INFORMATION to USERS the Quality of This Reproduction Is

Total Page:16

File Type:pdf, Size:1020Kb

INFORMATION to USERS the Quality of This Reproduction Is INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fium the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, ixdiile others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, b^inning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & HoweU Infoimation Conqmy 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 CONFIGURATION INTERACTION WITH NON-ORTHOGONAL SLATER DETERMINANTS APPLIED TO THE HUBBARD MODEL, ATOMS, AND SMALL MOLECULES DISSERTATION Presented in Partied Fulfillment of the Requirement for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University by SVEN PETER RUDIN, DIPL. EL. INC. ETH The Ohio State University 1997 Dissertation Committee: John VV. Wilkins Approved by Charles A. Ebner Arthur J. Epstein I/O. UD Advisor Department of Physics UMI Number: 9721160 UMI Microform 9721160 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 © Sven Peter Rudîn 1997 ALL RIGHTS RESERVED ABSTRACT The energy of a truncated configuration interaction (Cl) electronic wave func­ tion depends on the quality of the underlying basis set and the form of the expan­ sion, i.e., which determinants are included. Given an expansion with fixed basis set and form, a unitary transformation of the basis functions can significantly alter the result by changing the form of the orbitals. Two examples are given for the advantage of one particular unitary transfor­ mation, natural orbitals, over the self-consistent-field orbitals: (i) For the nitrogen dimer the use of natural orbitals improves the energy of a 01 wave function by 1.3 millihartree over a benchmark study, in which the dissociation energy was un­ derestimated by approximately the same amount, (ii) A well-defined, orbital-based truncation of the Cl wave function in natural orbitals for first-row supermolecules (dimers with large nuclear separation) accurately reproduces the energy of the two atoms treated independently. The determinants in Cl expansions are traditionally required to be mutually orthogonal. This forces the entire expansion to be done with the same unitary transformation of the basis set. Without the restriction of orthogonality between determinants each determinant can have a different unitary transformation of the basis set. A computer code to calculate expansions in non-orthogonal determinants was implemented and applied to the Hubbaxd model, atoms and molecules. The ii resulting wave functions have a lower energy than a wave function of equal length expanded in orthogonal determinants. Starting from a reference determinant with localized orbitals is found to further improve the energy. Application to the Hub­ bard model in one and two dimensions leads to a systematic expansion which dis­ plays a pronounced hierarchy observable only with non-orthogonal determinants. For singlet states of atoms (Be, Ne) and small molecules (H 2, HeH"^, HgO, N2, C2, C2H2, C2H4, C2H6) a few dozen non-orthogonal determinants account for roughly 90% of the correlation energy in the basis sets used. The definition of a degree of excitation for non-orthogonal determinants is used to illustrate the significant differences between expansions with orthogonal and non-orthogonal determinants. Ill Dedicated to the memory of David Lera (1968 — 1993) IV ACKNOWLEDGMENTS It is amazing what you can accomplish if you do not care who gets the credit. - Harry S. Truman John Wilkins and Matthew Steiner deserve a lot of credit for what this document represents: My understanding. So, John and Matthew: Thank you. My thanks also goes to many other people, who contributed each in their own way: Marijan Adam, Edward Adelson, Mebarek Alouani, Todd Anderson, Wilfried Aulbur, Janna Auvinen, Sapna