<<

Podzols and podzolization in temperate regions ISM Monograph 1 .>-• .....•• f

\:. Î / - ••* **«.- r ,-* 't

1 ISM Monograph 1

Podzols and podzolization in temperate regions

D.L. Mokma1 and P. Buurman2

CENTRALE LANDBOUWCATALOGUS

0000 0006 7161

1 Department of Crop and Sciences, Michigan State University, East Lansing, Michigan

2 Department of and Geology, Agricultural University, Wageningen, The Netherlands

International Soil Museum - Wageningen - The Netherlands

bN •'. K'ijH CIP-gegevens

Mokma,D.L .

Podzols andpodzolizatio ni ntemperat e regions/D.L .Mokm aan dP .Buurman . Wageningen: International SoilMuseum . - 111.- (ISMmonograph ;1 ) Metlit .opg . ISBN90-6672-011- 5 SISO631. 2UD C631. 4 Trefw.:Bodemkunde .

Correctcitation : Mokma,D.L . andP .Buurma n (1982). Podzolsan dpodzolizatio n intemperat eregions . ISMmonograp h1 ,Int .Soi lMuseum ,Wageningen ,12 6pp .

ISBN90-6672-011- 5 Foreword

This is the first of an envisaged serieso f ISMMonograph st ob epu ­ blishedb yth e International SoilMuseu m inadditio nt oth eserie sappearin g under the name 'SoilMonolit h Papers'.Whil e a Soil MonolithPape rdeal s specifically with a soil unit of theFAO-Unesc o SoilLegend ,base do non e representative example inth e ISMsoi lmonolit hcollection ,th ene wserie s isope nfo ra wide rrang eo fsubject si nsoi lscience .I nparticula r itma y describe the results of studies in soil genesis and classification,soi l analysisan dlan devaluatio no fa majo rgrou po fsoils .Th egenera l aimi st o strengthenth estat eo fknowledg eo nth eworld' s soilresources ,fo rapplica ­ tioni nth efiel do flan dmanagemen tan dagro-technolog ytransfer . The presentpape r isth eresul to fa comparativ estud yo nth echarac ­ teristics,genesi san danalysi so fa majo rgrou po fsimila rsoils ,th epod ­ zols,wit hth eai mt odefin eclassificatio n criteriao funiversa lvalidity . This study has beenconducte d inth eframewor ko fth eIS Msoi lcorrelatio n programme by avisitin g scientist fromMichiga n StateUniversit y (USA)an d a staffmembe ro fth eAgricultura lUniversit y ofWageningen . ISMappreciate s anycommen to nit spublication s andan ysuggestio nfo r researchneeds .Individua l soilscientist s arewelcom et ojoi nIS Ma sgues t researcher,t oprepar eeithe ra Soi lMonograp ho ra Soi lMonolit hPaper .

Wageningen,Jul y198 2

W.G.Sombroe k Director Contents Foreword 1 Introduction 1 2 Podzolan dspodoso lconcept s 1 3 Environmental settingo fpodzol s 3 4 Thepodzolizatio nproces s 4 5 Extractionso fC ,F ean dA lrelativ et oth epodzolizatio nproces s 8 5.1 Organiccarbo n 8 5.2 Ironan daluminu m 10 6 Presentcriteri afo rspodi co rpodzo lB horizon s 12 6.1 USSR 12 6.2 FederalRepubli co fGerman y 12 6.3 Netherlands 13 6.4 Englandan dWale s 14 6.5 Canada 16 6.6 France 17 6.7 Australia 19 6.8 NewZealan d 19 6.9 UnitedState s 19 6.10 FAO-Unesco 22 7 Methods 23 8 Materials 25 8.1 USSRpodzo lmonolith s 25 9 Resultsan ddiscussio n 28 9.1 Particle sizedistributio n 28 9.2 Carbonan dsesquioxide s 28 9.2.1 Carbon/aluminum ratios 29 9.2.2 Carbon/ironratio s 34 9.2.3 Carbon/sesquioxide ratios 35 9.2.4 Discussioncarbon/meta lratio s 40 9.3 CEC-organic carbonrelation s 44 9.4 Imogolite 46 9.5 Ironconten tan dcolo rafte rignitio n 47 9.6 Spodichorizo ncriteri a 50 10Conclusion s 57 11Acknowledgement s 58 12Reference s 59 Listo ftable s

Table 1 Soilprofile s inthi sstud yan dth emethod suse dfo r theirCE Can dorgani c Cdeterminatio n 24

Table2 Meanan dstandar ddeviatio no fAI , Fean dC extraction s

fromth ereferenc esampl e (Becketsoi lserie sB21ir ) 24

Table3 Classificationo fth esoil sinvestigate d 27

Table4 Carbon/aluminum atomicratio s forseparatin geluvia lan d illuvialhorizon s inOrthic/Humi can dGleyi cPodzol s 43 Table5 Linearregressio nan dcorrelatio nbetwee nC andC , andC . andC , 43 t n Table6 Linearregressio nan dcorrelatio nbetwee nCEC ._ an d

carboncontent s 43

Table 7 Numericalvalue s assigned toMunsel lcolo rcode s 48

Table8 Selectedpropertie s andclassificatio no fDutch , Belgianan dSwis ssoil s 51 Table9 Selectedpropertie s andclassificatio n ofsoil si nth e monolithcollectio no fth e International SoilMuseu m 52

Table1 0Selecte dpropertie s andclassificatio n ofsoil s

described inliteratur e 54

Listo ftex tfigure s

Figure1 . C/Alratio so fOrthi c andHumi cPodzol s 30

Figure2 . C/Al ratioso fGleyi cPodzol s 31

Figure3 . C^/Alratio so fOrthi c andHumi cPodzol s 32

Figure4 . C./hl ratioso fGleyi cPodzol s 33

Figure 5. C/Fe ratioso fOrthic/Humi c andGleyi cPodzol s 36 Figure6 . C/Ses ratioso fOrthi c andHumi cPodzol s 37

Figure7 . C/Ses ratioso fGleyi cPodzol s 38

Figure8 . Depthfunction so fCE C ...an dCEC .. 39 soil 8.2 Figure9 . Regressiono fCEC - _wit hC foral lsample s 45 o. z. p Figure 10.Colo rafte rignitio nan dFe ,conten to fOrthic/Humi c andGleyi cPodzol s 49

Appendix 1. Descriptionso fth eprofile s fromth eNetherlands ,

Belgium andUS A 66

Appendix2 .Description so fth eRussia nprofile s 78

Appendix3 .Particl esiz edistributio no fal lprofile san d moistcolo rprofile s 83 Appendix4 .Selecte dchemica lpropertie s and carbon/sesquioxide atomicratio s 4A.Profile s fromth eNetherlands ,Belgiu man d Switzerland 88 4B.Profile s inth e ISMcollectio n 92

Appendix 5.Selecte dchemica ldat a fromliteratur e andcarbon / sesquioxide atomicratio scalculate d fromth edat a 100

Appendix 6.Determinatio no fcarbo ni nsoil san dsoi lextract s

(byA.J.M .va nOostru m andD.L .Mokma ) 116

Appendix 7.Not eo nth eplat e "Podzolsan drelate d " 126

Separateplate : san drelate dsoil s 1 Introduction Theter m 'podzol'whic horiginate d inRussi aha sbee nadopte d insevera l soilclassificatio nsystem san di sno wdefine d invariou sways .Th econcep t varies fromcountr yt ocountr yan dwit htim ei na singl ecountry . Severalprocesse spla y arol ei nth eformatio no fpodzols .Insigh tint o theprocesse s involved haschange dwit htime ,dependin go nth ekin do fin ­ formationgathered .Variatio n inth einformatio ncollecte dha sdepended ,a t leastpartially ,o nchange si nth epodzo lconcept . Themos t important featureo fPodzol so rSpodosol s isth epresenc eo f a horizon with an accumulation of amorphous organic matter andaluminum , with or without .Therefore ,criteri a fora podzo lB horizo no rspodi c horizonhav ebee nbased ,a tleas tpartially ,o nth eamount so forgani ccar ­ bon,A lan dF eextracte db yspecifi c solutions fromthes ehorizons . The objectives of this study were to1 .revie wth eliteratur e onth e Podzols and Spodosols,th ecriteri a forclassifyin gPodzol s andSpodosols , andth eprocesse s involved inpodzolization ;2 .stud yth eprocesse so fpod - zolization inprofile s collected for thispurpos e in the Netherlandsan d Belgium ando nothe rprofile sexistin gi nth eInternationa l SoilMuseu mcol ­ lection and 3. develop new chemical criteria for classifying Podzolsan d Spodosols andcompar ethes ewit hexistin gcriteria .

2 Podzol and spodosol concepts The term 'podzol'wa s first applied byRussia nworker ssolel yt oth e bleachedhorizo ntha toccurre d ato rnea rth esurfac eo fsoil s (Muir,1961) . Itha s been generally assumed that 'podzol'wa s derived fromth eRussia n terms 'pod'meanin gunde ro rbeneat han d 'zol'o r 'zola'meanin g ashes.Ac ­ cordingt oMui r (1961),th eRussia nter m 'pod'shoul dhav eth esam emeanin g asth eGerma nter m 'Boden',th eGree kter m 'pedon',an dth eLati nter m 'peda'; therefore the term podzolmean sash ysoi l (infact ,th elati nwor d ispes , pi. pedes). Ponomareva (1964)assume d that theter m 'pod'originate d from the facttha tth egra yo rash ylaye ro fsoi li susuall y foundunde rsom eothe r layero rlayer so fsoi lmaterials .Fo ra summar yo fth ehistorica ldevelop ­ mento fth epodzo l conceptth ereade r isreferre dt oMui r (1961). Differences in the concept of apodzo l have persisted between soil scientists fromRussi a andWester nEurope .Podzol si nWester nEurop ewer e

* Throughoutthi sreport ,whe nreferrin g toliterature ,origina lhorizo n designations and classification termsar emaintained ;otherwise ,hor ­ izondesignation s andclassificatio nterm so fFA O (1974;1977 )wil lb e used. restricted to sandy soilswhil eRussia npodzol s included clayey soilswit h illuviation. Early Western European soil scientists considered the translocationo fmaterial s fromth eeluvia lhorizo nt oth eilluvia lhorizo n tooccu r insolution .Thes e scientistswer ereluctan tt oaccep tth emechan ­ icaltranslocatio n ofcla ya spar to fth epodzolizatio nprocess . TheWester nEuropea nconcep to fpodzol s isreflecte d inth esoi lclassifica ­ tionsystem so fth evariou scountries .Thi sconcep twa scarrie dt oth eUnite d Statesb yMarbu t (Muir, 1961).Accordin gt oByer se tal . (1938)podzol sha d an illuvial horizon with an accumulation of , iron andaluminu man d occurred only on coarser textured parentmaterials .Thi sconcep treflect s theWester n European concept, a reddish-brown horizonbeneat h ableache d horizon,rathe rtha nth eRussia nconcept ,onl ya bleache dhorizon . Theorde rSpodoso l anddiagnosti c spodichorizo ni nth ene wsoi lclas ­ sification system.Soi lTaxonom y (SoilSurve y Staff, 1975), alsooriginate d in the WesternEuropea nconcep to fpodzols .I nth e7t hApproximatio n ( Staff, 1960)an di nSoi lTaxonomy ,Spodosol swer eidentifie db yth e spodichorizo nan dno tth ealbi chorizon .Th espodi chorizo nwa sdefine da s anilluvia l accumulationo fsesquioxide s andorgani cmatter .Late rth espodi c horizonwa sdefine d ason ei nwhic hactiv e amorphousmaterials ,compose do f organic matter and aluminum with orwithou tiron ,hav eprecipitate d (Soil Survey Staff, 1975).Th eter m 'active'describe dmateria ltha tha dhig hca ­ tionexchang ecapacity ,larg esurfac e areaan dhig hwate rretention . Invirgi narea sth espodi chorizo nusuall y liesbelo w analbi chorizo n (whitish or grayish eluvial horizon). Emphasis isno tplace do nth ealbi c horizon fortw oreason s (Smith, 1965). First,th ealbi chorizo nma yb ethi n andincorporate d intoth eA horizo nb yplowing ,pasturin go rb yearthworms . Second, it is related to an absenceo ffre eiro noxid ecoatings .Thi sma y result from soil genesiso rfro muniqu eparen tmaterials . InFlorid awhit e quartzsan ddune s are formingove rolde rbrow nsand s andthe ycoul db econ ­ sidered Spodosols if emphasis isplace dto ostrongl yo nth ealbi chorizon . Spodosols includemos to fth ePodzols ,Brow nPodzoli c soilsan dGround-Wate r Podzolso fth e193 8U.S .soi lclassificatio n system (Baldwine tal. , 1938). The podzolic B horizono fEnglan d andCanad a issimila rt oth epodzo l B horizon. Inth e systemo fEnglan d andWale s (Avery, 1980), the podzolic B horizon is onei nwhic horgani cmatte r andaluminu m and/or iron have accumulated in amorphous forms. Itusuall y underlies a bleachedE horizon .Podzoli c soilshav e apodzoli cB horizon .Podzoli csoil s andSpodosol shav esimila rconcept s (Averye t al.,1977 ;Avery , 1980). In the Canadian system ofsoi l classification,soil si nth ePodzoli c order have podzolic B horizons inwhic hth edominan tilluvia lmateria li s amorphous material composed mainly of organic matterwit hvaryin g amounts of iron and aluminum (Canada Soil Survey Committee, 1978).Th epodzoli cB horizonusually ,bu tno talways ,underlie s alight-colore d eluvialhorizon . Inth eFAO-Unesc o system (Foodan dAgricultur eOrganization ,1974 )Pod ­ zoli suse d forsoil swit ha spodi cB horizo nwhic hha sa nilluvia laccumul ­ ationo firo no rorgani cmatter ,o rboth ,bu twithou tcla yskin so npe dface s or inpores . Acontinuou s albichorizo n isno trequire d aboveth espodi cB horizon. Except forth eRussia nconcept ,ther e appearst ob emuc hagreemen tamon g the definition of Podzols or Spodosols.Th emos timportan tcharacteristi c ofPodzol s isth etranslocatio nan daccumulatio no fhumu /o rsesquioxides . A grayish or whitish eluvial horizon is usually, but notalways ,presen t above the illuvial horizon.Th etranslocatio n ofhumu s andsesquioxide si s notrelate dt oth etranslocatio n ofsilicat eclays .

