Characterisation of a Protein Kinase B Inhibitor in Vitro and in Insulin Treated Liver Cells

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of a Protein Kinase B Inhibitor in Vitro and in Insulin Treated Liver Cells Diabetes In Press, published online June 11, 2007 Characterisation of a protein kinase B inhibitor in vitro and in insulin treated liver cells. Received for publication 17 March 2007 and accepted in revised form 5 June 2007. Additional information for this article can be viewed in an online appendix at http://diabetes.diabetesjournals.org Lisa Logie, Antonio J. Ruiz-Alcaraz, Michael Keane*$, Yvonne L. Woods*, Jennifer Bain*, Rudolfo Marquez$, Dario R. Alessi* and Calum Sutherland. Division of Pathology and Neuroscience, *MRC Protein Phosphorylation Unit, $Division of Biological Chemistry, University of Dundee, Dundee, Scotland. Corresponding author Dr Calum Sutherland Pathology and Neurosciences University of Dundee, Ninewells Hospital Dundee, Scotland, UK, DD1 9SY email: [email protected] Word Count: 3978, Tables: 2, Figures: 6. Keywords: PKB, AKT, PEPCK, insulin, Akti-1/2, diabetes. Abbreviations: PKB, protein kinase B; G6Pase, glucose-6-phosphatase; PEPCK, phosphoenolpyruvate carboxykinase; IGFBP1, IGF binding protein-1; TIRE, thymine-rich insulin response element; PRAS40, proline rich akt substrate of 40kDa; Akti, Akt inhibitor. Running Title: PKB inhibition and insulin action. Copyright American Diabetes Association, Inc., 2007 Abstract: Objective: Abnormal expression of the hepatic gluconeogenic genes (glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)) contributes to hyperglycemia. These genes are repressed by insulin but this process is defective in diabetes. Protein kinase B (PKB) is implicated in this action of insulin. An inhibitor of PKB, termed Akti-1/2, was recently reported, however the specificity and efficacy against insulin induced PKB was not reported. Our aim was to characterise the specificity and efficacy of Akti-1/2 in cells exposed to insulin and then establish whether inhibition of PKB is sufficient to prevent regulation of hepatic gene expression by insulin. Design: Akti-1/2 was assayed against seventy kinases in vitro, and its ability to block PKB activation in cells exposed to insulin fully characterised. Results: Akti-1/2 exhibits high selectivity toward PKBα and PKBβ. Complete inhibition of PKB activity is achieved in liver cells incubated with 1 to 10µM Akti-1/2 and this blocks insulin regulation of PEPCK and G6Pase expression. Our data demonstrates that only 5-10% of maximal insulin induced PKB is required to fully repress PEPCK and G6Pase expression. Finally, we demonstrate reduced insulin sensitivity of these gene promoters in cells exposed to sub-maximal concentrations of Akti-1/2, however full repression of the genes can still be achieved by high concentrations of insulin. Conclusion: This work establishes the requirement for PKB activity in the insulin regulation of PEPCK, G6Pase and a third insulin regulated gene, IGFBP1, suggests a high degree of functional reserve and identifies Akti-1/2 as a useful tool to delineate PKB function in the liver. Protein kinase B (PKB) is a member of the induce insulin responsive DNA sequences AGC family of protein kinases (1-3). In within these gene promoters (24-27). This mammals there are three isoforms (PKBα, data suggests that insulin turns off these gene PKBβ and PKBγ) (1). PKB is activated promoters by activating the PI 3-kinase- following induction of phosphatidylinositol PDK1-PKB pathway to inhibit FOXO. (PI) 3-kinase activity and the resultant However the importance of PKB and/or generation of the lipid second messengers PI FOXO in the regulation of these genes has 3,4,5 trisphosphate (PIP3) and PI 3,4 been questioned (18; 28). For example, bisphosphate (4). These lipids bind to the PH overexpression of dominant negative PKB domain of PKB, altering its conformation and does not block insulin action on PEPCK (29) permitting access to upstream protein kinases and G6Pase (22), inhibitors of mTOR will (5). Phosphoinositide-dependent protein block insulin regulation of IGFBP1 but not kinase (PDK)-1 phosphorylates PKB at Thr- PKB or FOXO (21; 26), while inhibitors of 308 (6) and a second phosphorylation (at Ser- GSK3 (also downstream of PKB) will inhibit 473) occurs through the action of an these genes without regulating FOXO activity alternative kinase, such as the rapamycin (30; 31). It is also suggested that insulin can insensitive mTOR, TORC2 (7). Therefore regulate FOXO activity