Theory and Application to Artificial Self-Cleaning Surfaces เพ็ญวิสาข พิสิฏฐศักดิ์1

Total Page:16

File Type:pdf, Size:1020Kb

Theory and Application to Artificial Self-Cleaning Surfaces เพ็ญวิสาข พิสิฏฐศักดิ์1 ว.วิทย. มข. 40(3) 750-771 (2555) KKU Sci. J. 40(3) 750-771 (2012) ปรากฏการณน้ํากลิ้งบนใบบัว: ทฤษฎีและการประยุกตใช2เพื่อสร2างพื้นผิวที่ทําความสะอาดตัวเองได2 The Lotus EFFect: Theory and Application to ArtiFicial SelF-Cleaning SurFaces เพ็ญวิสาข พิสิฏฐศักดิ์1 บทคัดยQอ นักวิทยาศาสตรนําเอาองคความรูที่ไดจากการศึกษาปรากฏการณน้ํากลิ้งบนใบบัว (lotus effect) มา พัฒนาพื้นผิวใหมีคุณสมบัติพิเศษโดยอาศัยการเลียนแบบพื้นผิวของใบบัว ทําใหไดเป8นพื้นผิวที่ทําความสะอาด ตัวเองได (self-cleaning surface) พื้นผิวดังกล@าวจะสามารถทําความสะอาดไดง@ายและคงความสะอาดไวได ยาวนานกว@าพื้นผิวทั่วไป หลักการพัฒนาพื้นผิวเลียนแบบใบบัวทําไดโดยทําใหพื้นผิวที่สนใจขรุขระและมีโครงสราง ไม@ชอบน้ํา ซึ่งสิ่งสกปรกจะมีพื้นที่สัมผัสกับพื้นผิวไดนอยทําใหไม@สามารถยึดเกาะบนพื้นผิวนั้นไดและจะหลุดติดไป กับหยดน้ําที่กลิ้งผ@าน พื้นผิวเลียนแบบใบบัวจะมีคุณสมบัติสะทอนน้ํายิ่งยวด นั่นคือมีค@ามุมสัมผัสเชิงสถิตมากกว@า 150º และหยดน้ําตองสามารถกลิ้งบนพื้นผิวดวยมุมเอียงพื้นผิวนอยกว@า 10º แบบจําลองเบื้องตนที่ใชอธิบายการ เปIยกผิวและมุมสัมผัสของหยดของเหลวบนพื้นผิวขรุขระไดแก@แบบจําลองของแคเซีย-แบ็กซเทอร (Cassie- Baxter’s model) ใชสําหรับพื้นผิวที่มีช@องอากาศแทรกอยู@ในร@องความขรุขระภายใตหยดของเหลว ส@วน แบบจําลองของเวนเซล (Wenzel’s model) ใชสําหรับพื้นผิวขรุขระที่ไม@มีช@องอากาศ เมื่อเทียบระหว@าง แบบจําลองทั้งสอง หยดน้ําที่อยู@ในสภาวะแคเซีย-แบ็กซเทอรจะสามารถกลิ้งไปบนพื้นผิวไดง@ายกว@า อย@างไรก็ตามมี การรายงานว@าหยดน้ําในสภาวะแคเซีย-แบ็กซเทอรสามารถเปลี่ยนไปสู@สภาวะเวนเซลได ปTจจุบันงานวิจัยและ พัฒนาผลิตภัณฑที่ทําความสะอาดตัวเองไดโดยการเลียนแบบผิวใบบัวถูกผลักดันสู@เชิงพาณิชยอย@างกวางขวาง และ ยังมีผูใหความสนใจศึกษาพัฒนาเพื่อเพิ่มประสิทธิภาพของพื้นผิวดังกล@าวอย@างต@อเนื่อง 1ภาควิชาวิทยาศาสตรและเทคโนโลยีสิ่งทอ คณะวิทยาศาสตรและเทคโนโลยี มหาวิทยาลัยธรรมศาสตร อ.คลองหลวง จ.ปทุมธานี 12121 E-mail: [email protected] บทความ วารสารวิทยาศาสตร มข. ปIที่ 40 ฉบับที่ 3 751 ABSTRAT Scientists have learned to apply the concept of the “lotus effect” to develop surfaces with special properties, i.e. those capable of cleaning themselves. The self-cleaning surfaces can be cleaned more easily, and will remain unsoiled longer than simple surfaces. To mimic a surface of a lotus leaf, the surface of interest must be rough and hydrophobic. Dirt particles with an extremely reduced contact area are picked up by water droplets and are thus easily washed away, leaving the surface clean. All lotus-like surfaces are superhydrophobic having a static contact angle greater than 150 ° and a water