3 Environmental setting of podzols Podzols (Spodosols)ar eonl y foundi nhumi d regionswher eprecipitatio n exceedsévapotranspiratio n (SoilSurve yStaff , 1960).The y areno tfoun di n arid environments.However , theyar efoun d inMediterranea nclimate swhic h havelon gdr ysummer s (SoilSurve yStaff , 1975). There appearst ob en orelationshi pbetwee nsoi ltemperatur e andoccur ­ renceo fpodzols .The y arefoun d incoo lt oho tclimate s (SoilSurve yStaff , 1975).Earlie rAmerica nsoi lscientist s (Baldwine tal. , 1938)though tpod ­ zolswer etypicall y foundi ncoo lclimate s andtha tthos ewhic hoccu routsid e these climates result fromspecia l localconditions ,e.g . siliceousparen t materials. Incol d climates podzols tend tob e shallowwhil ei nwarme rclimate s they tend tob e thicker. The eluvialhorizo no fpodzol s intropica larea s tend tob e thick (Barshad and Rojas-Cruz,1950 ;Bleackle y andKhan ,1963 ; Klinge,1965 ;Andriesse ,1969 )whil ethos e incol dclimate sten dt ob ethi n (Chandler,1942 ;Kubot a andWhittig ,1960 ;Stevens ,1963 ;Ponomareva , 1964). Podzolshav ebee ndescribe d inman y areaso fth eworld .The y arefoun d in almost all countries inEurope , inal lprovince s ofCanad a (NCSS,NSS C andFAO , 1975), andi nman ystate si nth eU.S.A . fromAlask at oFlorid a (Soil SurveyStaff , 1975).Podzol shav ebee nreporte d inth eAmazo nBasi n(Klinge , 1965), British Guiana (Bleackley and Khan, 1963), Columbia,Sout hAmeric a (Barshad andRojas-Cruz ,1950) , EastMalaysi a (Andriesse,1969 ,1970) , Indon­ esia (Tane tal. , 1970), andZambi a (Brammer, 1973). Outsideth ecol dclimate spodzol s form, forth emos tpart ,i nsiliceou s parentmaterial s (Byerse tal. , 1938,-Racz,1968 ;Stac ee tal. , 1968;Andriesse , 1969; SoilSurve y Staff,1975 ;Canad aSoi lSurve yCommittee ,1978 ,D eBakker , 1979). They are low inweatherabl e minerals. Some may havemor etha n95 % , zircon, tourmaline, rutile, or other relatively insoluble crystalline minerals that do notweathe r toproduc e iron oraluminum .I n the humid environments mosto fth ebase s areleache dan dtherefor epodzol s havea lo wbas esaturatio n andpH . Incoo lclimate spodzol shav eha da heat h (Ericaan dCalluna )o ra for ­ estvegetation .Mos thav eha d aconiferou so roa k .I nforeste darea s podzols are more strongly developed under some species, such as hemlock (Tsugacanadensis )an dkaur i (),tha nunde rothers .I nwar ­ merclimate spodzol soccu runde r savannah,palms ,an dmixe d .Podzol s inZambi adevelope dunde rsimila rsavanna h foresta soxisol sbu to ndiffer ­ entparen tmaterial s (Brammer, 1973). Podzols form both inwel l drained soilsan di nsoil swit ha shallow , fluctuating watertable. Ifth ewate r level iswithi nth epodzo lB horizo n for longperiods ,th e B horizonma ycontai nlittl eo rn oiron .Podzol sd o not appear to form in soils thatar epermanentl y saturatedwit hwate ran d havestron greducin gconditions .

4 The podzolization process Thepodzolizatio nproces scomprise sth ereaction s andprocesse sinvol ­ ved in the formation of apodzo lB o ra spodi chorizo nan dth eremova lo f sesquioxidesan dorgani c carbon fromoverlyin glayers .I tinvolve sth etrans ­ locationo forgani c compounds,aluminu m and iron.Th emechanism so fpodzol ­ izationmus texplai nth erelease ,mobilization ,migratio n and immobilization ofthes ematerials . Many studies have beenconducte d toobtai ninformatio no nth emechan ­ isms involved in thepodzolizatio nprocess .N oattemp twil lb emad et ore ­ view each of these studies, several authors have reviewed theliteratur e concerning themajo r processes (Stobbe andWright ,1959 ;Bloomfield ,1963 ; Wrightan dSchnitzer ,1963 ;Ponomareva ,1964 ;McKeagu e andS tArnaud ,1969 ; Petersen,1976 ;McKeagu e etal. ,1978 ;D eConinck ,1980 ;Flac he tal. , 1980). Asummar yo fth econdition s foran dth eprocesse so fpodzolizatio nfollows. . Processes ofpodzolizatio n mayb egroupe d asfollows :accumulatio no f organicmatte ri nan do nth etopsoil ;leachin gan dacidification ; ; translocation of organic compounds, aluminum and iron; immobilization of organo-metalliccomplexes ;formatio no fhumu spellets ,an dcementation . Theaccumulatio no forgani cmatte r inth eO an dA hhorizo nresult sfro m thedepositio no flitte ro nth esoi l andth eincorporatio no fit sdeca yprod ­ uctsint oth eminera l soilb y fauna. sals ocontribut e toorgani cmatte r inth eA hhorizons .Th emajo rportio no fth eorgani cmatte r insoil sconsist s ofhumi c substances,o fwhic hth emai ncomponent s arehumi can d fulvicacid s (Schnitzer andKodama , 1977).Bot hhumi can d fulvicacids ,lik eothe rorgani c acids, formcomplexe swit hbi -e ntrivalen tcations .Thes ecomplexe sma yb e soluble in water when unsaturated with cations and insoluble when saturated. The leachate collected between the Ae and Bhf horizons of aHumi c Podzol was primarily (87%) fulvic acid (Schnitzer and Desjardins, 1969). These acids are also active in mineral degradation (Ponomareva, 1964; Ponomareva and Ragim-Zade, 1969; Kodama and Schnitzer, 1972; Baker, 1973; Schnitzer and Kodama, 1976). The order of stability of some fulvic acid-metal complexes at low pH (<3.5) was: Fe + > Al3+ > Ca2+ > Mg2+ (Khanna and Stevenson, 1962;Khan , 1969; Schnitzer, 1969; Schnitzer and Hansen, 1970). The greater affinity of 3+ 3+ fulvic acid for Fe than Al may explain the greater dissolution of Fe- rich chlorites and micas than the Fe-poor minerals (Kodama and Schnitzer, 1972; Schnitzer and Kodama, 1976). According to Van Dijk (1971) at pH 5.0 there was no large difference in bond strength for humic acid-metal complex- 2+ 2+ 2+ 3+ 3+ es involving Ca ,M g and Fe .F e was more firmly bound while Al for­ med ahydroxide . The above sequences differ from that based on bond stabil- 3+ 3+ 2+ 2+ lty: AI > Fe > Mg > Ca (De Coninck, 1980). Thus, the preferences of 3+ 3+ the organic ligands for Al and Fe may change with pH. The complexation properties of organic matter imply that before appreci­ able amounts of humus, aluminum and iron can be translocated, soluble salts, such as calcium carbonate, and most exchangeable bases, especially calcium, must be removed from the upper horizons. The calcium and other bases will form insoluble compounds with the water-soluble organic materials. Soils with a high clay content are likely to have low amounts of water-soluble organic compounds, because these soils will have readily available aluminum and iron in clay lattices, which can completely neutralize the negative char­ ges. The soils which are most likely to become podzolized are sandy soils which contain small amounts of bases, aluminum and iron and which easily become acid. In these soils the water-soluble organic compounds take up small amounts of aluminum and iron in the A horizons where they are released dur­ ing the weathering of primary minerals. As the organo-metallic complexes migrate downward, they will take up more aluminum and iron. Immobilization may occur either when sufficient am­ ounts of aluminum and iron are adsorbed to form large immobile, polymerized organo-metallic compounds, or through desiccation, or when a horizon with a different ionic concentration or acidity (hydrolysis is encountered. Finally, precipitation of sesquioxides may result from oxidation of the organic com­ ponent of the complex. Most of the organic matter of a podzol Bh horizon (Schnitzer, 1969) and an ironpan of a Humic Podzol (McKeague et al., 1967)wa s soluble in dil­ ute alkali and acid, indicating it was predominantly fulvic acid (FA).I n 3+ solutions of purified fulvic acid and A1C1 and Fed, at pH 4.0, Fe -fulvic 3+ . J J acid and Al -fulvic acid complexes were water soluble when the metal/FA molar ratio was one but insoluble when the ratio was six (Schnitzer and Skin­ ner, 1963). The molecular weight of fulvic acid was taken as 670 (Schnitzer 3+ and Desjardms, 1962). In the ironpan of aHumi c Podzol the Fe /FA molar ratio was about six (McKeague et al., 1967). The B horizons of several Can­ adian podzols had ratios of pyrophosphate extractable iron plus aluminum to fulvic acid between six and nine while the Ae horizons had ratios of 3.5 and 5.0 (McKeague, 1968). Molar ratios expressed as metal/fulvic acid or metal/humic acid are rather inaccurate because of the difficulties in determining the molecular weight of organic matter fractions. Various authors, therefore, chose to use atomic ratios with respect to elemental carbon. In laboratory experiments, aluminum- and iron-fulvic acid complexes were soluble up to an Fe/C atomic ratio of 0.2 and Al/C atomic ratio of slightly greater than 0.2 (McKeague et al., 1971). In dilute HCl extracts of the B horizons of a Canadian podzol, the (Al+Fe)/C atomic ratio was 0.2 (Schnitzer and Skinner, 1964). Similar results were obtained for a Russian podzol: (Al+Fe)/C ratios for the A2 and the two B horizons were 0.26, 0.12 and 0.15, respectively (Kononova and Bel'chikova, 1970). In other investiga­ tions, ratios of pyrophosphate extractable sesquioxides to total carbon were higher. B horizons of Canadian podzols had (Al+Fe)/ c atomic ratios of 0.28 to 0.92, while ratios of sodium hydroxide-tetraborate extractable sesquiox­ ides to total C, (Al+Fe), /C, varied between 0.05 and 0.17 (McKeague and Sheldrick, 1977). A similar range of ratios were obtained for B horizons of Belgian podzols: (Al+Fe)/ C ratios between 0.03 and 0.42 and (Al+Fe),./ C ratios between 0.03 and 0.11 (Higashi et al., 1981). In these Belgian soils, the range of (Al+Fe)/ C ratios was 0.05 to 0.60 and that of (Al+Fe), /C. atomic ratios was 0.04 to 0.27. In a study of Danish podzols, Petersen (1976) used C/Al, C/l|Fe and C/(Al+^Fe)weigh t ratios. Sesquioxides were extracted with sodium dithionite- EDTA. C/(Al+isFe)ratio s in B horizons varied from 0.7 to 17; in A2 horizons from 11 to 120.Peterse n also carried out several titration experiments where extracts of Ah horizon organic matter were titrated with solutions of A1C1_ and FeCl_. Fifty percent of the dissolved organic matter was precipitated at a C/Al weight ratio of 7.5 and C/%Fe ratio of 5.0. These are equivalent to Al/C and Fe/C atomic ratios of 0.06 and 0.09, respectively. Also Ponomareva (1964) found that precipitation of iron required less organic matter (fulvic acid) than that of aluminum. Other authors also found 3+ 3+ that fulvic acid has a greater affinity for Fe than for Al (Kodama and 3+ Schnitzer, 1972; Schnitzer and Kodama, 1976), although Al more readily precipitates the acids. Such differences might be instrumental in the differ­ entiation of iron and aluminum maxima in podzol B horizons. This affinity may also explain the Fe and Al distributions in some Welsh soils (Adams et al., 1980). Iron exhibited the typical pattern of eluviation and illuviation but Al rarely accumulated in B horizons enriched in Fe. Although the metal-carbon ratios forprecipitatio n of organic matter, obtained by various authors, vary considerably, they suggest that the dis- tribution of organic matter ineluvia l andilluvia lhorizon s ofpodzol si s regulatedb yth eamoun to fsesquioxide sboun dt oorgani cmatter ,tha tsatur ­ ationo forgani cmatte rwit hsesquioxide slead st omutua lprecipitatio nan d thatth etranspor to fsesquioxide s isregulate db ythi sprocess . This iscontrar yt oth etheor y recentlypropose db yFarme re tal . (1980) that the transport of aluminum inpodzol s isb ymean so fproto-imogolite . Imogoliteand/o rproto-imogolit ehav ebee nfoun di npodzo lB horizon s (Tait etal. , 1978;Ros san dKodama ,1979 ;Farme re tal. ,1980 ;Ross ,1980a ;1980b ; McKeague and Kodama, 1981). This mineral hasno tbee nobserve d ineluvia l horizons andi nth euppe rpar to filluvia lhorizon s (Taite tal. , 1978;Far ­ mere tal. , 1980).Accordin gt othes e authorslarg eamount so fhumi csubstan ­ cesma yinhibi tth e formationo fimogolit e inB hhorizons . When immobilization occurs, the organo-metallic compounds are still surrounded by water ofhydratio n (De Coninck, 1980). Water moleculesan d cationsar etrappe d insidevoid sdurin gth eformatio no flarg eparticles .A gel state results rather than a solidstate .Dehydratio noccur sgraduall y underth einfluenc eo fdifferen t factors:1 )decreas ei ncharg ewhe nreactin g withcations ,2 )increas ei nconcentratio no fion sinsid eth evoids ,and/o r 3)desiccation . The gelgraduall y losesit swate r andchange sint oa soli d state. Somepodzo lB horizon s arecemente dwhil eother sar enot .Cemente dan d uncementedhorizon sma yhav esimila rchemica l composition (McKeague andWang , 1980). The cemented B horizons in some European podzols aredominate db y polymorphicpellet san daggregate s (DeConinck , 1980).Th emonomorphi ccoat ­ ings are strongly cracked,indicatin gth etransitio n fromth ege lt osoli d state. Uncemented horizons have many features indicating much biological activity, such as,man yroots ,thoroug hmixin g oforgani cmatte rwit hsil t andclay ,an dpedotubule s (Wange tal. ,1978 ;D eConinck , 1980). Insom eCan ­ adianpodzol scemente d anduncemente dhorizon sha dsimila r fabrics (McKeague andWang , 1980).Ortstein ,cracke dcoating s anddar kpellet s aremorphologic ­ alrequirement s fora spodi chorizo n (SoilSurve y Staff, 1975). Biological activity and translocation of organo-metallic compounds, occursimultaneously .Th erelativ eintensitie so fthes etw oprocesse sdeter ­ mineth ekin do fpodzo lB horizo ntha twil l form (DeConinck , 1980). Ifbio ­ logical activitypredominates ,th ehorizo nwil lb eloose .I fth e accumulation oforgano-metalli c compoundspredominate s thehorizo nwil lgraduall ybecom e cemented.Th edominan tcementin gmateria l inortstei nhorizon s frompodzol s in France (Righi andD eConinck , 1977)an dCanad a (Milese tal. , 1979;Mc ­ Keague andWang ,1980 )wa sAl-organi cmatte rcomplex . Inearl y stageso fpodzolizatio nsufficien taluminu m andiro ni spresen t in the surface layer and immobilization willoccu rnea rth esoi lsurface . The soilwil l have a shallow Bhorizon .Wit htim eth eB horizo nwil lmov e to greater depths.Th e aluminum and iron contents of theA horizon swil l becomelowe ran dlower .Th esolubl e organiccompound swil lhav esmalle ran d smaller amounts of aluminum and iron when they reach the B horizon. These compounds will then remove from the upper portion of the B horizon some of the aluminum and iron from the organo-metallic compounds which were immobil­ ized earlier. This will mobilize some of the organic matter which had orig­ inally precipitated. This organic matter will migrate downward and may be immobilized at greater depths. This process may repeat itself many times. This could explain the thin lamellae with humus coatings found in podzols in the Netherlands (Van den Broek, 1965;D e Bakker, 1979) and Belgium (Hig- ashi et al., 1981). This review indicates that the major controversies as well as research needs are in the carbon/sesquioxide ratios, the extraction methods, the pre­ sence and role of imogolite, and the differentiation of material in the podzol-B horizon. This study will therefore further evaluate the use of carbon/sesquioxide atomic ratios for describing podzols and the podzoliza- tion process; check the presence and discuss the role of imogolite, and evaluate the significance of complexation behavior of organic matter rela­ tive to differentiation in the podzol B horizon. If carbon/sesquioxide ratios can be used describing the podzolization process, they may also provide abette r separation between iron-less Gleyic Podzols and well-drained Orthic and Humic Podzols that are low in iron. Because the choice of extraction method for iron and aluminum is of utmost importance, four widely used methods will be discussed in the next chapter. 5 Extractions of C, Fe and Al relative to the podzolization process 5.1 ORGANIC CARBON