independently of most growth factors, including PDGF, EGF PKB (32). Finally, a base by base mutational and insulin, that are potent activators of PI 3- analysis of the insulin responsive promoter kinase, also strongly induce PKB in cells. sequences from PEPCK and IGFBP1 showed that the DNA sequence required for the One of the first substrates of PKB to be response to insulin is not identical to that characterised was GSK3, as part of the insulin required for response to FOXO (33). All of signalling pathway that regulates glycogen this data suggests that although PKB and metabolism (8). Since then multiple potential FOXO can regulate these genes the inhibition substrates of PKB have been proposed of FOXO by PKB may not be absolutely including the pro-apoptotic protein Bad (9; required for their response to insulin. 10), the TSC2 gene product (11), the Rab- GAP AS160 (12), PRAS40 (13) and the key Interestingly, PKBβ KO mice exhibit reduced forkhead transcription factor sub-family, insulin sensitivity and can develop diabetes FOXO. PKB phosphorylates FOXO on and lipoatrophy (34), while PKBα knockout several residues promoting its inactivation (KO) animals are smaller, have reduced and exclusion from the nucleus (14-16). A lifespan and defective adipogenesis (35). growing number of insulin-inhibited genes are PKBγ KO mice have a reduced brain size, proposed to be targets of FOXO. These possibly due to its relatively high expression include Glucose-6-Phosphatase (G6Pase), in this tissue (36). These data suggest that Phosphoenolpyruvate carboxyinase (PEPCK) PKBβ is the most likely link between PI 3- and the IGF-binding protein-1 (IGFBP-1) kinase and the gluconeogenic genes PEPCK (17). All three genes are completely repressed and G6Pase, although insulin regulation of in liver cells exposed to insulin (18) or in these genes was not characterised in this intact liver following feeding (19). This gene model (34). In contrast, PKBα is the major regulation requires PI 3-kinase (20-22) and insulin activated PKB isoform detectable in PDK1 (19) activity, and can be recapitulated hepatocytes (37). by overexpression of active PKB (23). Meanwhile, overexpression of FOXO will Recently, selective non-ATP competitive and phospho TSC2 and PRAS40 antibodies inhibitors of PKB were reported (38; 39). were generated in the Division of Signal Compound 16h (now termed Akti-1/2) Transduction and Therapy, University of potently inhibits PKBα and PKBβ in vitro Dundee. Anti-β-Actin was purchased from and in cells, with relatively poor inhibition of Sigma-Aldrich, Inc. (St Louis, MO, U.S.A.). PKBγ (39). Akti-1/2 also prevents phosphorylation at Ser308 by PDK1 in vitro Akti-1/2 compound Synthesis and at Ser308 and Thr473 in cells without The dual PKB α/β inhibitor (compound 16h) inhibiting PDK1 activity (38). Interaction of was synthesised in-house through a Akti-1/2 with the PH domain of PKB prevents modification of the procedure of Lindsley and the conformational change required for co-workers (39). Purity was established as phosphorylation by upstream kinases (38). >98% by 1H-NMR and LCMS. This Since isolated hepatocytes contain very little, compound (termed Akti-1/2 or AKT inhibitor if any, PKBγ (37), we hypothesised that Akti- VIII in the Calbiochem catalogue) is a 1/2 would produce acute and complete derivative of Akti-1/2a (a compound inhibition of PKB activity in an insulin originally termed Akti-1/2 in (38)), and sensitive liver cell line (HL1c) allowing exhibits increased potency. careful analysis of the requirement for PKB in processes such as insulin regulation of gene Kinase Screen expression. Details of the kinase selectivity screens have been provided previously (40) and complete Research Design and Methods assay conditions are provided in Materials supplementary data. Briefly, all assays (25.5 Actrapid (human insulin) was from Novo µl, 21 oC, 30 min) were performed using a Nordisk A/S (Bagsværd, Denmark). 