roll-off angle less than 10 °. Two fundamental models that describe the contact angle of liquid with a rough surface are: first, the Cassie- Baxter’s model for a rough surface with air pockets present between the solid and the liquid; and the Wenzel’s model for a rough surface without air pockets. Comparing between these two models, the water droplet in a Cassie-Baxter state can roll-off more easily. However, the transitions from a Wenzel state to a Cassie–Baxter state have been reported. Currently, the research on self-cleaning surfaces based on the lotus effect becomes more significant to both academic fields and industrial applications. คําสําคัญ: การเปIยกผิว ปรากฏการณน้ํากลิ้งบนใบบัว พื้นผิวเลียนแบบใบบัว พื้นผิวทําความสะอาดตัวเองได พื้นผิวสะทอนน้ํายิ่งยวด Keywords: Lotus-like surface, Lotus effect, Self-cleaning surface, Superhydrophobicity, Wetting phenomenon บทนํา พื้นผิวของพืชบางชนิดในธรรมชาติ เช@นใบบัว พื้นผิวทําความสะอาดตัวเองได (self- (Nelumbo Nucifera ) ที่แมจะนําขึ้นมาจากน้ําโคลนก็ cleaning surface) คือพื้นผิวที่ทําความสะอาดไดง@าย ยังคงความสะอาดไวได ดวยเหตุนี้บัวจึงกลายมาเป8น คงความสะอาดไวไดยาวนาน จึงไม@ตองการการลางทํา สัญลักษณของความบริสุทธิ์สําหรับพุทธศาสนิกชน แม ความสะอาดบ@อย ๆ ซึ่งจะช@วยลดการใชน้ํา พลังงาน มนุษยจะสังเกตเห็นปรากฏการณลักษณะนี้มานานกว@า และสารเคมีในการทําความสะอาด ทําใหผูบริโภค สองพันปIแลว แต@ความเขาใจเกี่ยวกับปรากฏการณ ประหยัดเวลาและค@าใชจ@าย อีกทั้งยังเป8นการรักษา ดังกล@าวเพิ่งเริ่มขึ้นเมื่อเขาสู@ช@วงคริสตศักราช 1970 ที่มี สิ่งแวดลอม หลักการหนึ่งที่ใชประดิษฐพื้นผิวทําความ การประดิษฐกลองจุลทรรศนอิเล็กตรอนแบบส@องกราด สะอาดตัวเองได คือการทําใหพื้นผิวมีความสามารถ กําลังขยายสูง (high-resolution scanning electron สะทอนน้ํายิ่งยวด (superhydrophobicity) และมีค@า microscope) ซึ่งต@อมา ดร.วิลเฮลม บารทโลทท ฮิสเตอรรีซิสของมุมสัมผัส (contact angle (Wilhelm Barthlott) และคณะวิจัย (Barthlott and hysteresis) ต่ํา ซึ่งหลักการนี้ไดมาจากการเลียนแบบ Ehler,1977; Barthlott and Neinhuis, 1997) ได 752 KKU Science Journal Volume 40 Number 3 ReView นํามาใชในการศึกษาพื้นผิวของใบบัว รวมทั้งพืชชนิด นักวิทยาศาสตรไดนําเอาแรงบันดาลใจจาก อื่น ๆ พวกเขาไดพบลักษณะร@วมที่ช@วยใหพืชเหล@านี้ทํา ปรากฏการณแบบใบบัวมาใชในการประดิษฐหรือดัด ความสะอาดตัวเองได และเรียกปรากฏการณเช@นนี้ว@า แปรผิว (surface modification) ใหไดพื้นผิวที่สามารถ “ปรากฏการณน้ํากลิ้งบนใบบัว (lotus effect)” ทําความสะอาดตัวเองได ปTจจุบันมีผูใหความสนใจ Barthlott และคณะ จดสิทธิบัตรการคนพบพื้นผิวทํา เกี่ยวกับพื้นผิวสะทอนน้ํายิ่งยวดอย@างกวางขวาง โดยมี ความสะอาดตัวเองไดแบบใบบัวในปI 1998 โดยอธิบาย การพัฒนาสารเคลือบผิว สีทาบาน แผ@นมุงหลังคา สิ่ง ว@าเพราะผิวของใบบัวไม@ชอบน้ํา (hydrophobic ทอ และพื้นผิวอื่น ๆ โดยส@วนใหญ@จะใชสารเคมีที่มี