 13 Netherlands 14 15 Running title: Increased seed dispersal under herbivory 16 Key words: seed dispersal, root herbivory, adaptation, natural selection, fitness cost, 17 maternal effect, long distance dispersal, Taraxacum officinale, Melolontha melolontha 18 Correspondence: Matthias Erb ([email protected]), University of Bern, Institute of 19 Plant Sciences, Altenbergrain 21, CH-3013 Bern, Switzerland, tel: +41 31 631 8668, fax: +41 20 31 631 4942 21 Statement of authorship: ZB, MH and ME designed the study. ZB, CAMR, EHP and CER 22 collected data. MP developed the time-of-flight tube. -
Identifying Key Components of Interaction Networks Involving Greater Sage Grouse
Identifying Key Components of Interaction Networks Involving Greater Sage Grouse Sarah Barlow and Bruce Pavlik Conservation Department Red Butte Garden and Arboretum Salt Lake City, Utah 84105 Vegetation Forb seed Pollinators collections GSG Insects (chick diet) Chick Survivorship Linked to Vegetation Structure and Food Resource Abundance Gregg and Crawford 2009 J. Wildlife Man. 73:904-913 Astragalus geyeri Microsteris gracilis (Phacelia gracilis) https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Microsteris_gracilis_1776.JPG/220px-Microsteris_gracilis_1776.JPG Agoseris heterophylla Achillea millefolium Taraxacum officinale Bransford, W.D. & Dophia http://www.americansouthwest.net/ Literature Survey: Forbs and Insects as Essential Foods Reference Field Site Insect Foods Forb Foods Achillea, Agoseris, Astragalus, Pennington et al. 2016 Review 41 invert taxa, Coleoptera, Hymenoptera, Lactuca, Orthoptera Taraxacum, Trifolium, Lepidium Greg and Crawford 2009 NW Nevada Lepidoptera larvae especially strong Microsteris gracilis relation to SB "productive forbs" not at Thompson et al. 2006 Wyoming > 3<11 cm Hymenoptera, Ants, Coleoptera expense of sagebrush cover Drut, Crawford, Gregg 1994 Oregon Scarabs, Tenebrionids, ants w/ high occurrence Drut, Pyle and Crawford June beetles most preferred on all sites, Agoseris, Astragalus, Crepis, 1994 Oregon then Microsteris Tenebrionids and ants (by mass & freq) Trifolium (by mass & freq) Orthoptera, Coleoptera, Hymenoptera (by Peterson 1970 Montana vol & freq) Taraxacum, Tragopogon, Lactuca (by -
Inflorescence Development and Floral Organogenesis in Taraxacum Kok
plants Article Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz Carolina Schuchovski 1 , Tea Meulia 2, Bruno Francisco Sant’Anna-Santos 3 and Jonathan Fresnedo-Ramírez 4,* 1 Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540 CEP 80035-050 Curitiba, Brazil; [email protected] 2 Molecular and Cellular Imaging Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; [email protected] 3 Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico, Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Brazil; [email protected] 4 Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA * Correspondence: [email protected]; Tel.: +1-330-263-3822 Received: 13 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem. -
DANDELION Taraxacum Officinale ERADICATE
OAK OPENINGS REGION BEST MANAGEMENT PRACTICES DANDELION Taraxacum officinale ERADICATE This Best Management Practice (BMP) document provides guidance for managing Dandelion in the Oak Openings Region of Northwest Ohio and Southeast Michigan. This BMP was developed by the Green Ribbon Initiative and its partners and uses available research and local experience to recommend environmentally safe control practices. INTRODUCTION AND IMPACTS— Dandelion (Taraxacum officinale) HABITAT—Dandelion prefers full sun and moist, loamy soil but can is native to Eurasia and was likely introduced to North America many grow anywhere with 3.5-110” inches of annual precipitation, an an- times. The earliest record of Dandelion in North America comes from nual mean temperature of 40-80°F, and light. It is tolerant of salt, 1672, but it may have arrived earlier. It has been used in medicine, pollutants, thin soils, and high elevations. In the OOR Dandelion has food and beverages, and stock feed. Dandelion is now widespread been found on sand dunes, in and at the top of floodplains, near across the planet, including OH and MI. vernal pools and ponds, and along roads, ditches, and streams. While the Midwest Invasive Species Information Net- IDENTIFICATION—Habit: Perennial herb. work (MISIN) has no specific reports of Dandelion in or within 5 miles of the Oak Openings Region (OOR, green line), the USDA Plants Database reports Dan- D A delion in all 7 counties of the OOR and most neighboring counties (black stripes). Dan- delion is ubiquitous in the OOR. It has demonstrated the ability to establish and MI spread in healthy and disturbed habitats of OH T © Lynn Sosnoskie © Steven Baskauf © Chris Evans the OOR and both the wet nutrient rich soils of wet prairies and floodplains as well Leaves: Highly variable in shape, color and hairiness in response to as sandy dunes and oak savannas. -