Batish, Mary Heather Bents, Ravi Bhagavatula, Sue Blaker, Jim Blatchford, Thomas Blcizek, Thomas Boltshauser, Verena Bolt- shauser, Richard Bomfreund, Richard Boyd, Judith Braendle, William Brinker- hoff, Jill Brotman, Francesca Brotman-Orner, Shoshana Brotman-Omer, Pamela Brown, Joe Broz, Joy Bums, Mary-Lou Capozzi, Dave Casdorf, Emily Cassani, Joe Cassani, Lou Cassani, Mary Ann Cassani, Ruggero Castagnetti, Jim Castiglione, Herve Castella, Leena Chandran, Ted Chase, Lauren Chase, Jian Chen, Joyce Chin, Oliver Chung, Sora Cho, Bunny Clark, Jeffrey Clayhold, Chet Cole, Pete Colo- vas. Bill Conable, Cheryl Conel, Erin Conel, Jim Conel, Dan Cooper, Bob Cope, Daniel Cox, Fleda Crawford, Todd Culman, A. Cristina Cunha, Mark Dauben- meier, Mike Degen, Brad Dielman, Heidi Dugger, Bryan Dunlap, Charles Ebner, Doris Eckstein, Carlos Egues, Keith Emptage, Arthur Epstein, Catrin Ericsson- Novak, Son Evans, Melinda Everman, Armin Ezekielian, Maria Faxias, Dres Fehr, Claudia Filippi, Miodrag Filipovic, Jenny Finnell, Linda Fox, Roger Fox, Karolyn Frasier, Sonia Frick, Richard Furastahl, Jorge Gal an. Pilar Galan, Darren Gebler, Avik Ghosh, Jason Gilmore, John Gratsias, Jeffrey Grossman, Peter Hansch, Ed­ ward Harris, Kathy Hart, HaxaJd Haughlin, Fernand Hayot, Saad Hebboul, Mary Heck, Rolf Held, John Heimaster, Steve Herbert, Ron Hinkle, J. B. Hoy, Hung- Chen Hsieh, Susanne Huber, Per Hyldgaard, Laurens Jansen, Mark Jarrell, Sashi Jasty, Ciriyam Jayaprakash, Scott Jessen, Darrell Jones, Lars Jonsson, Jinsoo Joo, Ben Kaczer, Seth Kantor, Brian Keller, Karen Keppler, Gregory Kilcup, Eimsik Kim, Eunsook Kim, Jeongnim Kim, Kihong Kim, Taesnk Kim, Karen Kitts, George Klinich, Randy Kohlman, Tracy Kotrly, Brian Kuban, Rahul Kulka- mi, Lisa Kurth, Alex Kuznetsov, Sanjay Khare, Lisa Kiner, Barbara King, Brian Kuban, Thomas Lemberger, Beth L’Esperance, Richard FumstaM, Lisa Lantz, Bea Latal, Zachary Levine, Jeff LePage, Washington Lima, Mark Mamrack, John Markus, Victor Majtisovits, Meg McConnell, Sylvia McDorman, Janis McKay, Ross McKenzie, Deanna Mears, Brenda Mellett, Ursina Metzger, Alfred Mieth, Robert Mills, Lubos Mitas, Chad Mitchell, Rene Monnier, Brian Morin, Dave Moser, Hydee Moser, Andreas Miinzner, Bernard Mulligan, Ralf Niehaus, William Novak, Pat O’Bannon, Lee Oesterling, Leigh Oesterling, Ursula Oetiker, Luiz Oliveira, Frederick Omer, Keith Omer, Phyllis Omer, Kathleen Paget, Shelley Palmer, William Palmer, Karen Papritan, Don Parsons, Bruce Patton, Steve Pat­ ton, Jack Pawlicki, Charles Pennington, Uri Perrin, Robert Perry, Derek Peter­ man, Cheri Petersen, Ed Petersen, Mary Lou Petersen, Doug Petkie, Lisa Petkie, Pia, Russell Pitzer, Shawn Prendergast, Geoff Prewett, Zack Protegeros, Punky, William Puttika, Eduardo Raposo, Christian Rappan, Jim Raynolds, Bill Reay, Jen­ nifer Recchia-Cox, Charlie Recchia, Lauren Reed, Mark Reed, Mike Reed, Michael Reyzer, Eric Roddick, Markus Roos, Shirley Royer, Andy Rudin, Ann Rudin, Annika Rudin, Edith Rudin, Erik Rudin, Harry Rudin, Jr., Harry Rudin, Sr., Heather Rudin, Karen Rudin, Katy Rudin, Kirsten Rudin, Linda Rudin, Mark Rudin, Jennifer Rufsvold, Seungoh Ryu, Shelly Sabo, David Sasik, Helena Sasik, Roman Sasik, Doug Scalapino, Beatrice Scheurer, Beat Scheurer, Patricia Scheurer, Rosli Scheurer, Thomas Scheurer, Sabina Schiesser, Avi Schiller, Tanya Schneider, Scooter, Jeff Seiple, Andrew Sergeev, Richard Seyler, Cookie Shand, Ernie Shand, Isaiah Shavitt, Vivek Shenoy, Diane Sherwood, Don Sherwood, Paulo Sigg, Amy Simon, Beth Smith, Jeff Smith, Robert Smith, Jenny Sokolski, R. SooryaJcumar, Melissa Spangler, Renee Speh, Rekha Srinivasan, Urs Staub, Ursula Staub, Philip Steden, Renate Steden, Teri Steiner, Andy Stenger, Deborah Storm, Suresh Subra- manian, Charles Thorne, Brad Trees, Dallas Trinkel, A run Tripathi, Brad Turpin, Cyrus Umrigar, Jon