Extraction of organic C has been done with several kinds of solutions: water, aqueous solutions of neutral salts, organic solvents, acid solutions, alkaline solutions, and complexing agents (Petersen, 1976). Water usually dissolves small amounts of organic compounds. Water extracted larger amounts of organic carbon from the Ao-Al and Bl (Bh)tha n from Bs and C horizons of Danish podzols (Petersen, 1976). Aqueous solutions of neutral salts extracted only small amounts of or­ ganic carbon from the Al and B21 horizons of a Canadian podzol (Schnitzer et al., 1958). In general, organic solvents such as alcohols, ethers and benzene are not effective extractants for organic compounds found in soil (Petersen, 1976). Various organic and inorganic acids have been used to extract organic carbon from soils. The kind and concentration of the acid and the conditions of extraction determine the amount of organic carbon extracted. The kind of horizon also influences the amount extracted. Relatively largeamount so f organic carbon were extracted from aCanadia npodzo lB2 1horizo nbu tonl y small amountswer e extracted from theA o horizonb y 0.5%HC lan d0.5 %H F (Schnitzere tal. , 1958). Alkaline solutions can extract aportio n of the organic carbonfro m soils. The amount oforgani ccarbo nextracte d dependso nth econcentratio n andkin do fbas ean dth ekin do fsoi lhorizon .O fth evariou salkalin esolu ­ tions (NaOH,KOH ,NH.OH , Na.CO ),sodiu m hydroxide isth emos t frequently used (Hayesan dSwift ,1978) . From apodzol ,Schnitze re tal .(1958 )extrac ­ ted 24.8%o f the total organic carbon from theA ohorizo nan d96.3 %fro m the B21 horizonusin g0.5 NNaOH .Onl y smalldifference s incompositio nan d propertieso forgani cmatte rwer e foundi n0.5 NNaO Hextract sfro ma podzo l Ao and Bh horizon under air andnitroge n (Wrightan dSchnitzer ,1959) .N o significantdifference swer e foundi nth eelementa lcompositio n andconten t of functional groups oforgani cmatte rextracte db y0 .5 NNaO Han d0.1 NHC l from apodzo l B horizon (Schnitzer andSkinner ,1968) .Accordin gt oHaye s et al. (1975), sodium hydroxide was thebes treagen tfo rextractin ghumi c materials froma wid erang eo fsoi lmaterials . Several organic and inorganiccompound sca nfor mcomplexe swit hmeta l ionsthereb ymakin gth eorgani cmatte rsoluble .Sodiu mpyrophosphate ,sodiu m fluoride, and EDTA extracted similar amounts (inexces so f80% )o forgani c carbon as did sodium hydroxide from apodzo lB2 1horizo nbu tno tfro mth e podzol Ao horizon (Schnitzer et al., 1958). Fromth eA ohorizo nles stha n 10%wa sextracte db yth ecomplexin gcompound swher ea sabou t25 %wa sextrac ­ tedb ysodiu mhydroxide . Based on their solubility inalkal ian dacid ,humi c substancesca nb e divided intothre e fractions:humi cacid , fulvicacid ,an dhumin .Humi caci d issolubl ei ndilut ealkal ibu ti sprecipitate db y acidificationo fth eal ­ kalineextract .Fulvi caci di ssolubl ei ndilut ealkal ian dremain ssolubl e whenth ealkalin eextrac ti sacidified .Humi ni sno tsolubl ei ndilut ealkal i andacid . Structurally thethre ehumi c fractionsar esimilar ,bu tthe ydiffe ri n molecularweight ,analytica lcharacteristics ,an d functionalgrou pcomposi ­ tion (Schnitzeran dKodama , 1977).Fulvi c acidha sa lowe rmolecula rweigh t thanhumi c acidan dhumin .Elementa l and functionalgrou panalyse so fhumi c acidan dhumi nar esimila rbu tthe ydiffe r fromthos eo ffulvi c acid.Humi c acidan dhumi ncontai nmor eC ,H ,N andS bu tles soxyge ntha nfulvi cacid . Fulvic acid has more oxygen-containing functional groups (COOH,OH , C=0) per unitweigh t thanhumi caci dan dhumin .Th eCOO Hconten to ffulvi caci d is about two timesgreate rtha ntha to fth eothe rtw o fractions.Th erati o of COOH tophenoli c OH groups infulvi caci di sabou t3 an dtha ti nhumi c acid and humin is about 2.Fo ra mor edetaile d discussiono fth echemica l composition andphysica lpropertie so fhumi csubstances ,th ereade ri sdir ­ ectedt oarticle sb ySchnitze r andKha n (1972), Flaige tal . (1975),Schnit ­ zeran dKodam a (1977), Hayes andSwif t (1978), andSchnitze r (1978). 10

Thedifferin gcarbo nconten to ffulvi can dhumi cacid sha s repercussions as to themetho d of carbon determination thati ssuitabl e forth epresen t investigation.

5.2 IRONAN DALUMINU M

Manymethod shav ebee nemploye dt odetermin e amorphous ironand/o ralum ­ inumi nsoil swit hth eobjectiv eo frelatin gthe mt osoi l formingprocesse s and soil classification.Acid s and complexing agents extractbot h Fean d Al, reducing agents extractprimaril yF ecompounds ,an dalkalin e solutions extractprimaril yA lcompound s fromsoils .