Apomixis in Taraxacum an Embryological and Genetic Study Promotor: Professor Dr
Apomixis in Taraxacum an embryological and genetic study promotor: Professor dr. R.F.Hoekstra , hoogleraar in de genetica, met bijzondere aandacht voor de populatie- en kwantitatieve genetica co-promotoren: Dr. P.J.va n Dijk, senior onderzoeker bijhe t Nederlands Instituut voor Oecologisch Onderzoek, Centrum voor Terrestrische Oecologie (NIOO- CTO) te Heteren, en Dr. J.H.d e Jong, universitair hoofddocent bijhe t Departement Plantenwetenschappen, Wageningen Universiteit promotiecommissie: Prof. Dr. S.C. de Vries Wageningen Universiteit Prof. Dr.J.L .va n Went Wageningen Universiteit Prof. Dr.J.M.M . van Damme NIOO-CTO Heteren Peter van Baarlen Apomixis in Taraxacum an embryological and genetic study Apomixie in Taraxacum een embryologische en genetische studie Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 11 September 2001 des namiddags te vier uur in de Aula Baarlen, Peter van Apomixis in Taraxacum / Peter van Baarlen Thesis Wageningen University. - With references - With summary in Dutch Subject headings: apomixis/diplospory/embryology/polyploidy Typeset in ll-14pt Book Antiqua ISBN 98-5808-473-6. UNO' ^o\3c?2 STELLINGEN 1. - Het verstoren van de paring van homologe chromosomen tijdens de eerste meiotische profase, parthenogenetische eicel ontwikkeling en autonome endosperm ontwikkeling in apomictische paardebloemen is te verklaren door aan te nemen dat bepaalde chromosoom-specifieke eiwitten verschillen van hun "sexuele" analogen. dit proefschrift 2. - Het grote evolutionaire succes van paardebloemen kan verklaard worden door hun vermenging van de voordelen van sexuele en asexuele reproductie. dit proefschrift 3. -
Plant Motifs on Jewish Ossuaries and Sarcophagi in Palestine in the Late Second Temple Period: Their Identification, Sociology and Significance
PLANT MOTIFS ON JEWISH OSSUARIES AND SARCOPHAGI IN PALESTINE IN THE LATE SECOND TEMPLE PERIOD: THEIR IDENTIFICATION, SOCIOLOGY AND SIGNIFICANCE A paper submitted to the University of Manchester as part of the Degree of Master of Arts in the Faculty of Humanities 2005 by Cynthia M. Crewe ([email protected]) Biblical Studies Melilah 2009/1, p.1 Cynthia M. Crewe CONTENTS Abbreviations ..............................................................................................................................................4 INTRODUCTION ......................................................................................................................................5 CHAPTER 1 Plant Species 1. Phoenix dactylifera (Date palm) ....................................................................................................6 2. Olea europea (Olive) .....................................................................................................................11 3. Lilium candidum (Madonna lily) ................................................................................................17 4. Acanthus sp. ..................................................................................................................................20 5. Pinus halepensis (Aleppo/Jerusalem pine) .................................................................................24 6. Hedera helix (Ivy) .........................................................................................................................26 7. Vitis vinifera -
Flowers of Asteraceae