surface) และมีความขรุขระในระดับไมโครเมตรและ ส@วนผสมของฟลูออรีน หรือใชสารพวกซิลิโคนเคลือบ ระดับนาโนเมตร ทําใหหยดน้ําฝนที่ตกลงมาไม@เปIยกผิว บนพื้นผิวขรุขระ หรือผสมอนุภาคเล็ก ๆ ลงไปดวย ใบ แต@จะเป8นหยดกลมกลิ้งพาเอาสิ่งสกปรกต@าง ๆ หลุด ตัวอย@างผลิตภัณฑทางการคา ไดแก@ สีทานอกอาคาร ออกจากผิวใบไปอย@างง@ายดาย (รูปที่ 1a-1d) ซึ่ง สเปรยเคลือบผิว และผากันน้ํา เป8นตน (a) (b) (c) (d) รูปที่ 1 (a) ตัวอย@างใบบัว (ที่มา: Cannavale et al., 2010); (b) ลักษณะของหยดน้ําบนใบบัว (Guo and Liu, 2007); (c) พาพิลลาจํานวนมากบนพื้นผิวใบบัว (Nosonovsky and Bhushan, 2007); (d) ภาพขยาย ของไขที่อยู@บนพาพิลลา (Guo and Liu, 2007) ปรากฏการณน้ํากลิ้งบนใบบัว wax crystals) ซึ่งโดยธรรมชาติสารประเภทนี้จะไม@ ใบบัวมีพื้นผิวที่ขรุขระประกอบดวยปุมเล็ก ๆ ชอบน้ํา (รูปที่ 1d) การมีโครงสรางความขรุขระระดับ เรียกว@าพาพิลลา (papilla) ขนาดเสนผ@านศูนยกลาง นาโนเมตร (ไข) อยู@บนโครงสรางระดับไมโครเมตร ประมาณ 10 ไมโครเมตร แต@ละปุมอยู@ห@างกัน 20-40 (พาพิลลา) เรียกว@ามีโครงสรางเชิงลําดับชั้น ไมโครเมตร บนปุมแต@ละปุมจะมีขนเล็ก ๆ เสนผ@าน (hierarchical structure) พื้นผิวที่มีโครงสรางลําดับ ศูนยกลางประมาณ 100 นาโนเมตร ขนเหล@านี้เป8น ชั้นจะมีพื้นที่สัมผัสยังผล (effective contact area) สารประกอบไฮโดรคารบอนประเภทไข (epicuticular กับหยดน้ําและสิ่งสกปรกนอยกว@าพื้นผิวเรียบและ บทความ วารสารวิทยาศาสตร มข. ปIที่ 40 ฉบับที่ 3 753 พื้นผิวขรุขระระดับเดียว (รูปที่ 2a) หยดน้ําจะวางตัว ดวยแรงแวนเดอรวาลส (van der Waals forces) ซึ่ง เป8นหยดกลมอยู@บนยอดของความขรุขระ คลายกับโยคี เป8นแรงดึงดูดทางกายภาพที่ค@อนขางอ@อน (Chow, ที่นั่งอยู@บนเตียงตะปู ทําใหมีช@องว@างอากาศเป8นปริมาณ 2007) ขณะที่อนุภาคสิ่งสกปรกสามารถยึดติดกับน้ํา มากภายใตหยดน้ํา ดวยเหตุนี้ใบบัวจึงไม@เปIยกน้ํา การที่ ดวยแรงคะปลลารี (capillary forces) ซึ่งแข็งแรงกว@า ผิวใบบัวแหงอยู@เสมอทําใหเชื้อโรค (pathogen) เช@น แรงแวนเดอรวาลส (Pitois and Chateau, 2002; แบคทีเรีย สปอรของเชื้อรา ที่ตองพึ่งพาน้ําไม@สามารถ Reyssat et al., 2008) ดังนั้นเมื่อหยดน้ํากลิ้งผ@าน จะ ยึดเกาะกับผิวใบได (Bhushan and Jung, 2011) พาเอาอนุภาคสิ่งสกปรกหลุดออกไปดวย ซึ่งต@างจาก นอกจากนี้ความขรุขระยังทําใหอนุภาคสิ่งสกปรกต@าง ๆ พื้นผิวเรียบที่อนุภาคสิ่งสกปรกจะยึดเกาะกับพื้นไดดีจึง ไม@สามารถเกาะติดอยู@บนใบบัว เนื่องจากอนุภาคสิ่ง ไม@หลุดไปกับหยดของเหลว ดังรูปที่ 2b สกปรกจะมีแรงยึดติด (adhesion) กับผิวใบที่ขรุขระ (a) (b) รูปที่ 2 (a) หยดของเหลวบนพื้นผิวแบบต@าง ๆ (Bhushan and Jung, 2011); (b) เปรียบเทียบการเคลื่อนที่ของ หยดของเหลวบนพื้นเอียงที่มีอนุภาคสิ่งสกปรกอยู@ ระหว@างพื้นผิวเรียบ กับพื้นผิวที่ขรุขระดวยโครงสราง แบบลําดับชั้น (ดัดแปลงจาก: Genzer and Efimenko, 2006) จากงานวิจัยของ Cheng และคณะพบว@าเมื่อ สัตวในธรรมชาติอื่น ๆ กว@า 200 ชนิด เช@น ปIกผีเสื้อ ใชความรอนกําจัดเสนขนระดับนาโนเหล@านั้นออกไป ขนเป8ด และขาของจิงโจน้ํา ก็พบปรากฏการณแบบ จะทําใหสมบัติการทําความสะอาดตัวเองของใบบัว