Vandegriff, Alan Van Heuvelen, Peter Vaterlaus-Rack, Kitty Wagner, Lukas Wagner, Betty Wallace, Wei Wang, Irene Warren, Chris Weait, John VI Weax, Christoph Weder-Huber, Sandy Weder-Huber, Dorothea Wehlen, Wolfgang Wenzel, John Whitcomb, Philip Wigen, Ken Wilson, Les Wood, Shiwei Zhang, Paul Ziesche, the Zimering family, and Maja Zweifel. I would like to thank the DOE and the Ohio Supercomputer Center for support. I would also like to thank several institutions and their people: Caffé Fino, the Cajun Kitchen, Barley’s, Bemie’s, Brenen’s and the Yogurt Oasis, Columbus Camera Group, Davis Center, Graeter’s, Basting’s General Store, the Institute for Theoretical Physics, Kinko’s, Long’s, the Ohio State University Libraries, the
Recommended publications
  • More Insight in Multiple Bonding with Valence Bond Theory K
    More insight in multiple bonding with valence bond theory K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty To cite this version: K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty. More insight in multiple bonding with va- lence bond theory. Computational and Theoretical Chemistry, Elsevier, 2015, 1053, pp.180–188. 10.1016/j.comptc.2014.09.007. hal-01627698 HAL Id: hal-01627698 https://hal.archives-ouvertes.fr/hal-01627698 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. More insight in multiple bonding with valence bond theory ⇑ ⇑ K. Hendrickx a,b,c, B. Braida a,b, , P. Bultinck c, P.C. Hiberty d, a Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, LCT, F-75005 Paris, France b CNRS, UMR 7616, LCT, F-75005 Paris, France c Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium d Laboratoire de Chimie Physique, UMR CNRS 8000, Groupe de Chimie Théorique, Université de Paris-Sud, 91405 Orsay Cédex, France abstract An original procedure is proposed, based on valence bond theory, to calculate accurate dissociation ener- gies for multiply bonded molecules, while always dealing with extremely compact wave functions involving three valence bond structures at most.
    [Show full text]
  • Theoretical Methods That Help Understanding the Structure and Reactivity of Gas Phase Ions
    International Journal of Mass Spectrometry 240 (2005) 37–99 Review Theoretical methods that help understanding the structure and reactivity of gas phase ions J.M. Merceroa, J.M. Matxaina, X. Lopeza, D.M. Yorkb, A. Largoc, L.A. Erikssond,e, J.M. Ugaldea,∗ a Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20080 Donostia, Euskadi, Spain b Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA c Departamento de Qu´ımica-F´ısica, Universidad de Valladolid, Prado de la Magdalena, 47005 Valladolid, Spain d Department of Cell and Molecular Biology, Box 596, Uppsala University, 751 24 Uppsala, Sweden e Department of Natural Sciences, Orebro¨ University, 701 82 Orebro,¨ Sweden Received 27 May 2004; accepted 14 September 2004 Available online 25 November 2004 Abstract The methods of the quantum electronic structure theory are reviewed and their implementation for the gas phase chemistry emphasized. Ab initio molecular orbital theory, density functional theory, quantum Monte Carlo theory and the methods to calculate the rate of complex chemical reactions in the gas phase are considered. Relativistic effects, other than the spin–orbit coupling effects, have not been considered. Rather than write down the main equations without further comments on how they were obtained, we provide the reader with essentials of the background on which the theory has been developed and the equations derived. We committed ourselves to place equations in their own proper perspective, so that the reader can appreciate more profoundly the subtleties of the theory underlying the equations themselves. Finally, a number of examples that illustrate the application of the theory are presented and discussed.