Dithionite Sodiumdithionit ewa suse d asa reducin gagen tt odissolv eiro noxide s fromsoil s (Deb,1950) . Somesilicat eminerals ,suc ha smontmorillonit ewer e attacked. Kilmer (1960)modifie d this method topermi textractio n atroo m temperature.Mitchel l andMacKenzi e (1954)recommende dusin g0.05 NHC lan d dithionitet opreven tth eprecipitatio no fferrou ssulfid e inth edithionit e extracts. Aguilera and Jackson (1953)modifie d Deb'sdithionit emetho db y addingsodiu mcitrat e asa complexin g agent.Mehr a andJackso n (1969)modif ­ ied the dithionite-citrate method by adding sodium bicarbonate to buffer themixtur e atp H 7.3. This method completely dissolved crystallineiro n oxides.Coffi n (1963)replace d thesodiu mbicarbonat ebuffe rwit ha citrat e buffero fp H4.75 .Coffin' smetho d didno textrac tal lcrystallin e ironox ­ idesbu tdi dattac knontronite .Holmgre n (1967)extracte d ironoxide susin g dithionite anda larg eexces so fsodiu mcitrat ea troo mtemperature . Dithionite-citrate-bicarbonate isconsidere d toextrac tth ecrystalline , amorphous and organically boundF efro msoil s (Schwertmann,1964 ;McKeagu e andDay ,1966 ;Blum ean dSchwertmann , 1969). Itals oextract sA l fromorgan ­ ic complexes and non-crystallinehydrou soxide s (Wadaan dGreenland ,1970 ; Tokashiki andWada , 1975).

Oxalate An oxalate buffer,p H3.2-3.3 ,wa suse dt oextrac t 'colloidal'F ean d Al (Tamm, 1922),bu tsilicat emineral swer epartiall ydestroye db ythi sex - tractant (Tamm,1932) .Th eamoun to fF eextracte d increasedwhe nth eextrac ­ tionwa s done insunligh t (Schofield, 1949;Deb ,1950) . Schwertmann(1959 , 1964)foun dammoniu m oxalateextracte d onlyamorphou s oxideswhe nth eextrac ­ tionwa sdon ei ndarkness .Ammoniu m oxalatedissolve s somecrystallin e iron oxides (Baril and Britton,1967 ;McKeagu ee t al., 1971;Schwertmann ,1973 ; Borggaard, 1976). Ammoniumoxalat eextract smos to fth eF ean dA l fromamorphou smaterial s but notmuc h fromcrystallin e oxides (Schwertmann,1964 ;McKeagu e andDay , 11

1966; Blume and Schwertmann, 1969). Itals o extracts aluminum andsilic a fromallophane-lik ematerial s andt oa lesse rexten tfro mimogolite . Therati oo foxalat eextractabl eF e (Fe )t odithionit e extractableF e (Fe.), alsocalle dth e 'activityratio' ,ha sbee nuse d asa relativ emeasur e of the crystallinity andmobilit y offre eiro noxide san dt oseparat eBhi r horizons fromB2 thorizon s insom eGerma nsoil s (Blumean dSchwertmann , 1969). The Bhir horizons had higher values thanB2 t horizons.Th eF e/Fe ,rati o distinguished soils from podzols in England and Wales (Loveland andBullock , 1976).

Pyrophosphate A0.1 Hsodiu mpyrophosphat e solutionwa suse dt oextrac tF ean dA lfro m soils (Aleksandrova, 1960). The dissolution is duet odirec tcomplexatio n of the Fe and Al (McKeague, 1967). Franzmeier,e tal . (1965)use d apyro - phosphate-dithionite reagent (pH 7.3) to extract Fe,A Ian dC fro msoils , especially spodichorizons .McKeagu e (1967)foun dtha tpyrophosphate-dithion - iteextracte dno tonl yth eamorphou sF ebu tals osom ecrystallin e Fe.A 0.1M potassiumpyrophosphat e solution (pH10 )extracte dver ylittl eF efro mcrys ­ tallineF eoxide sbu tsuccessfull yextracte d amorphousorgani c complexeso f Fe andA l (Bascomb, 1968).Organi c Cwa sals odetermine d inth epotassiu m pyrophosphateextract . Pyrophosphate extracts all organic-complexedF ean dAl ,an dmino ram ­ ountso fth enon-crystallin ehydrou soxide s (McKeague,1967 ;Bascomb , 1968). Ball and Beaumont (1972)regarde d the Feextracte db ypyrophosphat e (Fe) asth emobil e fractionan dth eF e asth emobil eplu sstabl eamorphou sfrac ­ tion. The stable amorphous fractionrepresente d theage damorphou shydrou s oxides accumulated insitu .

Tetraborate Sodiumhydroxide-tetraborat e hasbee nintroduce d (NguyenKh aan dBruck - ert, 1972)t oextrac torganic-complexe d Fefro msoils .Th eonl yfunctio no f thetetraborat e ist obuffe rth esolutio na tp H9.5 .Thi ssolutio nextracte d lessA lan dF e fromsom epodzo lB horizon stha ndi dpyrophosphat e (McKeague and Sheldrick, 1977;Higash i et al., 1981) . Bruckert and Souchier (1975) and Higashi et al. (1981)conclude d tetraborateremove donl yth eorganic - bound Al and Fean dpyrophosphat e alsoremove d someA lan dF eno tboun db y organicmatter .O nth eothe rhand ,McKeagu e andSheldric k (1977)foun dtetra ­ boratedi dno tremov eal lo fth eA lan dF efro msyntheti cAl -an dFe-fulvi c acid complexes butpyrophosphat e did and therefore concluded tetraborate wasno tsuitabl e forextractin gorganicall yboun dF ean dA l fromspodi chor ­ izons.Higash i andShinagaw a (1981)conclude dpyrophosphat ewa smor eeffec ­ tiveextractan to fAl -an dFe-humu scomplexe s inA lhorizon so fDystrandept s thanwa stetraborate . 12 6 Present criteria for spodic or podzol B horizons Thecriteri ause dt odefin eth epodzo lB horizo no rspodi chorizo nvar y considerably. Insom ecountrie sonl ymorphologica l criteriaar eused ,whil e inother sbot hmorphologica l andchemica lcriteri aar eused .

6.1 USSR

WhenDokuchaie vfirs tapplie dth eter m 'podzol',i treferre d toa grou p ofsoil swit ha bleache dhorizo n (Muir,1961) . Later,Zakharo v in190 6advoc ­ atedth erecognitio no fa nilluvia lhorizo na spar to fth epodzoli cprofile . Inth eUSS Rpodzol s aresubdivide dbase do nth edegre eo fpodzolizatio n (Ivan- ova and Rozov, 1960). Weakly, moderately, and strongly developed podzols aredefine do nth ebasi so fth erati oo fth ethicknes so fth eA lhorizo nt o thato fth eA 2horizon . Ifth erati oi sgreate rtha n1 ,th epodzo l isweakl y developed, if equal to1 i ti smoderatel y developed, andi fles stha n1 i t isstrongl ydevelope d (Tavernier, 1963).

6.2 FEDERALREPUBLI CO FGERMAN Y

EarlyGerma nworker srecognize dth ebleache dhorizo nan dth e"Ortstein" ; Senftdescribe d sucha podzo l in186 2 (Muir,1961) .Thi sconcep to fa bleach ­ ed,eluvia lhorizo nan da nilluvia lhorizon , "Ortstein"o r "Orterde",contin ­ uestoday . Inth epresen tGerma nclassificatio n system (Arbeitsgemeinschaft Bodenkunde, 1971)a podzo l is a soilwit ha nO-Ah-Ae-B- Cprofile .Podzol s aredifferentiate d onlyo nmorphologica lproperties ,including : 1 Texture andparen tmateria l 2 Deptht olowe rboundar yo fB horizo n Solum < 5c m veryshallo w (Micropodzol) Solum 5- 2 0c m shallow (ShallowPodzol ) Solum2 0- 4 0c m medium (MediumPodzol ) Solum >4 0c m deep (DeepPodzol ) 3 Cementationo fth eB horizo n Weaklycemente d orn ocementatio n (Orterde) Mediumcemente d ("firm"Orterde ) Stronglycemente d (Ortstein) 4 Thicknesso fth eB horizo n 5 Thickness andkin do fra whumu slaye r (Ohorizon ) 6 Thicknesso fth eA ehorizo n 7 Thickness andhumu sconten to fA hhorizo n 8 Degreeo ferosion :Podzo lwit htruncate dprofile . 13

Subdivisions:

Type Subtype Profile

Podzol Iron-humusPodzo l O-Ah-Ae-Bhs-C

(NormalerPodso l= Eisenhumuspodsol ) IronPodzo l (Eisenpodsol) O-A-Ae-Bs-C HumusPodzo l (Humuspodsol) O-Ah-Ae-Bh-C IronpanPodzo l (Bändchenpodsol) BrownEart hPodzo l (Braunerde-Podsol) O-Ah-Ae-Bhs-Bv-C (GrayWooded )Podzo l O-Ah-Ae-Bhs-Al-Bt-C (Parabraunerde-Podsol) PseudogleyPodzo l (Pseudogley-Podsol) O-Ah-Ae-Bhs-S Gley-Podzol (Gley-Podsol) O-Ah-Ae-Bhs-G -Podzol (Hochmoor-Podsol) Hh-Ah-Ae-Bsh-Bv-C 6. 3 NETHERLANDS

Inth eNetherland sth e podzol B horizon isa nilluvia lhorizo ni nwhic h amorphoushumu swit ho rwithou tsesquioxide shav eaccumulate do rsesguioxide s with non-amorphous humus haveaccumulate d (DeBakke ran dSchelling , 1966). The prominent podzol B horizon hasth efollowin gcharacteristic sbelo w2 0c m depth: 1 aB2 hhorizo no fa tleas t3 c mthicknes swit ha colo rvalu eo f2 o rles s anda chrom ao f1. 5 orless ;and/o r 2 aB 2horizo nwit hcolo rvalu edifference sbetwee nth eB 2an dth eC hor ­ izona sfollows : thicknesso fth eB 2 value difference 0 - 5c m >3 5 -2 0c m >2 20- 3 0c m >1. 5 > 30c m >1 ;or: 3 aB horizon ,whic hcontinue s toa dept ho f12 0cm ,wit ha colo rvalu eo f 5.5 orless ;or : 4 areworke dB horizo nwit hlump so fB 2differin gmor etha n1. 5valu efro m theC horizon . A prominent humuspodzol B horizon isa prominen tpodzo lB horizo nwit hbelo w 20 cm depth (1)a B2 h horizono r (2)amorphou sorgani cmatte ri na tleas t theuppe rpar to fth eB horizon .Thi shorizo nma yo rma yno tcontai niron . A prominent moderpodzol B horizon isa prominen tpodzo lB horizo nwit hbelo w 20c mdept h (1)n oB2 hhorizo nan d (2)non-amorphou sorgani cmatter ,usuall y 14 moder,i nth eB horizon .Thi shorizo nmus tcontai niro n (DeBakke r andSchel ­ ling, 1966).

Subdivisions

Order Suborder Podzol Moderpodzol OrganicC an dFe ,no tamorphou s Hydropodzol OrganicC wit hlittl eo rn oF ean d hydromorphic characteristics Xeropodzol OrganicC wit hlittl eo rn oF e

6.4 ENGLANDAN DWALE S

InEnglan dan dWale sth e podzolic B horizon wasdefine db yth efollow ­ ingcharacteristic s (Avery,1973 ;Aver ye tal. , 1977): 1 usually underlies ableache d E horizon ora dar kAh ,H o rO horizo ni n whichth eminera lgrain sar euncoated ; 2 beginswithi n1. 5m o fth esoi lsurface ; 3 extendst oa tleas t1 5c mdepth ,excludin gsurfac elitte r (L, F); 4 thefollowin ghorizon sca nfor mal lo rpar to fa podzoli cB horizon : Bha tleas t2. 5 cmthick ; containstranslocate d organicmatte ran dAl , orF ean dAl ; it is darker andha smor eorgani cC (0.6percent )tha na noverlyin gE horizon,i fpresent ; containsmor eA l *an dF e thana noverlyin gE o rA horizon ; P P ifth eFe ,conten texceed s0. 3 percent,bot hvalu ean dchrom a are3 o r less. Bsa tleas t5 c mthick ; containsF ean dA lwit horgani cmatter ; has organo-ferruginous coatings onminera lgrain sand/o r sando rsil t size,pelletlike ,peds ; valueand/o rchrom aar emor etha n3 ; Fe plusA l exceed 0.3percent ; P P Fe plusA l dividedb ypercen tcla yi sgreate rtha n0.05 . Bfles stha n5 m mthick ; blackt odar kbrown ; brittleo rcemented ; enriched inF e andC . P P

Al ,F e and C arepyrophosphat eextractabl eAI ,F ean dC ;Al ,an dFe , are dithionite-citrate extractable Al and Fe;A I andF e areammoniu m o o oxalateextractabl eA lan dFe . 15