ใบบัวในโครงสรางลําดับชั้นเช@นเดียวกัน (Neinhuis ลดลงอย@างมาก โครงสรางลําดับชั้นจึงมีความสําคัญต@อ and Barthlott, 1997; Bhushan, 2009) นอกจากนี้ คุณลักษณะการทําความสะอาดตัวเองไดของใบบัว Su et al. (2006) ไดทําการทดลองและพบว@า ในพื้นผิว (Cheng et al., 2006) โดยมีผลการทดลองอื่น ๆ ที่ ไม@ชอบน้ํา (hydrophobic surface) ที่มีองคประกอบ สนับสนุนใหเชื่อว@าโครงสรางขรุขระแบบลําดับชั้นจะ ทางเคมีเหมือนกัน พื้นผิวที่ขรุขระเท@านั้นจึงจะแสดง ช@วยใหสมบัติสะทอนน้ํายิ่งยวดดีขึ้น (Gao and สมบัติแบบใบบัวได McCarthy, 2006a, 2006b) จากการสํารวจพืชและ 754 KKU Science Journal Volume 40 Number 3 ReView จากรายงานของ Koch และคณะ พบว@า มุม เหนือผิวหนาของเหลว โมเลกุล B จะไดรับแรงยึด สัมผัสเชิงสถิต (static contact angle) ของหยดน้ําบน เหนี่ยวจากโมเลกุลของอากาศดังแสดงโดยลูกศร ใบบัวมีค@าเท@ากับ 164 องศา และค@าฮิสเตอรรีซิสของ เสนประในรูป 3b แต@แรงนี้จะมีค@าต่ํากว@าแรงยึดเหนี่ยว มุมสัมผัสเท@ากับ 3 องศา (Koch et al., 2009) ซึ่งจะ จากโมเลกุลของเหลว ทําใหแรงลัพธที่โมเลกุล B ยังคง ไดกล@าวถึงในภายหลัง เป8นแรงดึงเขาสู@ภายในเนื้อของเหลว) เนื่องจากการเพิ่มพื้นที่ผิวหนาวัฏภาค แรงตึงผิวและพลังงานอิสระที่พื้นผิว ของเหลว จะตองมีการใชพลังงานเพื่อแยกโมเลกุล (Woodruff, 1973) ของเหลว A ที่อยู@ติดกันออกจากกัน ใหกลายเป8น แรงตึงผิว (surface tension) เกิดขึ้นจาก โมเลกุลที่ผิวหนา (โมเลกุล B) พลังงานที่ใชเรียกว@า ความไม@สมดุลกันของแรงยึดเหนี่ยวระหว@างโมเลกุล พลังงานอิสระที่พื้นผิว ดวยเหตุนี้โมเลกุล B ซึ่งเป8น เมื่อพิจารณาระบบที่มีวัฏภาคของเหลวกับวัฏภาค โมเลกุลที่ผิวหนาวัฏภาคของเหลวจะมีพลังงานส@วนเกิน อากาศ (รูปที่ 3) โมเลกุลที่อยู@ที่ผิวหนาของของเหลว เมื่อเทียบกับโมเลกุล A ที่อยู@ภายในของเหลว ของเหลว (โมเลกุล B) มีโมเลกุลของเหลวดวยกันลอมรอบอยู@นอย จึงมีแนวโนมที่จะพยายามใหมีจํานวนโมเลกุลแบบ B กว@าโมเลกุลที่อยู@ถัดเขาไปภายในของเหลว (โมเลกุล A) ใหนอยที่สุดเพื่อใหพลังงานของระบบต่ําที่สุด ซึ่งทําได หากพิจารณาในแง@ของแรงลัพธ โมเลกุล A จะถูกแรง โดยการลดพื้นที่ผิวของเหลวนั้นใหต่ําที่สุด ยึดเหนี่ยวจากโมเลกุลของเหลวโดยรอบ
Recommended publications
  • Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf
    Molecules 2014, 19, 4256-4283; doi:10.3390/molecules19044256 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf Sanjay S. Latthe, Chiaki Terashima, Kazuya Nakata and Akira Fujishima * Photocatalysis International Research Center, Research Institute for Science & Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-4-7122-9151 (ext. 4550). Received: 28 December 2013; in revised form: 26 February 2014 / Accepted: 17 March 2014 / Published: 4 April 2014 Abstract: The lotus plant is recognized as a ‘King plant’ among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous ‘Lotus Effect’, along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces.