    [Show full text]
  • Theory and Technique
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title COMPUTATIONAL METHODS FOR MOLEUCLAR STRUCTURE DETERMINATION: THEORY AND TECHNIQUE Permalink https://escholarship.org/uc/item/3b7795px Author Lester, W.A. Publication Date 1980-03-14 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CONTENTS Foreword v List of Invited Speakers vii Workshop Participants viii LECTURES 1 Introduction to Computational Quantum Chemistry Ernest R. Davidson 1-1 2/3 Introduction to SCF Theory Ernest R. Davidson 2/3-1 4 Semi-Empirical SCF Theory Michael C. Zerner 4-1 5 An Introduction to Some Semi-Empirical and Approximate Molecular Orbital Methods Miehael C. Zerner 5-1 6/7 Ab Initio Hartree Fock John A. Pople 6/7-1 8 SCF Properties Ernest R. Davidson 8-1 9/10 Generalized Valence Bond William A, Goddard, III 9/10-1 11 Open Shell KF and MCSCF Theory Ernest R. Davidson 11-1 12 Some Semi-Empirical Approaches to Electron Correlation Miahael C. Zerner 12-1 13 Configuration Interaction Method Ernest R. Davidson 13-1 14 Geometry Optimization of Large Systems Michael C. Zerner 14-1 15 MCSCF Calculations: Results Boaen Liu 15-1 lfi/18 Empirical Potentials, Semi-Empirical Potentials, and Molecular Mechanics Norman L. Allinger 16/18-1 iv 17 CI Calculations: Results Bowen Liu 17-1 19 Computational Quantum Chemistry: Future Outlook Ernest R. Davidson 19-1 V FOREWORD The National Resource for Computation in Chemistry (NRCC) was established as a Division of Lawrence Berkeley Laboratory (LBL) in October 1977. The functions of the NRCC may be broadly categorized as follows: (1) to make information on existing and developing computa­ tional methodologies available to all segments of the chemistry community, (2) to make state-of-the-art computational facilities (both hardware and software] accessible to the chemistry community, and (3) to foster research and development of new computational methods for application to chemical problems.
    [Show full text]
  • An Experimental Chemist's Guide to Ab Initio Quantum Chemistry
    J. Phys. Chem. 1991, 95, 1017-1029 1017 FEATURE ARTICLE An Experimental Chemist’s Guide to ab Initio Quantum Chemistry Jack Simons Chemistry Department, University of Utah, Salt Lake City, Utah 84112 (Received: October 5, 1990) This article is not intended to provide a cutting edge, state-of-the-art review of ab initio quantum chemistry. Nor does it offer a shopping list of estimates for the accuracies of its various approaches. Unfortunately, quantum chemistry is not mature or reliable enough to make such an evaluation generally possible. Rather, this article introduces the essential concepts of quantum chemistry and the computationalfeatures that differ among commonly used methods. It is intended as a guide for those who are not conversant with the jargon of ab initio quantum chemistry but who are interested in making use of these tools. In sections I-IV, readers are provided overviews of (i) the objectives and terminology of the field, (ii) the reasons underlying the often disappointing accuracy of present methods, (iii) and the meaning of orbitals, configurations, and electron correlation. The content of sections V and VI is intended to serve as reference material in which the computational tools of ab initio quantum chemistry are overviewed. In these sections, the Hartree-Fock (HF), configuration interaction (CI), multiconfigurational self-consistent field (MCSCF), Maller-Plesset perturbation theory (MPPT), coupled-cluster (CC), and density functional methods such as X, are introduced. The strengths and weaknesses of these methods as well as the computational steps involved in their implementation are briefly discussed. 1. What Does ab Initio Quantum Chemistry Try To Do? quantitative predictions to be made.