Ragge tal .(1978 )propose d arati oo fF e toFe ,o fgreate rtha n 0.36 forB horizon so fpodzols .Thi srati owa smor eeffectiv e inseparatin gpod ­ zols fromnon-podzol si nScotlan d than (Fe +A l )* cla y> 0.05 . Recently the podzolic B horizon has beenredefine d asa B horizo ni n whichamorphou smaterial scontainin gC an dAI , Fe,o rbot hhav e accumulated, eitherb yilluviatio no rb yweatherin g in situ (Avery, 1980). the'B horizo n hasth e followingrequirement s: 1 Qualifies asa Bh ,B so rBf ,o rcomprise s somecombination so fthes ehor ­ izons. Bh- contain stranslocate d organicmatte rwit hAl , orA lan dF ei ncoat ­ ingso nsan dan dsil tparticle so ri nsan do rsilt-siz eaggregates ; -i sdarke r andha smor eorgani cmatte rtha na noverlyin geluvia lhor ­ izon; -contain s more AI +F e than an overlying E orA horizon;ma yb e cemented; -ha s organic C>0.6% and may orma yno tcontai nsignifican tamount s ofFe ; -hav evalu e andchrom ao f3 o rles si fFe,>0.3% . Bs- ha smois tvalu eand/o rchrom ao f4 o rmo"re ; - containsA I +F e >0.3% ; -ha s (AI +F e )T cla y> 0.05 ; -react spositivel y toth eNa Ftes tfo rreactiv ehydroxy-Al ; -contain ssan do rsilt-siz epellet-lik e aggregates,sesquioxidi ccoat ­ ingso nminera lgrains ,o rboth . Bf- i sblac kt oreddis hbrown ; - isbrittl eo rcemente d (ironpan); - is< 1 0m mthick ; - isenriche d inF e andC . P P 2 Moistchrom a isgreate rtha n3 ,o rth evalu e is3 o rless . 3 Beginswithi n12 0c mdepth ; underlies anE ,A ,H ,o rO horizon ; extendsbelo w 15c mdepth ,exclude d fresho rpartiall ydecompose dlitter . 4 Atleas t1 0c mthic ki fther ei sn ooverlyin gE horizo nan di ti scompose d onlyo fa B shorizon ;o r atleas t2. 5 cmthic ki fi tconsist sonl yo fa B hhorizo nlyin gbelo wa n Ehorizon . Inadditio npodzoli cB horizon susuall yhav eth efollowin g associatedprop ­ erties: a highp H dependent CEC; the difference between CEC(p H8 ) andCE C (soil pH)> 8 meq/10 0g soil , b largewate rholdin gcapacit yrelativ et oparticl e sizedistribution ,whe n notcemented . 16 c C -rC. >0.3(>0.5in well-expressed horizons) Fe -rFe .> 0. 3 (>0.5i nwell-expresse d horizons). d highP retentio ncapacity . e high fluoridereactivity .

Subdivisions

Majorgrou p Group Podzolic Brownpodzoli c soils Bshorizon ,n oE horizo n soils Humic cryptopodzols thick,humos eB hhorizo n Podzols Ehorizo nan ddistinc tB hhorizo n Gley-podzols E andB hwit hgleyin gbelo wB horizo n Stagnopodzols gleyedE ove rB shorizon ,o rthi n ironpa nbelo wpeat ytopsoil ,E o r Bhhorizo n

6. 5 CANADA

The definition of the podzolic B horizon inCanad aha sbee nmodifie d severaltimes . In196 3th eNationa l SoilSurve yCommitte e ofCanad adefine d aB fhorizo na sa horizo nenriche dwit hF ean dhavin ga chrom ao f3 o rmor e andredde rtha nth ehorizo nabov eo rbelo w (McKeague andDay ,1966 )I n196 6 McKeaguean dDa ypropose dB fhorizon sb erequire dt ohav eA(F e+ Al) * greater than0. 8 percento rhav ea tleas t1 percen tmor eFe ,tha nth eC horizon . Clark et al. (1966)propose dt ous epH-dependen tCE Ca sa nadditiona l means of defining podzolic B (spodic)horizons .A pH-dependen tportio no f theCE Co f8 meq/10 0g soi lwa ssuggeste d asth elowe rlimi tfo rpodzoli cB horizons. The horizons were also required tomee tth eappropriat eorgani c matter and free oxide limits:B fmus tcontai n0. 5 to5 %organi cmatte ran d haveA(F e+ Al )> 0.8% . In197 4th eCanad aSoi lSurve yCommitte e (1974)define dPodzoli cSoil s as soils with Podzolic B horizons (Bh,Bhf ,Bf h orB fhorizons) .Th eBf , Bfhan dBh fhorizon swer erequire d tohav eA(F e+ Al )> 0.8% .Th eB hhorizon s usuallyha dA(F e+ Al )< 0.8% .Th eorgani cmatte rconten to fth eB fi s<5% , of the Bfh is 5-10% and ofth eBh fi s>10% .Th eB hha s>2 %organi cmatte r anda rati oo forgani cmatte rt oF e of2 0o rmore .Th eB hha s acolo rvalu e andchrom ao f3 o rles swhe nmoist .McKeagu e (1967)foun dtha thorizon swhic h hadA(F e+ Al )greate rtha n0.8 %als oha dF e plusA l greatertha n0.65% .

A(Fe+ AI )= percentag eoxalate-extractabl e Feplu sA li na B fhorizo n minuspercentag eoxalate-extractabl e Feplu sA l inth eC horizon . 17

A limit of 0.6%A l gave good separationo fpodzoli cB horizon s from other horizons (McKeague and Day, 1969). Baril and Tran (1977)foun dF e plusA l andit srati oove rcla ywer eusefu lt oclassif ypodzols .Th elimit s proposedwer eF e +A I >0.6 %an d (Fe +A l )H -cla y> 0.05 .Podzoli chor ­ izons appeared tob e separated fromnon-podzoli chorizon susin ga valu eo f 6meq/10 0g fo rth eorgani cpH-dependen tCE C (Clarkan dNichol , 1968). The Canada Soil Survey Committee (1978)define da podzoli cB horizo n ashavin gth e followingmorphologica l andchemica lproperties :

Morphological: 1 atleas t1 0c mthick ; 2 moistcolo ri sblac ko rth ehu ei s7.5Y Ro rredde ro r10Y Rnea rth euppe r boundary andbecome s yellower with depth.Th echrom a isgreate rtha n3 orth evalu ei s3 o rless ; 3 accumulationo famorphou smateria l isindicate db ybrow nt oblac kcoating s on someminera l grainso rbrow nt oblac kmicro-aggregates .Th emateria l feelssilt ywhe nrubbe dwet ,unles s iti scemented ; 4 texture iscoarse rtha nclay .

Chemical: 1 ifi ti sa B hsubhorizo nver y lowi nFe ,i tmus tb ea tleas t1 0c mthic k andhav eorgani c C> 1% ,F e <0.3% , andorgani c C/Fe >20 ; 2 if it is aB f or Bhfsubhorizo nwit happreciabl eF ean dAl , itmus tb e atleas t1 0c mthic kan dhav eorgani c C> 0.5% , AI +F e >0.6 %i ffine rtha nsand ,A I +F e >0.4 %i fsand , (AI +F e )/clay> 0.05 , andF e 2.0.3 %and/o rorgani cC/F e <20 . Several ortstein horizons inCanadia npodzol sdi dno thav eth erequire d organic C or extractable Al and Fe contents of thepodzoli cB horizo n (Wange tal. , 1978;Mile se tal. ,1979 ;McKeagu e andWang , 1980).

Subdivisions Order GreatGroup s Podzolic HumicPodzo l Highorgani cC relativ et oFe ,usu ­ allyassociate dwit hwetnes s Ferro-HumicPodzo l Highorgani c Cwit hF ean dA l Humo-FerricPodzo l Loworgani cC wit hF ean dA l

6.6 FRANCE

Whilesoi lclassificatio ni nFranc e isno tbase do ndiagnosti chorizons , thegenera lcriteri ause d forth edistinctio no fth eB horizo no f 'solspod - 18 zolisés' are virtually identical to those inothe rcountries ,i.e .(CPCS , 1967): ahig hconten to f 'free'sesquioxide swit hrespec tt oth eparen tmateria l a high content of organic matter (>0.5% )wit ha C/ Nrati o> 14 ,an da higherconten to forgani cmatte rtha nth eA horizon, presenceo fcoating so firo nan dorgani cmatte ro nminera lgrain s presenceo fsil tsiz eiro noxid ean dorgani cmatte rpellets . Thedegre eo fdevelopmen to fth e 'solspodzolisés 'i srelate dt oth ein ­ tensityo fth eash ycolo ro fth eA .horizo n (Tavernier, 1963), butth esub ­ divisions of the classification arebase d onclimat ean dhydrolog y(CPCS , 1967). Bruckert (1979)propose d usingth eFe/A lrati o frombuffere dtetrabor ­ ate extracts (pH 9.5) to classify brownsoil s (solsbruns )an dpodzolize d soils (solspodzolisés) . Podzolized soils had a ratio greater than1 an d brownsoil sa rati oles stha n1 .

Subdivisions

Classe Solspodzolisé s (podzolized soils) Sousclass e Solspodzolisé sd eclima ttempér é (podzolized soils oftemperat e climates) Groupe Podzols Sous Podzolshumique s (humicpodzols ;Bh ,n oBfe ) groupes Podzols ferrugineux (ironpodzols ;Bfe ,n oBh ) Podzolshumo-ferrugineu x (humus-ironpodzols ;B h& Bfe ) Solshumo-cendreu x (humic ashysoils ;A2 ,bu tn oB ) Podzolsd ehydromorphi eprofond e (podzolswit hdee phy - dro-morphism;gle yi no rbelo wB )

Groupe Solspodzolique s ('podzolic'soils ) NoB hhorizon ,bu tdistinc tBfe ;wel ldevelope dbu tno tash y A,.Contain s fivesubgroups . Groupe Solsocre-podzolique s (ochreouspodzoli c soils) A_horizo ndiscontinuou s orabsent ;Bf ewit hstron gcolor . Containstw osubgroup s Groupe Solscryptopodzolique s (cryptopodzolic soils) NoA horizon.Podzolizatio n apparenti nthi nsection san d chemical analysesonly .Reddis hbrow nB horizon .Contain s twosubgroups . Sousclass e Podzolsd eclima tfroi d (podzolso fcol dclimates ) ThinnerA horizon;highe rbas esaturation .Contain stw o groups. Sousclass e Solspodzolisé shydromorphe s (hydromorphiepodzolize d soils) 19

Groupe :Podzol s à gley (gley podzols) With gley phenomena very close to the surface. Contains two subgroups.

Groupe :Molke n podzols Profile: A ,g , B,C. Permanent water table, o Groupe :Podzol s de nappe tropicaux: (tropical groundwater podzols) Very thick A_ and concretionary B horizon.

6. 7 AUSTRALIA

In Australia podzols are defined as acid, sandy soils with a gray Al horizon, a thick whitish sand A2 and a B horizon with an accumulation of organic matter and/or sesquioxides (Stace et al., 1968). Australian podzols seldom have a continuous O horizon.

6.8 NEW ZEALAND

InNe w Zealand Podzol soils are called Podiform soils and have a prom­ inent O horizon; an ash-gray, structureless, silica-rich A2 horizon; and usually, but not always, a humus and iron enriched illuvial horizon (Taylor and Pohlen, 1968). The A2 horizon is the main differentiating characteristic.

6.9 UNITED STATES

In the 1938 soil classification system (Byers et al., 1938) the B2 hor­ izon of Podzols was defined as having an accumulation of humus, iron and aluminum and a clay content that was not unusually high. The spodic horizon is basically the same concept as the original concept of the Podzol B horizon (Soil Survey Staff, 1960). A spodic horizon had the following properties:

1 amorphous coatings of humus and allophane or of humus, allophane, and free sesquioxides on particles of sand or ; or rounded to subangular pellets of humus or of humus and sesquioxides between 20 and 50 pm in diameter; or both. 2 more than 0.29% organic C or 1% free sesquioxides in some part. 3 no clay skins; under crossed polarizers coatings in thin sections show slight or no birefringence and no extinction on rotation, which indicates substance forming the coatings are not both crystalline and oriented. 4 no structure; or structure other than blocklike; or blocklike structure only if the grade of structure is weak. 5 C/N ratio of more than 14, if profile is virgin.