    [Show full text]
  • Superhydrophobic, Biomimetic Surfaces with High and Low Adhesion, Optical Transmittance, and Nanoscale Mechanical Wear Resistance
    Superhydrophobic, Biomimetic Surfaces with High and Low Adhesion, Optical Transmittance, and Nanoscale Mechanical Wear Resistance DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Daniel R. Ebert Graduate Program in Mechanical Engineering The Ohio State University 2016 Dissertation Committee: Professor Bharat Bhushan, Advisor Professor Terrence Conlisk Professor Noriko Katsube Professor Soheil Soghrati Copyrighted by Daniel R. Ebert 2016 ABSTRACT Superhydrophobic surfaces (defined as surfaces having water contact angle greater than 150°) show great promise for use in a rapidly growing number of engineering applications, ranging from biomedical devices to fluid drag reduction in pipelines. In nature, the surfaces of many organisms, such as certain plant leaves, are known to exhibit superhydrophobicity. In some cases, droplet adhesion is very low (droplet rolls away easily), while in other cases adhesion is high (droplet remains adhered when surface is inverted). The recent advent and development of microscopes with resolution down to a few nanometers (such as atomic force microscopes and scanning electron microscopes) has allowed for in-depth understanding of the micro- and nanoscale mechanisms employed by these plant leaves and other natural surfaces to achieve their particular wetting properties. Biomimetics (or “mimicking nature”) is therefore a very promising approach for the development of engineering surfaces with desired wetting characteristics. However, research in creating biomimetic surfaces is still in its early stages, and many of the surfaces created thus far are not mechanically robust, which is required for many potential real-world applications. In addition, for applications such as self-cleaning windows and solar panels, optical transparency is required.
    [Show full text]
  • EXAMPLE Biomimicry Outreach Activity
    Biomimicry: From Nature to Nanotech Organization: University of Wisconsin-Madison Department of Biomedical Engineering Contact person: Dr. Tracy J. Puccinelli Contact information: [email protected] General Description Table top activity Visitors will engage in activities showing various natural phenomena that scientists and engineers have emulated to address human problems. Visitors view peacock feathers at different angles to see iridescence, apply drops of water to observe the color changes, and look at other examples of iridescence in nature, such as a blue Morpho butterfly, tropical beetle wings, and abalone shells. Visitors also explore the Lotus Effect by applying drops of water onto Lotusan paint and stain resistant fabrics, two technologies that mimic the Lotus effect. A flip- book shows examples of iridescence and the Lotus effect, as well as microscopic and scanning electron microscope (SEM) images. Visitors can take home a peacock feather and a TryThis! card describing iridescence and an activity to do at home. Program Objectives Big idea: Biomimicry is defined as imitating nature’s best ideas to solve human problems. Many advances in nanotechnology and current research use nature as inspiration. Learning goals: As a result of participating in this program, visitors will be able to: 1. Understand that biomimicry is imitating nature’s best ideas to solve human problems 2. Understand that nano means really, really small. So small you cannot see it. Things behave differently when they are this small. 3. Understand that nano sized things are in many places, including in nature. 4. Understand that numerous nanotechnologies have been inspired by nature. (biomimicry) 5.