    [Show full text]
  • B3.1 Quantum Structural Methods for Atoms and Molecules
    Quantum structural methods for atoms and molecules 1907 B3.1 Quantum structural methods for atoms and molecules Jack Simons B3.1.1 What does quantum chemistry try to do? Electronic structure theory describes the motions of the electrons and produces energy surfaces and wave- functions. The shapes and geometries of molecules, their electronic, vibrational and rotational energy levels, as well as the interactions of these states with electromagnetic fields lie within the realm of quantum structure theory. B3.1.1.1 The underlying theoretical basis—the Born–Oppenheimer model In the Born–Oppenheimer [1] model, it is assumed that the electrons move so quickly that they can adjust their motions essentially instantaneously with respect to any movements of the heavier and slower atomic nuclei. In typical molecules, the valence electrons orbit about the nuclei about once every 10−15 s (the inner-shell electrons move even faster), while the bonds vibrate every 10−14 s, and the molecule rotates approximately every 10−12 s. So, for typical molecules, the fundamental assumption of the Born–Oppenheimer model is valid, but for loosely held (e.g. Rydberg) electrons and in cases where nuclear motion is strongly coupled to electronic motions (e.g. when Jahn–Teller effects are present) it is expected to break down. This separation-of-time-scales assumption allows the electrons to be described by electronic wavefunc- tions that smoothly ‘ride’ the molecule’s atomic framework. These electronic functions are found by solving ˆ a Schrodinger¨ equation whose Hamiltonian He contains the kinetic energy Te of the electrons, the Coulomb repulsions among all the molecule’s electrons Vee, the Coulomb attractions Ven among the electrons and all of the molecule’s nuclei, treated with these nuclei held clamped, and the Coulomb repulsions Vnn among all of these nuclei, but it does not contain the kinetic energy TN of all the nuclei.
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER'S THESIS Titel der Masterarbeit / Title of the Master's Thesis The Implementation of the Full Configuration Interaction " Method \ verfasst von / submitted by Zoran Sukurma,ˇ BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2019 / Vienna, 2019 Studienkennzahl lt. Studienblatt / A 066 876 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / degree programme as it appears on Masterstudium Physik the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Georg Kresse Acknowledgments I would first like to express great gratitude to my thesis advisor Georg Kresse. He was available for me, whenever I ran stuck into a problem or had a question about my thesis. The discussions with my advisor have often inspired me to do more and better than required. I would also like to thank him for introducing me to the CMS group. At this point, my thanks go to Merzuk Kaltak for providing the VASP output suitable for my code and for answering all my questions about research. I would also like to thank Doris Hecht-Aichholzer for helping me with all documentation problems. Finally, I want to thank all CMS group members for accepting me warmly in their group. I hope this is only the beginning of our cooperation. My sincere thanks go to my friends, too. They were always with me, whenever I need any help. Especially, I want to thank Mirjana Jovanovi´cfor poorfreading my thesis and AljoˇsaVukovi´cfor taking the time and effort to read it and point out some mistakes.
    [Show full text]
  • Acronyms Used in Theoretical Chemistry
    Pure & Appl. Chem., Vol. 68, No. 2, pp. 387-456, 1996. Printed in Great Britain. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION WORKING PARTY ON THEORETICAL AND COMPUTATIONAL CHEMISTRY ACRONYMS USED IN THEORETICAL CHEMISTRY Prepared for publication by the Working Party consisting of R. D. BROWN* (Australia, Chiman);J. E. BOWS (USA); R. HILDERBRANDT (USA); K. LIM (Australia); I. M. MILLS (UK); E. NIKITIN (Russia); M. H. PALMER (UK). The focal point to which to send comments and suggestions is the coordinator of the project: RONALD D. BROWN Chemistry Department, Monash University, Clayton, Victoria 3 168, Australia. Responses by e-mail would be particularly appreciated, the number being: rdbrown @ vaxc.cc .monash.edu.au another alternative is fax at: +61 3 9905 4597 Acronyms used in theoretical chemistry synogsis An alphabetic list of acronyms used in theoretical chemistry is presented. Some explanatory references have been added to make acronyms better understandable but still more are needed. Critical comments, additional references, etc. are requested. INTRODUC'IION The IUPAC Working Party on Theoretical Chemistry was persuaded, by discussion with colleagues, that the compilation of a list of acronyms used in theoretical chemistry would be a useful contribution. Initial lists of acronyms drawn up by several members of the working party have been augmented by the provision of a substantial list by Chemical Abstract Service (see footnote below). The working party is particularly grateful to CAS for this generous help. It soon became apparent that many of the acron ms needed more than mere spelling out to make them understandable and so we have added expr anatory references to many of them.