6 SiO_/R20 ratio in clay fraction less than that in clay fraction of over­ lying A2 or albic horizon and less than that in clay fraction of parent material. 20

Horizons are not considered to be spodic if they are so thin, are so near the surface, and are so weakly expressed that the cutting of a forest and plowing a few times to a depth of 6 to 7 in. obliterates all traces. Franzmeier et al. (1965)propose d the following criteria for the spodic horizon:

1 CECmoist"CEC240°C x 100 > 30 CEC .. moist 2 (C + Fe + Al)* * clay > 0.15

In the 1967 supplement (Soil Survey Staff, 1967) to the 7th Approximation the spodic horizon criteria were revised: 1 If an O, A, Al, or albic horizon overlies the spodic horizon, the spodic horizon has: a a 15-bar water content of less than20% ; b less than 60%volcani c ash, pumice and other pyroclastic materials in the 20-200 |jmfraction ; (C + Fe + Al)* c enough amorphous material that -1 -p: L > 0.15;

d a thickness of 1 cm or more, either as a continuous horizon or as a sum of lamallae; e moist colors of 7.5YR or redder and moist values of 3 or less in some continuous part of the horizon or in any one subhorizon that is at least 1 cm thick and hues as red or redder than the underlying horizon, or (C + Fe + Al)* = 1%; f enough depth that the horizon is not obliterated by plowing to 18 cm or enough degree of expression that the horizon after mixing to 18 cm meets criteria under 2. 2 If anA p is present and is not underlain by a diagnostic subsurface hor­ izon other than a fragipan, with or without an albic horizon, the Ap is considered a spodic horizon if it has the following properties: a contains more than 3% organic matter (1.7%organi cC) ; b (C + Fe + Al)* -rcla y > 0.20; c fragments of amorphous coatings or pellets can be clearly identified; d the hue is redder than 10YR and the moist color value less than 3, or the chroma is 3 or more in hues of 10YR or redder; e a 15-bar water content of <20% ; f less than 60%volcani c ash, pumice, or other pyroclastic material in the 20-200 |jntfraction . When Soil Taxonomy (Soil Survey Staff, 1975)wa s published, the criteria for the spodic horizon had been revised again. A spodic horizon is normally a subsurface horizon that underlies an O, Al, Ap or A2 horizon. Itmay , how­ ever, meet the definition of an ochric or umbric epipedon. A spodic horizon

* Pyrophosphate-dithionite extractable. 21 hasth emorphologica l orth echemica l andphysica lcharacteristic s thatar e listed below, and itshu ean dchrom aremai nconstan twit hincreasin gdept h orth esubhorizo ntha tha sth ereddes thu eo rth ehighes tchrom ai snea rth e topo fth ehorizon .Th ecolo rchange swithi n5 0c m fromth eto po fth ehor ­ izon. A thinblac khorizo ntha tha s acolo rvalu eo f2 o rles sma yoverli e thishorizon .I fth esoi ltemperatur e regimei sfrigi do rwarmer ,som epar t of the spodic horizon mustmee t oneo rmor eo fth e followingrequirement s belowa dept ho f12. 5c mo rbelo w anyA phorizo ntha ti spresent . Ifth esoi l temperature regimei scryi co rpergelic ,ther e isn orequiremen tfo rdepth . In addition, the spodichorizo nmus tmee ton eo rmor eo fth e followingre ­ quirements: 1 Havea subhorizo n2. 5 cmthic ktha ti scontinuousl y cementedb y somecom ­ binationo forgani cmatte rwit hiro no raluminu m orboth ; 2 havea particle-siz eclas stha ti ssand yo rcoars eloamy ,an dsan dgrain s arecovere dwit hcracke dcoating so rther ear edistinc tpellet so fcoarse - siltsize ,o rboth ;o r 3 haveon eo rmor e subhorizons inwhich , a Ifther ei s0.1 %o rmor eextractabl eFe , % Fe +A l atp H1 0 = 2 >0.2 ,o ri fther ei s< 0.1 %extractabl eFe , % clay % Al, t-C -^> 0.2 ,an d % clay , %Fe ^+ A l b 2 £> 0.5 ,an d % Fed +Al d c The combined index of accumulation of amorphousmateria lmus tb e6 5 or more.Th e index for each subhorizoni scalculate db y subtracting half of the clay percentage from CEC atp H 8.2 andmultiplyin gth e remainderb yth ethicknes s ofth esubhorizo n incentimeters .Th eres ­ ults for all subhorizons are then added andth etota lmus tb e6 5o r more.

Subdivisions

Order Suborder Criteria Spodosol Aquods Wet Ferrods Highpercentag e ofF erelativ et o organicC Humods Highpercentag eo forgani cC rela ­ tivet oF e Orthods Aboutequa lamount so fF ean dC 22

6.10 FAO-UNESCO

TheFAO-Unesc o system (Foodan dAgricultur eOrganization , 1974),define s the spodic B horizon similar to thati nSoi lTaxonomy .A spodi cB horizo n must have one or more of therequirement s (1,2 o r3 above )belo w adept h of12. 5cm ,or ,whe npresent ,belo wa nA phorizon .

Subdivision

Unit Subunit Podzols PlacicPodzol s thinironpa ni no rove rB horizo n GleyicPodzol s hydromorphicpropertie swithi n5 0c m HumicPodzol s containshumus ,littl eo rn oF e FerricPodzol s % freeFe/ %organi cC > 6 LepticPodzol s thin orn o Ehorizon ,n oB horizo n enrichedwit hcarbo n OrthicPodzol s otherPodzol s

Thesoi lclassificatio n systemso fCanada ,Englan d andWales ,FAO-Unesc o andUnite d Statesal lus eth erati oo f (AI +F e )* clay ,bu tth elimitin g P P * valuevaries .Bot hth eCanadia nan dEnglis hsystem sus e0.0 5 asth ecritica l value while the FAO-Unesco and U.S. systemsus e0.20 .Severa l researchers (DeKimp ean dMartel ,1976 ;Bari lan dTran ,1977 ;Aver ye tal. ,1977 ;Singe r et al., 1978;Knuteso nan dHarpstead , 1980;Stanle yan dCiolkosz ,1980 )hav e found soils which morphologically appeart ob eSpodosol so rPodzol sbu td o not have (AI +F e )^ cla y >0.20 . Avery et al. (1977)an d Adamse tal . (1980)foun dsom esoil swhic hdi dno tappea rmorphologicall y tob eSpodosol s or Podzols did have (AI +F e )-= -cla y >0.05 . DeKimp e andMarte l (1976) proposed acritica l value of 0.10 beuse dt odefin eth espodi chorizo no r podzolB horizon . Allvalue shav ea nempirica l rathertha na theoretica lbackground .Th edif ­ ferences are due to the populations ofpodzol s that occurwithi na give n country. However,value so fchemica lcharacteristic stha tar ederive d fromprocesse s thatpla y arol ei npodzolizatio nmigh tb emor egenerall y applicable.Thi s thoughti spursue d inth epresen tinvestigation . 23 7 Methods Soil samples were airdrie d andcrushe d topas sthroug ha 2 m msieve . Afterremova lo forgani cmatte rwit hH 0 ~ andwashin g freeo fsalts ,particl e sizedistributio nwa sdetermine db ysievin gth egreate rtha n5 0|j mfractio n andb ypipett emetho d forth eles stha n5 0|j mfractio n (Kilmeran dAlexander , 1949). Soil pHwa s determined using a 1:2.5 soil:water ratio andusin ga 1:2.5 soil:lN KC lratio . For some profiles (Table1 )CE C was determined atp Ho fth esoi lan d pH8. 2b y saturatingwit hBaCl_ ,exchangin gwit hM gan dtitratin g excessM g (Bascomb, 1964). Forth eothe rprofile sCE Cwa sdetermine d atp H 7.0b yleach ­ ing withNaOA c andN HOA c (modified from USDA, 1972). Air-dried soilwa s saturated withN a by the sampleswit h1 N NaOA c (pH7.0) .Exces s Na was removed by washing with 95%ethanol .Adsorbe d Na was replaced by leachingwit h1 N N HOA c (pH7.0) .N ai nth eleachat ewa sdetermine db yatom ­ icabsorptio n spectrophotometry. Totalorgani c carbon (Ct)wa sdetermine dusin gwe tcombustion .Organi c carbonwa sestimate d forsom eprofile s (Table1 )usin grapi dtitratio n (Walk- leyan dBlack , 1934). Forth eothe rprofile stota lorgani ccarbo nwa smeasur ­ ed by potentiometry (VanOostru m and Mokma, this volume). Organiccarbo n was alsomeasure d in0. 5 NNaO Husin ga 1:1 0 soil:solutio nrati o (Ch)(Schnit ­ zer et al., 1958;Schnitze ran dSkinner ,1968 ;Che ne tal. , 1978).Organi c carbon in the supernatant was determined potentiometrically (VanOostru m andMokma ,thi s volume). Alan dF ewer edetermine d insodiu m dithionite-citrate,ammoniu m oxalate and sodium pyrophosphatr e extracts (Al,an dd Fe, ;A I dan Foe ;A l andoF e, p p respectively) (USDA, 1972).Al lthre eextract so fth esam esoi lsampl ewer e made during the same 24h r period. A reference samplewa sextracte dwit h eachbatch .A l andF ewer edetermine db yatomi cabsorptio n spectrophotometry (Perkin Elmer model 460)o n the sameda ya sth eextract swer emade .C wa s determined using a carbon auto analyzer (Beekmanmode l 915B)o nth esam e day as the extracts were made. Standard deviations and meanso fth eana ­ lyseso nth ereferenc e samplear ereporte d inTabl e2 . To examine for thepresenc eo fimogolit ewit ha nelectro nmicroscope , theair-dry ,< 2 m mmateria lwa streate dwit hH_0 _ toremov eorgani cmatte r andthe nwa sadjuste d top H4 .Th e< 2 (i nfractio nwa s separatedb ysedimen ­ tation and the <0. 2 |amfractio nwa sseparate db ycentrifugation .Electro n microscope examinationwa smad ewit h aPhilip sE M40 0transmissio n electron microscope onspecimen sprepare db y allowing adro po fdilut ecla y suspension todr ya troo mtemperatur eo na carbon-coated , coppergrid . 24

Table1 Soilprofile si nthi sstud yan dth emethod suse dfo rthei rCE Can d organicC determination s

CEC OrganicC

BaCl NH.OAc Potentiome;tr y RapidTitratio n 2 4 NL-101 CDN-13 NL-101 CDN-13 NL-102 CDN-14 NL-102 CDN-24 NL-103 CDN-24 NL-103 D-ll NL-104 D-ll NL-104 F-2 NL-105 F-2 NL-105 IRL-9 NL-106 F-10 NL-106 N-l NL-107 IRL-1 NL-107 N-2 NL-108 IRL-9 NL-108 NL-2 NL-109 N-l NL-109 S-2 NL-110 N-2 NL-110 S-9 B-101 NL-2 B-101 S-10 B-102 S-2 B-102 S-14 B-103 S-9 B-103 S-15 B-104 S-10 B-104 S-16 B-105 S-14 B-105 SF-4 B-106 S-15 B-106 SK-3 S-16 USA-1 SK-4 S-17 GMC-4 SF-4 GMC-6 SK-2 GMC-7 SK-3 GMC-8 SK-4 GMC-13 GMC-4 CDN-14 GMC-6 F-10 GMC-7 IRL-1 GMC-8 S-17 GMC-13 SK-2 USA-1

Table2 Mean and standard deviation ofAI , Fean d Cextraction s fromth e referencesample ,a B21i rhorizo no fBecke tsoi lseries .

Extractant Element Mean(%) Standard Numbero f deviation determination

Dithionite-citrate Al 0.48 0.05 26 Fe 0.77 0.05 27 Oxalate Al 1.03 0.07 28 Fe 0.38 0.03 30 Al 0.38 0.02 27 Pyrophosphate Fe 0.17 0.01 27 C 1.22 0.08 24 Hydroxide C 1.39 0.11 11 TotalC C 1.90 0.04 15 25 8 Materials Forthi sstud ysoi l sampleswer eobtaine d fromthre esources : 1)te nsoi lprofile si nth eNetherlands ;si xsoi lprofile si nBelgiu m andon e soilprofil e inMichigan ,U.S.A . described andcollecte db yth eauthors ; 2)2 3soi lmonolith s inth e International SoilMuseu mcollectio nan d 3)fiv e soil monoliths collected by Russian soilscientist s forth eFirs t International Congresso fSoi lScienc ehel d in192 7 (section8.1) . Soilprofile swer edescribe d according toFA OGuideline s (FAO,1977) .Detail ­ edprofil edescription so fth eDutch ,Belgia nan dMichiga nprofile scollecte d byth eauthor sa swel la so fth eRussia nprofile s aregive ni nAppendice s1 and2 .Description so fth eprofile s fromth emuseu mcollectio nca nb eobtain ­ ed from ISM.A larg enumbe ro fth eprofile suse d inthi sstud yhav ebee nselec ­ ted forphotographi c representationo nth ecolou rplat e "Podzolsan drelate d soils",whic hi sissue d asa separat esheet .