    [Show full text]
  • Lotus Effect and Friction
    biomimetics Review Lotus Effect and Friction: Does Nonsticky Mean Slippery? Md Syam Hasan and Michael Nosonovsky * Mechanical Engineering Department, University of Wisconsin-Milwaukee, 3200 N Cramer St, Milwaukee, WI 53211, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-414-229-2816 Received: 3 March 2020; Accepted: 11 June 2020; Published: 12 June 2020 Abstract: Lotus-effect-based superhydrophobicity is one of the most celebrated applications of biomimetics in materials science. Due to a combination of controlled surface roughness (surface patterns) and low-surface energy coatings, superhydrophobic surfaces repel water and, to some extent, other liquids. However, many applications require surfaces which are water-repellent but provide high friction. An example would be highway or runway pavements, which should support high wheel–pavement traction. Despite a common perception that making a surface non-wet also makes it slippery, the correlation between non-wetting and low friction is not always direct. This is because friction and wetting involve many mechanisms and because adhesion cannot be characterized by a single factor. We review relevant adhesion mechanisms and parameters (the interfacial energy, contact angle, contact angle hysteresis, and specific fracture energy) and discuss the complex interrelation between friction and wetting, which is crucial for the design of biomimetic functional surfaces. Keywords: wetting; friction; adhesion; biomimetic surfaces 1. Introduction Biomimetics is mimicking living nature for engineering applications. The term “biomimetics” was suggested by Otto Schmitt in the 1950s. A similar concept was developed also by Jack E. Steele in 1958 under the name “bionics.” Both concepts were popularized during the next decades; however, today the word “bionics” is common mostly in popular culture, while “biomimetics” is used in scientific and engineering literature.
    [Show full text]
  • Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces
    Critical Reviews in Solid State and Materials Sciences, 40:1–37, 2015 Copyright Ó Taylor & Francis Group, LLC ISSN: 1040-8436 print / 1547-6561 online DOI: 10.1080/10408436.2014.917368 Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review Gregory D. Bixler and Bharat Bhushan* Nanoprobe Laboratory for Bio & Nanotechnology and Biomimetics (NLB2), The Ohio State University, 201 W. 19th Avenue, Columbus, Ohio 43210, USA In this article, a comprehensive overview of the reported rice and butterfly wing effect discovered by the authors is presented with the hope to attract and inspire others in the field. Living nature has inspired researchers for centuries to solve complex engineering challenges with much attention given to unique structures, materials, and surfaces. Such challenges include drag reducing and antifouling surfaces to save energy, lives, and money. Many flora and fauna exhibit low drag and antifouling characteristics, such as shark skin and lotus leaves, due to their hierarchical microstructured morphologies. The authors have reported that rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Fluid drag, anti-biofouling, anti- inorganic fouling, contact angle, and contact angle hysteresis results are presented to understand the role of sample morphology. Conceptual modeling provides design guidance when developing novel low drag and antifouling surfaces for medical, marine, and industrial applications. Keywords shark skin, rice leaf, lotus effect, butterfly wing, low drag, antifouling Table of Contents 1.
    [Show full text]
  • Chemical and Functional Analyses of the Plant Cuticle As Leaf Transpiration Barrier
    Chemical and functional analyses of the plant cuticle as leaf transpiration barrier Chemie-Funktionsanalysen der pflanzlichen Kutikula als Transpirationsbarriere Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences, Julius-Maximilians-Universität Würzburg, Section Integrative Biology submitted by Ann-Christin Schuster from Ingolstadt Würzburg 2016 Submitted on: ………………………………………………………… Members of the Promotionskomitee: Chairperson: Prof. Dr. Thomas Müller Primary Supervisor: Prof. Dr. Markus Riederer Supervisor (Second): Prof. Dr. Dirk Becker Supervisor (Third): Dr. Adrian Friedmann Supervisor (Fourth): Dr. Markus Burghardt Date of Public Defence: …………………………………………….. Date of Receipt of Certificates: …………………………………….. Table of contents Table of contents Introduction ........................................................................................... 1 The plant cuticle ............................................................................................... 2 1.1 Cutin polymer ............................................................................................... 3 1.2 Cuticular waxes ............................................................................................ 4 1.3 Biosynthetic origin of cutin and cuticular waxes ........................................... 7 The plant cuticle as transpiration barrier .......................................................... 8 2.1 Definition of transport parameters ................................................................ 8 2.2 The plant
    [Show full text]
  • Lotus Effect in Wetting and Self-Cleaning
    Biotribology 5 (2016) 31–43 Contents lists available at ScienceDirect Biotribology journal homepage: http://www.elsevier.com/locate/biotri Lotus effect in wetting and self-cleaning Mingqian Zhang, Shile Feng, Lei Wang, Yongmei Zheng ⁎ Key Laboratory of Bio-Inspired Smart Interfacial Science and technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China article info abstract Article history: Self-cleaning surfaces based on lotus effect with a very high static water contact angle greater than 160° and a Received 22 July 2015 lower roll-off angle have been successfully studied by researchers and applied in fields of self-cleaning windows, Received in revised form 30 August 2015 windshields, exterior paints for buildings and navigation of ships, utensils, roof tiles, textiles, solar panels, and ap- Accepted 30 August 2015 plications requiring a reduction of drag in fluid flow, e.g. in micro−/nanochannels. In this feature article, we sum- Available online 3 September 2015 marize recent research progress and synthesis technologies about the design and fabrication of self-cleaning Keywords: surfaces. We hope that, this review article should provide a useful guide for the development of self-cleaning Lotus effect surfaces. Self-cleaning © 2015 Elsevier Ltd. All rights reserved. Superhydrophobic Roughness bio-inspired Hierarchical structure 1. Introduction impact of multi-scale roughness and low energy waxes on the self- cleaning property, respectively. And in the next section, we brieflysum- Over thousands of years of natural selection, living organisms in- marize and discuss the conventional self-cleaning methods. We catego- cluding all plants and animals on our earth are evolutionarily optimized rize recent progress in this area into two aspects as the technologies of functional systems.