2x Biomek 2000 Laboratory Automation Universal PCR Master Mix, No AmpErase Workstation in a 96-well format (Beckman UNG from Applied Biosystems, CompleteTM Instruments, Palo Alto, CA, USA). Reactions protease inhibitor cocktail tablets from Roche, contained 5-20 mU of purified kinase along and 8-(4-chloro-phenylthio)-cAMP from with substrate peptide or protein and were Calbiochem. All primers and probes were initiated by addition of 10mM MgAcetate and synthesized and purified by Sigma-Aldrich. either 5, 20 or 50 µM ATP ([γ-33P]ATP, 800 All other chemicals were of the highest grade cpm/pmol). obtainable. Cell Culture Antibodies HL1c rat hepatoma cells were maintained in PKB isoform specific antibodies have been 1g/L glucose containing Dulbeccos Modified characterised elsewhere (37). Antibodies to Eagles Medium supplemented with 5% FCS phospho-PKB (Thr308), phospho-PKB and 100U/ml penicillin and 100ug/ml (Ser473), phospho-FOXO1 (Ser256), streptomycin. phospho-p42/p44 MAPK (Thr202/Tyr204), phospho-S6 ribosomal protein (Ser240/244) RNA Isolation and Real-Time quantitative were from Cell Signaling Technology reverse transcriptase PCR (Beverly, MA, U.S.A.), anti-PKB was from Following hormone treatments total cellular Upstate Biotechnologies (Lake Placid, NY, RNA was extracted from HL1c cells using U.S.A.), FOXO antibody was from Dr TRIreagentTM (Sigma) according to the Graham Rena, University of Dundee and total manufacturer’s instructions. cDNA was synthesized from total cellular RNA using primary antibodies at 4 °C overnight before SuperscriptTM II reverse transcriptase kit incubation for 1 h at room temperature with (Invitrogen). Real-time PCR analysis was the appropriate secondary antibody. Protein carried out using ABIPrism7700 sequence bands were visualized using ECL kit detector (Applied Biosystems). PCR reactions (Amersham Biosciences, Inc.).
Recommended publications
  • The Role of P21-Activated Protein Kinase 1 in Metabolic Homeostasis
    THE ROLE OF P21-ACTIVATED PROTEIN KINASE 1 IN METABOLIC HOMEOSTASIS by YU-TING CHIANG A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Physiology University of Toronto © Copyright by Yu-ting Chiang 2014 The Role of P21-Activated Protein Kinase 1 in Metabolic Homeostasis Yu-ting Chiang Doctor of Philosophy Department of Physiology University of Toronto 2014 Abstract Our laboratory has demonstrated previously that the proglucagon gene (gcg), which encodes the incretin hormone GLP-1, is among the downstream targets of the Wnt signaling pathway; and that Pak1 mediates the stimulatory effect of insulin on Wnt target gene expression in mouse gut non- endocrine cells. Here, I asked whether Pak1 controls gut gcg expression and GLP-1 production, and whether Pak1 deletion leads to impaired metabolic homeostasis in mice. I detected the expression of Pak1 and two other group I Paks in the gut endocrine L cell line GLUTag, and co- localized Pak1 and GLP-1 in the mouse gut. Insulin was shown to stimulate Pak1 Thr423 and β-cat Ser675 phosphorylation. The stimulation of insulin on β-cat Ser675 phosphorylation, gcg promoter activity and gcg mRNA expression could be attenuated by the Pak inhibitor IPA3. Male Pak1-/- mice showed significant reduction in both gut and brain gcg expression levels, and attenuated elevation of plasma GLP-1 levels in response to oral glucose challenge. Notably, the Pak1-/- mice were intolerant to both intraperitoneal and oral glucose administration. Aged Pak1-/- mice showed a severe defect in response to intraperitoneal pyruvate challenge (IPPTT).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Viewer 4.0 Software [73]
    BMC Genomics BioMed Central Research Open Access Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases Pavel A Karpov1, Elena S Nadezhdina2,3,AllaIYemets1, Vadym G Matusov1, Alexey Yu Nyporko1,NadezhdaYuShashina3 and Yaroslav B Blume*1 Addresses: 1Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine, 2Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation and 3AN Belozersky Institute of Physical- Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russian Federation E-mail: Pavel A Karpov - [email protected]; Elena S Nadezhdina - [email protected]; Alla I Yemets - [email protected]; Vadym G Matusov - [email protected]; Alexey Yu Nyporko - [email protected]; Nadezhda Yu Shashina - [email protected]; Yaroslav B Blume* - [email protected] *Corresponding author from International Workshop on Computational Systems Biology Approaches to Analysis of Genome Complexity and Regulatory Gene Networks Singapore 20-25 November 2008 Published: 10 February 2010 BMC Genomics 2010, 11(Suppl 1):S14 doi: 10.1186/1471-2164-11-S1-S14 This article is available from: http://www.biomedcentral.com/1471-2164/11/S1/S14 Publication of this supplement was made possible with help from the Bioinformatics Agency for Science, Technology and Research of Singapore and the Institute for Mathematical Sciences at the National University of Singapore. © 2010 Karpov et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • The Role of the Rho Gtpases in Neuronal Development
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets.