    [Show full text]
  • Symmetry-Adapted Perturbation Theory Based on Multiconfigurational
    Symmetry-adapted perturbation theory based on multiconfigurational wave function description of monomers Michał Hapka,∗,y,z Michał Przybytek,z and Katarzyna Pernaly yInstitute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland zFaculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland E-mail: [email protected] Abstract We present a formulation of the multiconfigurational (MC) wave function symmetry- adapted perturbation theory (SAPT). The method is applicable to noncovalent interactions between monomers which require a multiconfigurational description, in particular when the interacting system is strongly correlated or in an electronically excited state. SAPT(MC) is based on one- and two-particle reduced density matrices of the monomers and assumes the single-exchange approximation for the exchange energy contributions. Second-order terms are expressed through response properties from extended random phase approximation (ERPA) equations. SAPT(MC) is applied either with generalized valence bond perfect pairing (GVB) or with complete active space self consistent field (CASSCF) treatment of the monomers. We discuss two model multireference systems: the H2 ··· H2 dimer in out-of-equilibrium geome- tries and interaction between the argon atom and excited state of ethylene. In both cases SAPT(MC) closely reproduces benchmark results. Using the C2H4*··· Ar complex as an ex- ample, we examine second-order terms arising from negative transitions in the linear response function of an excited monomer. We demonstrate that the negative-transition terms must be accounted for to ensure qualitative prediction of induction and dispersion energies and de- velop a procedure allowing for their computation.
    [Show full text]
  • Valence Bond Theory, Its History, Fundamentals, and Applications. A
    1 Valence Bond Theory, its History, Fundamentals, and Applications. A Primer† Sason Shaik1 and Philippe C. Hiberty2 1Department of Organic Chemistry and Lise Meitner-Minerva Center for Computational Chemistry, Hebrew University 91904 Jerusalem, Israel 2Laboratoire de Chimie Physique, Groupe de Chimie Théorique, Université de Paris-Sud, 91405 Orsay Cedex, France † This review is dedicated to Roald Hoffmann – A great teacher and a friend. 2 INTRODUCTION The new quantum mechanics of Heisenberg and Schrödinger had provided chemistry with two general theories, one called valence bond (VB) theory and the other molecular orbital (MO) theory. The two theories were developed at about the same time, but have quickly diverged into rival schools that have competed, sometimes fervently, on charting the mental map and epistemology of chemistry. In a nutshell, until the mid 1950s VB theory had dominated chemistry, then MO theory took over while VB theory fell into disrepute and almost completely abandoned. The 1980s and onwards marked a strong comeback of VB theory, which has been ever since enjoying a Renaissance both in the qualitative application of the theory and in the development of new methods for its computer implementation.1 One of the great merits of VB theory is its pictorially institutive wave function that is expressed as a linear combination of chemically meaningful structures. It is this feature that has made VB theory so popular in the 1930s-1950s, and it is the same feature that underlies its temporary demise and ultimate resurgence. As such, the comeback of this theory is an important development, and it seems timely to review VB theory, to highlight its insight into chemical problems, and some of its state-of-the-art methodologies.