Flowers of Asteraceae The 'flower' that you see is actually a head composed of many small florets. The head (capitulum) is an inflorescence and a number of capitula are often aggregated together to form a secondary inflorescence or synflorescence. The capitulum is surrounded on the outside by one or several layers of involucral bracts resembling the calyx of other flowers. These bracts are mostly green (herbaceous) but can also be brightly coloured like in everlastings (Helichrysum spp.) or can have a thin, dry, membranous texture (scarious). The involucral bracts are mostly free and arranged in one to many rows, overlapping like the tiles of a roof (imbricate). When in one row, they are often fused to different degrees. The florets in a head consist of one, two or rarely three out of six different kinds of florets. (1) The most obvious florets are the outer row of ray florets, resembling the petals of other flowering plants. The ray florets consist of laterally fused, elongated petals with three or four small upper lobes or teeth and are usually brightly coloured: yellow, blue, purple, pink, red or white and sometimes a combination of these colours. The ray florets are either female, which means they have a pistil, or they are neutral meaning that no sex organs are present or, if present, they are sterile. (2) A slight variation of these are the bilabiate ray florets. In these ray florets the outer, laterally fused petals are also elongated, but have three small upper lobes or teeth and smaller, laterally fused inner elongated petals with two upper lobes or teeth, almost like the flowers of the sage family (Lamiaceae). -
Genetic Dissection of Apomixis in Dandelions Identifies a Dominant
G C A T T A C G G C A T genes Article Genetic Dissection of Apomixis in Dandelions Identifies a Dominant Parthenogenesis Locus and Highlights the Complexity of Autonomous Endosperm Formation Peter J. Van Dijk 1,*, Rik Op den Camp 1 and Stephen E. Schauer 2 1 Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands; [email protected] 2 Keygene Inc., Rockville, MD 20850, USA; [email protected] * Correspondence: [email protected]; Tel.: +31-317-466-866 Received: 20 July 2020; Accepted: 18 August 2020; Published: 20 August 2020 Abstract: Apomixis in the common dandelion (Taraxacum officinale) consists of three developmental components: diplospory (apomeiosis), parthenogenesis, and autonomous endosperm development. The genetic basis of diplospory, which is inherited as a single dominant factor, has been previously elucidated. To uncover the genetic basis of the remaining components, a cross between a diploid sexual seed parent and a triploid apomictic pollen donor was made. The resulting 95 triploid progeny plants were genotyped with co-dominant simple-sequence repeat (SSR) markers and phenotyped for apomixis as a whole and for the individual apomixis components using Nomarski Differential Interference Contrast (DIC) microscopy of cleared ovules and seed flow cytometry. From this, a new SSR marker allele was discovered that was closely linked to parthenogenesis and unlinked to diplospory. The segregation of apomixis as a whole does not differ significantly from a three-locus model, with diplospory and parthenogenesis segregating as unlinked dominant loci. Autonomous endosperm is regularly present without parthenogenesis, suggesting that the parthenogenesis locus does not also control endosperm formation. -
Crooked Stem Aster (Symphyotrichum Prenanthoides)
PROPOSED Species at Risk Act Management Plan Series Management Plan for the Crooked-stem Aster (Symphyotrichum prenanthoides) in Canada Crooked-stem Aster 2018 Recommended citation: Environment and Climate Change Canada. 2018. Management Plan for the Crooked-stem Aster (Symphyotrichum prenanthoides) in Canada [Proposed]. Species at Risk Act Management Plan Series. Environment and Climate Change Canada, Ottawa. v + 31 pp. For copies of the management plan, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: Allan Harris, Northern Bioscience. This photo may not be reproduced separately from this document without permission of the photographer. Également disponible en français sous le titre « Plan de gestion de l’aster fausse-prenanthe (Symphyotrichum prenanthoides) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2018. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://sararegistry.gc.ca/default.asp?lang=En&n=24F7211B-1 Management Plan for the Crooked-stem Aster 2018 Preface The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996)2 agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of management plans for listed species of special concern and are required to report on progress within five years after the publication of the final document on the SAR Public Registry.