    [Show full text]
  • Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling
    International Journal of Molecular Sciences Review Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling Maria Carmela Annunziata 1, Melania Parisi 1, Gabriella Esposito 2 , Gabriella Fabbrocini 1, Rosario Ammendola 2 and Fabio Cattaneo 2,* 1 Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; [email protected] (M.C.A.); [email protected] (M.P.); [email protected] (G.F.) 2 Department of Molecular Medicine and Medical Biotechnology, School of Medicine,, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; [email protected] (G.E.); [email protected] (R.A.) * Correspondence: [email protected]; Fax: +39-081-7464-359 Received: 5 May 2020; Accepted: 25 May 2020; Published: 27 May 2020 Abstract: FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase.
    [Show full text]
  • Proximity Proteomics Identifies PAK4 As a Component of Afadin–Nectin
    ARTICLE https://doi.org/10.1038/s41467-021-25011-w OPEN Proximity proteomics identifies PAK4 as a component of Afadin–Nectin junctions Yohendran Baskaran 1,5, Felicia Pei-Ling Tay2,5, Elsa Yuen Wai Ng1, Claire Lee Foon Swa 3, Sheena Wee 3, ✉ Jayantha Gunaratne3 & Edward Manser 1,4 Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment 1234567890():,; around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno- localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12’) in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
    [Show full text]
  • Covalent Aurora a Regulation by the Metabolic Integrator Coenzyme A
    bioRxiv preprint doi: https://doi.org/10.1101/469585; this version posted November 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Covalent Aurora A regulation by the metabolic integrator coenzyme A Yugo Tsuchiya1#, Dominic P Byrne2#, Selena G Burgess3#, Jenny Bormann4, Jovana Bakovic1, Yueyan Huang1, Alexander Zhyvoloup1, Sew Peak-Chew5, Trang Tran6, Fiona Bellany6, Alethea Tabor6, AW Edith Chan7, Lalitha Guruprasad8, Oleg Garifulin9, Valeriy Filonenko9, Samantha Ferries10, Claire E Eyers10, John Carroll4^, Mark Skehel5, Richard Bayliss3*, Patrick A Eyers2* and Ivan Gout1,9* 1Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK 2Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK 3School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK 4Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 5MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK 6Department of Chemistry, University College London, London WC1E 6BT, UK 7Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK 8School of Chemistry, University of Hyderabad, Hyderabad 500 046, India 9Department of Cell
    [Show full text]
  • PAK5 Antibody Cat
    PAK5 Antibody Cat. No.: 3075 PAK5 Antibody Immunofluorescence of PAK5 in K562 cells with PAK5 antibody at 10 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse: (100%), Rat: (92%) PAK5 antibody was raised against a 13 amino acid synthetic peptide from near the center of human PAK5. IMMUNOGEN: The immunogen is located within amino acids 240 - 290 of PAK5. TESTED APPLICATIONS: ICC, IF October 2, 2021 1 https://www.prosci-inc.com/pak5-antibody-3075.html PAK5 antibody can be used for the detection of PAK5 by Western blot at 2 - 4 μg/mL. Antibody can also be used for immunocytochemistry starting at 2 μg/mL. For immunofluorescence start at 10 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunocytochemistry in human samples and Immunofluorescence in human samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1213 - T24 Cell Lysate 2) Cat. No. 1204 - K562 Cell Lysate 3) Cat. No. 17-004 - K-562 Cell Slide Properties PURIFICATION: PAK5 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PAK5 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL PAK5 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PAK7 ALTERNATE NAMES: PAK5 Antibody: PAK5, KIAA1264, PAK5, p21-activated kinase 5, PAK-5 ACCESSION NO.: Q9P286 PROTEIN GI NO.: 12585290 GENE ID: 57144 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • PAK5 Promotes the Migration and Invasion of Cervical Cancer Cells by Phosphorylating SATB1