    [Show full text]
  • Arxiv:1808.10402V3 [Quant-Ph] 27 Jan 2020 B
    Quantum computational chemistry Sam McArdle,1, ∗ Suguru Endo,1 Al´anAspuru-Guzik,2, 3, 4 Simon C. Benjamin,1 and Xiao Yuan1, y 1Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom 2Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada 3Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada 4Canadian Institute for Advanced Research (CIFAR) Senior Fellow, Toronto, Ontario M5S 1M1, Canada (Dated: January 28, 2020) One of the most promising suggested applications of quantum computing is solving classically intractable chemistry problems. This may help to answer unresolved ques- tions about phenomena like: high temperature superconductivity, solid-state physics, transition metal catalysis, or certain biochemical reactions. In turn, this increased un- derstanding may help us to refine, and perhaps even one day design, new compounds of scientific and industrial importance. However, building a sufficiently large quantum computer will be a difficult scientific challenge. As a result, developments that enable these problems to be tackled with fewer quantum resources should be considered very important. Driven by this potential utility, quantum computational chemistry is rapidly emerging as an interdisciplinary field requiring knowledge of both quantum computing and computational chemistry. This review provides a comprehensive introduction to both computational chemistry and quantum computing, bridging the current knowl- edge gap. We review the major developments in this area, with a particular focus on near-term quantum computation. Illustrations of key methods are provided, explicitly demonstrating how to map chemical problems onto a quantum computer, and solve them. We conclude with an outlook for this nascent field.
    [Show full text]
  • Valence Bond Theory—Its Birth, Struggles with Molecular Orbital Theory, Its Present State and Future Prospects
    molecules Review Valence Bond Theory—Its Birth, Struggles with Molecular Orbital Theory, Its Present State and Future Prospects Sason Shaik 1,* , David Danovich 1 and Philippe C. Hiberty 2,* 1 Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; [email protected] 2 CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France * Correspondence: [email protected] (S.S.); [email protected] (P.C.H.) Abstract: This essay describes the successive births of valence bond (VB) theory during 1916–1931. The alternative molecular orbital (MO) theory was born in the late 1920s. The presence of two seemingly different descriptions of molecules by the two theories led to struggles between the main proponents, Linus Pauling and Robert Mulliken, and their supporters. Until the 1950s, VB theory was dominant, and then it was eclipsed by MO theory. The struggles will be discussed, as well as the new dawn of VB theory, and its future. Keywords: valence bond; molecular orbital; Lewis; electron-pair bonds; Pauling; Mulliken; Hund; Hückel 1. Introduction Citation: Shaik, S.; Danovich, D.; This essay tells briefly a story of the emerging two major quantum mechanical theories, Hiberty, P.C. Valence Bond valence bond (VB) theory and molecular orbital (MO) theory, which look as two different Theory—Its Birth, Struggles with descriptions of the same reality, but are actually not. We discuss the struggles between Molecular Orbital Theory, Its Present the two main groups of followers of Pauling and Mulliken, and the ups and downs in the State and Future Prospects. Molecules popularity of the two methods among chemists, and then the fall of VB theory only to be 2021, 26, 1624.
    [Show full text]
  • At the Intersection of Quantum Computing and Quantum Chemistry
    At the intersection of quantum computing and quantum chemistry A dissertation presented by James Daniel Whitfield to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Physics Harvard University Cambridge, Massachusetts November 2011 c 2011 - James Daniel Whitfield All rights reserved. Thesis advisor Author Al´anAspuru-Guzik James Daniel Whitfield At the intersection of quantum computing and quantum chemistry Abstract Quantum chemistry is concerned with solving the Schr¨odingerequation for chemically rele- vant systems. This is typically done by making useful and systematic approximations which form the basis for model chemistries. A primary contribution of this dissertation, is taking concrete steps toward establishing a new model chemistry based on quantum computation. Electronic energies of the system can be efficiently obtained to fixed accuracy using quan- tum algorithms exploiting the ability of quantum computers to efficiently simulate the time evolution of quantum systems. The quantum circuits for simulation of arbitrary electronic Hamiltonians are given using quantum bits associated with single particle basis functions. This model chemistry is applied to hydrogen molecule as a case study where all necessary quantum circuits are clearly laid out. Furthermore, our collaboration to experimentally realize a simplified version of the hydrogen molecule quantum circuit is also included in this thesis. Finally, alternatives to the gate model of quantum computation are pursued by exploring models based on the quantum adiabatic theorem and on the generalization of random walks. iii Citations to Previously Published Work Chapter2 is a largely unmodified contribution to an undergraduate textbook: Mathematical modeling II: Quantum mechanics and spectroscopy T.
    [Show full text]