    [Show full text]
  • Download PDF Koch
    167 Functional Nanoscience Beilstein-Institut May 17th –21st, 2010, Bozen, Italy Design of Hierarchically Sculptured Biological Surfaces with Anti-adhesive Properties Kerstin Koch Rhine-Waal University of Applied Science, Faculty of Life Sciences, Landwehr 4, 47533 Kleve, Germany E-Mail: [email protected] Received: 14th September 2010 / Published: 13th June 2011 Abstract In many plant species sophisticated functions such as water repellence, reduction of particle adhesion and reduction of insect attachment are correlated to a hierarchically sculptured surface design. One prominent example is given by the hierarchically sculptured, self-cleaning surface of the lotus leave (Nelumbo nucifera). In plants hierarchy of surfaces is often realized by combining microstructures with superimposed self- assembled nanostructures. Such functional biological surfaces are of great interest for the development of biomimetic self-cleaning materi- als. Examples of superhydrophobic plant surfaces are introduced here, and their hierarchical surface sculptures and existing and potential use of their properties in artificial materials are shown. Introduction The term biomimetic describes the study and transfer of nature’s methods, mechanisms and processes into artificial materials and systems [1]. Biomimetic research deals with functional micro- and nanostructures and the transmission of biological principles such as self-organi- zation and functional structures. To use nature’s models in engineering one can take biolo- gical characteristics and develop analogue solvents for engineering. Several aspects, such as their energy harvesting system, their ability of self-healing and their multifunctional surface properties make plants interesting models in biomimetic research. http://www.beilstein-institut.de/Bozen2010/Proceedings/Koch/Koch.pdf 168 Koch, K. Approximately 460 million years ago, the first plants moved from their aqueous environ- ment to the drier atmosphere on land.
    [Show full text]
  • Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin
    Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf Effects Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory D. Bixler, P.E., M.S. Graduate Program in Mechanical Engineering The Ohio State University 2013 Dissertation Committee: Professor Bharat Bhushan, Adviser Professor Robert Siston Professor Ahmet Kahraman Professor Sandip Mazumder Gregory D. Bixler 2013 i ABSTRACT Researchers are continually inspired by living nature to solve complex challenges through the field of biomimetics. Nature thrives on effective designs while optimizing the use of precious resources, which is something that inspires engineers worldwide. Gaining a deeper understanding of nature can lead to bioinspired products that save time, money, and lives. Examples include “low drag” boat hulls inspired by shark skin as well as “self- cleaning” windows and “antifouling” medical devices inspired by the superhydrophobic and low adhesion lotus leaf. Common engineering challenges solved in nature but hindering many industries are fluid drag reduction and antifouling. Nature holds clues to these challenges, including the unique surface characteristics of rice leaves and butterfly wings that combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this thesis, first presented is a chapter on biofouling and inorganic-fouling which is generally undesirable for many medical, marine, and industrial applications. A survey of promising flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications.