    Cell Death & Differentiation (2019) 26:994–1006 https://doi.org/10.1038/s41418-018-0178-4 ARTICLE PAK5 promotes the migration and invasion of cervical cancer cells by phosphorylating SATB1 1,2 3 1 4 1,2 Fu-Chun Huo ● Yao-Jie Pan ● Tong-Tong Li ● Jie Mou ● Dong-Sheng Pei Received: 1 March 2018 / Revised: 8 July 2018 / Accepted: 16 July 2018 / Published online: 6 August 2018 © ADMC Associazione Differenziamento e Morte Cellulare 2018 Abstract p21-activated kinase 5 (PAK5) is involved in several oncogenic signaling pathways and its amplification or overexpression has been found in various types of cancer; however, the pathophysiologic role of PAK5 in cervical cancer (CC) remains elusive. This study aims to elucidate the effects of PAK5 on CC metastasis and its specific regulation mechanism. We performed western blotting and immunohistochemistry (IHC) analysis and found that the expression levels of PAK5 were significantly upregulated in CC cells and tissues. In addition, statistical analysis via IHC showed that increased PAK5 significantly correlated with CC progression. Mn2+-Phos-tag SDS-PAGE, western blotting, immunofluorescence and dual luciferase reporter assays were utilized to determine the involvement of SATB1 in PAK5-mediated – 1234567890();,: 1234567890();,: epithelial mesenchymal transition (EMT). We found that PAK5-mediated special AT-rich binding protein-1 (SATB1) phosphorylation on Ser47 initiated EMT cascade and promoted migration and invasion of CC cells. Furthermore, overexpression of PAK5 induced lung metastasis of CC cells in xenograft modes. Taken together, we conclude that PAK5 is a novel prognostic indicator and plays an important role in the CC metastasis. Introduction new diagnosed cases and 260,000 deaths per year [2].
    [Show full text]
  • Characterization of a Protein Kinase B Inhibitor in Vitro and in Insulin-Treated Liver Cells Lisa Logie,1 Antonio J
    Original Article Characterization of a Protein Kinase B Inhibitor In Vitro and in Insulin-Treated Liver Cells Lisa Logie,1 Antonio J. Ruiz-Alcaraz,1 Michael Keane,2,3 Yvonne L. Woods,2 Jennifer Bain,2 Rudolfo Marquez,3 Dario R. Alessi,1 and Calum Sutherland1 OBJECTIVE—Abnormal expression of the hepatic gluconeo- genic genes (glucose-6-phosphatase [G6Pase] and PEPCK) con- tributes to hyperglycemia. These genes are repressed by insulin, rotein kinase B (PKB) is a member of the AGC but this process is defective in diabetic subjects. Protein kinase family of protein kinases (1–3). In mammals, B (PKB) is implicated in this action of insulin. An inhibitor of there are three isoforms (PKB␣, PKB␤, and PKB, Akt inhibitor (Akti)-1/2, was recently reported; however, PPKB␥) (1). PKB is activated following induction the specificity and efficacy against insulin-induced PKB was not of phosphatidylinositol 3 (PI3) kinase activity and the reported. Our aim was to characterize the specificity and efficacy resultant generation of the lipid second messengers PI of Akti-1/2 in cells exposed to insulin and then establish whether 3,4,5 trisphosphate and PI 3,4 bisphosphate (4). These inhibition of PKB is sufficient to prevent regulation of hepatic lipids bind to the PH domain of PKB, altering its confor- gene expression by insulin. mation and permitting access to upstream protein kinases RESEARCH DESIGN AND METHODS—Akti-1/2 was assayed (5). Phosphoinositide-dependent protein kinase-1 phos- against 70 kinases in vitro and its ability to block PKB activation phorylates PKB at Thr308 (6), and a second phosphoryla- in cells exposed to insulin fully characterized.
    [Show full text]