8.1 USSRPODZO LMONOLITH S

Russian soil scientists preparedman y soilmonolith s fordispla ya tth e First International Congresso fSoi lScienc ehel d inWashingto nD.C .i n1927 . Themonolith sdi dno tarriv ei ntim e fordispla y atth eCongres s (Truog, 1928). TheU.S .Departmen to fAgricultur ereceive d custodyo fthe m andplace dthe m instorag e (Bailey, 1980). In195 4o r195 5Ro yW .Simonso nan dC.C .Nikiforof f placedman yo fth emonolith so ndispla ya tth eBeltsvill eAgricultura lResearc h Centre. Ina nattemp tt opreserv e thecollection ,th emonolith swer etreate d withpoure dviny lresi n (laminaethinne dwit h styrene).The ywer eo ndispla y until 1961 and then returned to storage. In 1979 themonolit hcollectio n wasdonate dt oth e International SoilMuseu m andi sno wknow na sth e "Glinka Memorial Collection". Soil samples fromsom eo fth emonolith swer eremove d andstore dwit hth eU.S .Nationa l SoilSurve yLaboratory .A tentativ eplace ­ ment in theU.S . soil taxonomie systemwa sals omade .Afte rth emonolith s arriveda tth e International SoilMuseu m in1980 ,thos emonolith swhic hha d been tentatively classified asSpodosol swer eselecte d forstud y (Monolith numbers 4, 6, 7,8 and 13assigne db yC.C .Nikiforof f andnumber s24 ,26 , 27, 28an d3 3 assignedb yRussia nsoi lscientist s forth eCongress) . Briefdescription so fth efiv emonolith s asthe ywer egive ni nth eorig ­ inalpublicatio n (Anonymous,1927 )follow . Monolith2 4 -Peat y -podzolize d -gle ysoi lo nsand yloam .Pine-fores t witha nundergrowt ho fVacciniu mmyrtillu san dmoss-cover . Leningrad -Okht aforestry . Monolith2 6 -Podzolize d soilwit hortstei no nheav y .Fores tmeadows . Plainsout ho fPsko vgvt .Velikiy e Lukidistrict . 26

Monolith2 7 -Podzolize d soilwithou tortstei no nboulde r loam.Skir to f deciduous forest.Leningra dgvt .Leningra ddistrict . Monolith2 8 - Sandy-loamy podzol.Meado w over the terrace ofSlaviank a River.Leningra d gvt.Trots kdistrict . Monolith3 3 - Sandy-loamy podzol. Fir-forests with moss-cover. Over a slopetoward sa swamp .Tve rgvt .Rzhe vdistrict . Briefdescription so fth efiv emonolith s asprepare db yC.C .Nikiforof f (Bailey,1980 )follo w (numberi nparenthesi s arethos e assigned inth eorig ­ inalpublication) . MonolithGMC *4 (24) -Podzolize dpeaty-gle ysoi lwit ha distinc tbleache d Ghorizon .Develope d underpoorl ydrained ,predomin ­ antlyconiferou s forest (spruce,pine ,wit h birch). Okhta forest,nea rLeningra d (about60°N , 30CE). MonolithGM C6 (26 ) -Podzoli c soilwit hortstei nfro mVelikiy e Lukiregio n (about56°N , 30°E). MonolithGM C7 (27 ) -Podzoli c soilwithou tortstei ndevelope d fromglacia l drift (boulder loam). Sablino,nea rLeningra d (about 60°N, 30°E). MonolithGM C8 (28) - Sandypodzo lo nth eterrac eo fSlaviank aRiver ,Gat - chinadistrict ,nea rLeningrad . MonolithGM C1 3 (33) - Sandy podzol under sprucefores twit hhypnu mmoss . Nearly flat area nearth esphagnu mpeat-bo g inth e Rzherdistric to fKalini noblast . * (GMCdenote sGlink aMemoria l Collection)

Becauseviny lresi nha dbee npoure do nth efron to fth emonoliths ,soi l samples forchemica l andphysica l analysescoul dno tb etake n fromth efron t side. To obtain sampleswhic hwer eno taffecte db yth eviny lresin ,i twa s decided to remove material from thebac k of themonoliths .T oobtai nth e samples, 2.5 cm thick styrofoamwa scu tt ofi tinsid eth emonolit hbo xan d placed on the fronto fth emonolith .Th e fronto fth ebo xwa sreplace dan d thebac ko fth ebo xwa sremoved .Th estyrofoa m expanded andpushe d themono ­ lith out thebac ko fth ebo x 1t o1. 5 cm.Th ehorizon swer eidentifie dan d described. Because some ofth eviny lresi nma yhav eru nalon gth eside so f thebo x when itwa spoure do nth efron to fth emonolith ,abou t1 c mthick ­ nesso fth esoi lwhic hextende dbeyon dth eside so fth ebo xwa sremove dan d discarded.Th eremainin gsoi lwhic hextende dbeyon d thebo xwa sthe nremove d forlaborator yanalysis . Classification ofth esoil sstudie d accordingt oth eFAO-Unesc oSyste m (FAO, 1974)an dSoi lTaxonom y (SoilSurve y Staff,1975 )i sgive ni nTabl e3 . 27

Table 3 Classification of

Profile Country Number

NL-101 Netherlands OrthicPodzo l TypicHaplohumo d NL-102 Netherlands GleyicPodzo l AerieHaplaquo d NL-103 Netherlands GleyicPodzo l AerieHaplaquo d NL-104 Netherlands OrthicPodzo l TypicHaplohumo d NL-105 Netherlands OrthicPodzo l TypicHaplorthod/Haplohumo d NL-106 Netherlands CambicArenoso l SpodicUdipsammen t NL-107 Netherlands OrthicPodzo l PlaggepticHaplohumo d NL-108 Netherlands HumicPodzo l TypicHaplohumo d NL-109 Netherlands OrthicPodzo l AquicHaplortho d NL-110 Netherlands HumicPodzo l TypicHaplohumo d B-101 Belgium OrthicPodzo l TypicHaplortho d B-102 Belgium GleyicPodzo l AerieHaplaquo d B-103 Belgium GleyicPodzo l AerieHaplaquo d B-104 Belgium GleyicPodzo l TypicHaplaquo d B-105 Belgium GleyicPodzo l AerieHaplaquo d B-106 Belgium GleyicPodzo l TypicHaplaquo d SER-3 Switzerland Ranker LithicCryumbrep t SER-10 Switzerland DystricCambiso l TypicDystrochrep t CDN-13 Canada Dystric TypicFragiochrep t CDN-14 Canada GleyicPodzo l TypicHaplaquo d CDN-24 Canada DystricCambiso l Dystric Cryochrept D-ll Germany DystricCambiso l TypicDystrochrep t F-2 France DystricCambiso l TypicDystrochrep t F-10 France CambicArenoso l SpodicUdipsammen t IRL-1 Ireland CambicArenoso l SpodicUdipsammen t IRL-9 Ireland PlacicPodzo l TypicPlacohumo d N-l Norway CalcaricRegoso l TypicCryorthen t N-2 Norway GleyicPodzo l PlacicHaplaquo d NL-2 Netherlands CambicArenoso l TypicUdipsammen t S-2 Sweden Dystric Cambisol TypicDystrochrep t S-9 Sweden OrthicPodzo l Tupic Cryorthod S-10 Sweden OrthicPodzo l TypicCryohumo d S-14 Sweden CambicArenoso l TypicCryopsammen t S-15 Sweden HumicPodzo l TypicCryohumo d S-16 Sweden DystricCambiso l Dystric Cryochrept S-17 Sweden OrthicPodzo l TypicCryortho d SF-4 CambicArenosol / SpodicUdipsamment / OrthicPodzo l TypicCryortho d SK-2 Sarawak (Mai.) HumicPodzo l Tropohumod SK-3 Sarawak (Mai.) CambicArenoso l TypicTropopsammen t SK-4 Sarawak (Mai.) CambicArenoso l TypicTropopsammen t GMC-4 Soviet Union GleyicPodzo l TypicCryaquo d GMC-6 Soviet Union OrthicLuviso l TypicGlossoboral f GMC-7 Soviet Union OrthicLuviso l AquicCryoboral f GMC-8 Soviet Union OrthicPodzo l TypicHaplortho d GMC-13 Soviet Union GleyicAcriso l AquicHapludal f USA-1 United States OrthicPodzo l TypicHaplortho d 28 9 Results and discussion 9.1 PARTICLESIZ EDISTRIBUTIO N

The particle size distribution of the soils is given inAppendi x3 . The moist color of the horizons of theprofile s notdescribe dpreviousl y areinclude d inAppendi x 3.Th esoil s fromth eNetherland s andBelgiu mwer e allsand yo rth eprofil ewa sdevelope d inth esand yportion . Inth eSovie tUnio nprofiles ,podzol sdevelope d insand ymaterial san d argillic horizons developed in finer materials. Spodichorizon s tendedt o develop in coarser textured material,whil e non-spodichorizon s tendedt o develop infine rtexture dmaterial .

9.2 CARBONAN DSESQUIOXIDE S

Selected chemical properties ofth esoil sstudie dar egive ni nAppen ­ dix4 . With the exception ofth eSarawa k soils,dithionite-citrat e extracted themos t iron andpyrophosphat e extracted the least from agive nsample . This agreeswit hth egenera l theorytha tdithionite-citrat e extractscrystal ­ linean damorphou s formso firon ,oxalat eextract ssom ecrystallin e andal l amorphous iron andpyrophosphat e extracts the ironwhic h is organically bound. The three extractants,pyrophosphat e excepted, areno ta sspecifi c foraluminum . Inmos t of the soils there is little difference betweenth eA l and o Al contents.Thi s indicates that in these there is little amorphousA l whichi sno torganicall ybound . Inth eDutc han dBelgia nsoil sth eAl, ,A l and Al contents are similar. In several of the other soilsAl ,content s P d are significantly lower thanA l contents.Thi si sno tsurprisin g sinceA l isno taffecte db yreducin gagents . InA horizon s andsom eE horizon spyrophosphat e didno textrac tal lo f theorgani c C.Root spresen ti nthes ehorizon s areno textracte db ypyrophos ­ phate. Inmos t B horizons ofpodzol s the C. andC contentswer esimila r indicatingther e isrelativel y littlecontributio no forgani cC fromroots . Carbon/aluminum, carbon/ironan dcarbon/sesquioxide s atomicratio shav e been calculated using total carbon, sodium hydroxide-extractable carbon, pyrophosphate-extractable carbon and sesquioxidesextracte db ydithionite , oxalate andpyrophosphat e (Appendix4 an dFigure s 1t o8) . TheC/Al ,C/F e andC/Se satomi cratio sar ecombine d ingraph stha tsho w bothvariatio nwit hdept han dwithi nhorizons .C/A lgraph sar egive ni nde ­ tailbecaus eth eC/A l ratiosprove dmos tusefu l fordistinctio nbetwee neluv - ialan dilluvia lhorizons .I ncas eo fratio swit hrespec tt opyrophosphate - extractable matter,B horizons arespli tu pi ndetail ,whil e forth eothe r extractants B horizons have been grouped into oneba r forth eB han don e 29 for theB s horizon.C/F e andC/Se sgraph shav ebee ncondense d inthi sway , and C,/Fe and C,/Ses ratios are notshow ni nth egraphs .Orthic/Humi can d GleyicPodzol sar etreate d separately forC/A lan dC/Se sratios ,whil ethe y havebee ncombine d inth eC/F e graphs inorde rt oallo wdistinctio nbetwee n thesegroup so nth ebasi so fC/F e ratio.Som eatomi cratio sar eles saccurat e than others because the values forA lo rF ear enea rth edetectio nlimit . For example,ratio s forB horizon s tendt ob emor eaccurat etha nthos efo r Ehorizons .I nth efigure sth eratio sobtaine dwit hsesguioxid econtent so f 0.02%an dlowe rhav ebee nunderlined .