    [Show full text]
  • Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling
    molecules Review Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling Yujie Cai 1,2, Wei Bing 1,2,*, Chen Chen 3 and Zhaowei Chen 3,* 1 School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China; [email protected] 2 Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China 3 Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China; [email protected] * Correspondence: [email protected] (W.B.); [email protected] (Z.C.) Abstract: In recent years, various biomimetic materials capable of forming gaseous plastron on their surfaces have been fabricated and widely used in various disciplines and fields. In particular, on submerged surfaces, gaseous plastron has been widely studied for antifouling applications due to its ecological and economic advantages. Gaseous plastron can be formed on the surfaces of various natural living things, including plants, insects, and animals. Gaseous plastron has shown inherent anti-biofouling properties, which has inspired the development of novel theories and strategies toward resisting biofouling formation on different surfaces. In this review, we focused on the research progress of gaseous plastron and its antifouling applications. Keywords: antifouling; gaseous plastron; super-hydrophobic; biomimetic; antibacterial Citation: Cai, Y.; Bing, W.; Chen, C.; Chen, Z. Gaseous Plastron on Natural 1. Introduction and Biomimetic Surfaces for Resisting Marine Biofouling. Molecules 2021, 26, Marine biofouling is widespread in marine environments and the most serious issue 2592. https://doi.org/10.3390/ in the shipping industry [1].
    [Show full text]
  • ENCHANTING WORLD of BIONICS Pavel KEJZLAR, Dora KROISOVA
    23. - 25. 10. 2012, Brno, Czech Republic, EU ENCHANTING WORLD OF BIONICS Pavel KEJZLAR, Dora KROISOVA Technical University of Liberec, Studentska 1402/2, 461 17, Liberec, Czech Republic, [email protected] Abstract Bionics is a quite new scientific discipline connecting knowledge of biologists and technicians. It uses structures and principles appearing in nature. Living organisms on the Earth evolved and improved during nearly 3.5 billion years and achieved perfection from all points of view. In nature there is no space for any type of error or imperfection, everything what doesn't adapt to its living conditions, dies. This fact is a reason, why we are looking for natural smart solutions, studying them and trying to find a way, how to use achieved knowledge in ours modern technologies. Secrets of surviving and prosperity are often hidden in sub-micron scale that's why we have to use the most modern imaging technologies as scanning electron- or atomic force microscopy to be able to study fine structures having amazing functions. This article will take the reader on a journey to enchanting world of natural nano- and micro-sized structures and shapes and will show him their extraordinary functions. Everything what we now have to do is keep our eyes open and let ourselves to be inspired. Keywords: Bionics, Biomimetics, Structure, Nanomaterial, Nature 1. INTRODUCTION The birth of Earth is dated to so called Hadean period (4600 - 3800 million years ago). The Earth formed by accreation from solar nebula. Much of the Earth was molten because of extreme volcanism and frequent collisions with meteorites.
    [Show full text]
  • Potential Applications of Self-Cleansing Nano Lotus Leaf Biomimicked Coating in Different Construction Sectors
    Building Tomorrow’s Society Bâtir la Société de Demain Fredericton, Canada June 13 – June 16, 2018/ Juin 13 – Juin 16, 2018 POTENTIAL APPLICATIONS OF SELF-CLEANSING NANO LOTUS LEAF BIOMIMICKED COATING IN DIFFERENT CONSTRUCTION SECTORS Safiuddin, Md.1,3, Hossain, K.2, and Collins, C.M.2 1 Angelo Del Zotto School of Construction Management, George Brown College, Toronto, Ontario, Canada; Department of Civil Engineering, Ryerson University, Toronto, Ontario, Canada 2 Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Newfoundland and Labrador, Canada 3 [email protected] (corresponding author’s email) Abstract: Lotus leaf has a nanostructure with randomly oriented cone-like protrusions (nano-mountains) and nano-valleys between nano-mountains. The nanostructured lotus leave surface possesses an extremely high water-repelling capacity due to super hydrophobic property. This is well-known as “lotus effect”, which has been mimicked by applying certain recently developed coating products. The "lotus effect" makes nano lotus leaf biomimicked coating suitable for applications in different categories of construction. The benefits of nano lotus leaf biomimicked coating are emphasized in this paper. It highlights the possible applications of nano lotus leaf biomimicked coating in various construction sectors, including buildings and infrastructure, such as roads, bridges, tunnels and sewers. In particular, the self-cleansing effect of nano lotus leaf biomimicked coating is focused to reveal its applicability in different types of construction. In addition, the self-cleansing mechanism of nano lotus leaf biomimicked coating for the protection of substrates is explained with illustrations. The present study also includes the different types of substrate, the techniques for the preparation of substrates, and the application methods for installing nano lotus leaf biomimicked coating on various substrates.
    [Show full text]