9.2.1 Carbon/aluminum ratios

TheC/A l atomicratio sfo rth ethre eorgani ccarbo nfraction s (C.,C ., C )an d the three aluminum extractions (Al.,A l ,A l )al ldecreas ewit h p dop depth, i.e. fromA h to C horizons (figures 1t o 4). Thistren dhold sfo r allpodzol s inthi sstudy .

Pyrophosphate aluminum

Inth eHumi c and Orthic Podzols from theNetherland s andBelgium ,a C./Al ratioo fabou t4 5give sa nalmos tperfec tseparatio nbetwee neluvia l and illuvial horizons.A han dE horizon shav eratio shighe rtha n45 ,whil e allB horizon shav eratio sbelo w45 .Ther e isonl yon eE horizo nsampl ewit h avalu eles stha n4 5tha toverlap swit hthos eo fth eB horizons .Thi shorizo n isfro mprofil eNL-10 8an dma yhav eha dsom eB horizo nmateria lmixe di nit . C./Al ratiosd ono tgiv ea sgoo da separatio nbetwee neluvia lan dil ­ luvial horizons;th e ratioso fE an dB horizon soverla pbetwee nth evalue s 18an d35 .Al lB horizon shav eC./A l ratiosles stha n3 5bu tfou rE horizon s h p alsohav evalue sles stha n35 .Tw oo fthes eE horizon s arefro mprofil eNL-10 8 anda thir dha s lesstha n0.02 %Al . C/A l ratiosgiv egoo dseparatio nbetwee neluvia l andilluvia lhorizons . The ratios for B horizons were allles stha n4 0bu tthre eE horizon sals o had ratios less than 40.Tw o ofthes eE horizon swer e fromprofil eNL-10 8 andth eothe rha sonl y0.01 %Al . Inth e Dutch and Belgian Gleyic Podzols,th eC./A l ratioals ogive s goodseparatio no feluvia l andilluvia lhorizons ,a ta rati oo fapproximate ­ ly 40.Onl y theA h and Ehorizon s ofprofil eNL-10 3hav eratio sles stha n 40,bu tthes ehorizon shav ebee ncovere db ymor erecen twind-blow n sandan d mayhav ereceive d someilluvia l sesguioxides fromthi ssan dcover ,wher epod - zolization isals oactive . The C./Al ratio doesno tgiv ea goo dseparatio ni nth eGleyi cPodzo l profiles.Man yA han dE horizon shav eratio s inth esam erang ea sth eB hor ­ izons. 30

2 5 10 20 50 100 400 I I I I I I I I I I I I I I I I I I I 1 4 4 23- - -9 9 - Ah 5 5 8 — E ct/>'A L 21—6— 7— 71 -3-8 4- 2 Bh 8-7-69 45l-3 83, -8

BS 9—7—1—83134 8 55—2

BC -3 9-3-4o-2 5

C 3 50 9 7 9—9 4 8 fiber-—1 -5—1 I I I I I I I II I I I I I I I I I II

Ah 84.4- —2315-9-

E C,/AI0 5 6-7 4-37—8 8

Bh 7-6—94—1 8-3-à 3 Bs —| 796 3-8 9^8-5-5 1 1

BC 34%6—8—15 6 3 C 9 47-5, 8 fiber- 1 5 1

I I I I I I I I I I I I I. I I I I I I Ah —, 4-8 4-23-5—1—9-

E — C./AM I JR — t//' 'p -J5-6 7—7—|. 7- 4 8- Bhl,2- 7—6 9-4 5- Bh3,4- -1 8

Bsl - 9 6 1-19-8—5—23

Bs2 - 1-3—8-5

BC - 1-3—69-g3-425

C -7- -96|45-8 f 1ber—I

I I I I I I I M I I I L I I I M I I I

2 Ah —| 48-4 j3 9 -5 —

E - Cp/Alp 6 -!?1 766 7—3 2, 8 -18~

Bhl,2 — 7-6 9 4 5-V-1—8 egend Orthic/Humic Podzols Bh3,4- Vi—8 =N L 101 — 2 8 NL 104 _ Bsl - 7-6 3-4-1 9-8- ' = NL 105 Bs2 - 9 181 = NL 106 — = NL 107 _ BC - 1 3-^6-e*- = NL 108 C - -3-6 5-5 9-9 = NL 109 — 8 =N L 110 fiber— 9 =B 101 _ 1 I I I I I II I I I I I I I I I I I II 2 3 4 5 7 10 20 30 40 50 70 100 200 300 400

Figure1 . c/Al ratioso fOrthi c andHumi cPodzol s 31

20 50 100 200 400 I I I I I I I I I I I II I A Ah G— I -% E C,/Ald GD—J. B C-A- -F A

Bh n.nn D_E £C A A A UUUE GEEA FB - B G Bs A-A- G- E B BC G ' " C B-A-A G

fi ber-

I I I I I I I II I I I I I I I I I I I

Ah CB

E C,/AI0 "ErT-A- -F A B — C Bh D-DDE D- QM C—^F^J A

Bs A-AG B BC G" -F F C -A-A—G- fiber —I E-D

I I I I I I M I I I Mill A B Ah G I.'- "CG E Ct/AI G F-C*- -F A- B,E— C " D' Bhl - D-G—E B A G Bh2 - D CG-E- A Bh3 -

Bh4 -

BC G A C •> C A A—B- -G—C -D fiber - E—D

I I I M I II I I I I I I I I I

Ah

E Cp/AIF 'Sf-A-A- B_ E Bhl - -C-k-A# Legend Bh2 - D—C Gleyic Podzols —£+ A = NL 102 Bh3 - t3_p B = NL 103 b Bh4 - D C = B 102 AA-CQ-E D = B 103 BC -F-F E = B 104 B _ r F = B 105 C G - B 106 fiber- E—D I I I I I I I I I I I I I I I II I I 3 4 5 7 10 20 30 40 50 70 100 200 300

Figure2 . C/Alratio so fGleyi cPodzol s 32

5 10 50 100 200 400 I I I I I M I I 1 Ah 84—4-3 2 - -9-5

A 6 21- -6—1-5 8-4 E Ch/ 'd 3 Bh 79-64 5 -1-18— 28

! Bs -7-1-f-18 ^-8—18- _2 BC 1—9 8—43-6^ 5

C -9-9—7 4-3-g fiber- 1

I I I I I I I I I I I I I I I I

Ah 8 4-4 3-1-

Al _5 4-|_7-8- E 8-5-5- -3-2

BC 4g38-66—3-5 2

C Q^—7 536 fiber- 1 5 1

I I I I I I I I I

Ah 48 34- 5-9 -18_ E - Ch/Alp -1 56 -7V 2—4— -8— 89 Bhl,2- V-V-1- 28 Legend Orthic/Humic Podzols -1—8 Bh3,4- 1 = NL 101

Bsl - 7-6-1-J—8-5- -3-2 2 = NL 104 3 =• NL 105 Bs2 - -a5 4 - NL 106 5 = NL 107 BC - 1-8-9-6-4§—5 2 6 6 = NL 108 c _j., -9—9- -43g-6 7 = NL 109 8 = NL 110 fiber—1 -1—5 9 = B 101 1 I I I I I I I I I I I I I I I I I I I 2 3,45 7 10 20 30 40 50 70 100 200

Figure 3. Cv./Alratio so fOrthi c andHumi cPodzol s 33

1 50 100 400 I I I I 1 I M I 1 I I I I I I I I

Ah —, — E-C B-A

Ch/Ald -FA E — -E C- Bh vr &-*-^ AB % Bs 'G G B BC G- -C-F- B AC-A- -D C ED fiber-

I I I I I M I I I I I I I I I I I I I

Ah —i 0 A E B E - C /A,o F- FA — h "PE C Bh — DD ^DC§-EAAEFB A Bs — *~% BC — c V

fiber— ' E-D

I I I I I I I I I I I I I I I I I I I I

G_E_C *

F - Ch/AI, —G—n A . E— B Bhl — DC-G—L Legend Bh2 — C D—G-E*: Gleyic Podzols Bh3 - G-D-E F-A A = NL 102 B » NL 103 B 8h4 A-E „ C « B 102 B D = B 103 BC - ""G0" E - B 104 C -Ag- F = 8 105 |C G = B 106 E—D fiber-l I I I I I I I I I I I I I M ! I I I I I 1 2 3 4 5 7 10 20 30 40 50 70 100 200 300 400 Figure 4. C./Al ratios of Gleyic Podzols 34

TheC /A I ratios,however ,giv egoo dseparatio nwit honl yon eoverlap ­ ping value but in this E horizonth eA l contentwa s 0.02%.Th erati ofo r separatingE an dB horizon si sabou t30 .

Dithionite aluminum

InHumi c andOrthi c Podzols from TheNetherland s andBelgium ,C t/Al. ratiosgiv ea fairl yaccurat eseparatio nbetwee nE an dB horizons .Th ebrea k isa ta rati oo fabou t40-45 .Th eC./Al ,ratio ,however ,give sa broa dover ­ lapbetwee nilluvia l andeluvia lhorizons . InGleyi c Podzols,th eseparatio ni sno ta sgoo da si nth edrye rpro ­ files. Only after elimination ofles saccurat eC./A l,ratios ,i sa separa ­ tionvalu eo fabou t4 0obtained .Th esam ehold stru e forth eC./Al .ratios . After elimination of lessaccurat eratios ,th eseparatio nvalu eca nb ese t atth ehighes trati ofoun di nth eB horizons ,30 .

Oxalate aluminum

Inth eDutc han dBelgia nHumi can dOrthi cPodzols ,C /A l givesa goo d separationbetwee nE an dB horizon s atvalue sbetwee n4 5an d55 .A smentione d earlier,th eonl yoverlappin gE horizo nsampl eprobabl yha sadmixture so fB horizon material.Th e C./Al ratiosals ogiv ea goo dseparation ,a tvalue s 35-40. Theoxalat ealuminu m inGleyi cPodzo lprofile sshow sth esam eproblem s aswit hdithionit e aluminum.C./A l givea fairl ygoo d separation atvalue s between30-35 ,whic hi simprove d aftereliminatio no fles saccurat eratios . TheC./A l ratioso nth eothe rhan dd ono tgiv ever ygoo dresults .Th ehigh ­ estaccurat evalu e inth eB horizo ni s4 0bu tther ear eman yA han dE hori ­ zonswit hvalue slowe rtha nthis .

The Cfc/Alratio s areslightl yhighe rtha nC./A l andC /A lratios .Th e C./Al ratio gives goodseparatio n inbot hHumic/Orthi cPodzol san dGleyi c Podzols.Moreover ,th eseparatio nvalue sar esimila rfo rbot hgroup sstudied . TheC /A l ratio alsogive s fairt ogoo dseparatio nbu tth eseparatio nvalu e is4 0fo rth eHumic/Orthi cPodzol san d3 0fo rth eGleyi cPodzols .

9.2.2 Carbon/ironratio s

TheC/F e atomicratio sfo rth ethre eorgani cC fraction san dth ethre e ironextraction s allten dt odecreas ewit hdepth ,i.e . fromth eA ht oth eC horizons forth eHumic ,Orthi c andPlaci cPodzol sbu tno tth eGleyi cPodzol s (Appendix4 and Figure 5). Noneo fth eC/F e ratiosgive sa goo d separation between eluvial and illuvial horizons in theDutc han dBelgia nsoils .Th e ratios behave erratically, buti nsom esoil sther e isclea rseparatio nbe ­ tweenE an dB shorizons . 35

The Gleyic Podzols without gleymottle s havehighe rC/F e ratiostha n theHumi c andOrthi cPodzols .Therefore ,thes eratio sma yb euse d todistin ­ guishbetwee n those Gleyic Podzols thathav en omottle so firo ncompound s belowth eB horizon s andhav ever y lowiro ncontents ,an dHumod s andOrthod s which lack adistinc tB shorizon .Th eC /F e ratioso fB horizon sgiv eth e best separation between thesetw ogroup so fPodzols .A C /F e ratioo f15 0 canb e used to distinguishbetwee n theGleyi cPodzol s (higherratios )an d the Humic and orthic Podzols (lower ratios). There are ratios from only threeprofile swhic hoverlap ,tw oar eGleyi cPodzol san dth eothe ri sa Humi c Podzol.Th esample s fromtw oo fth eprofile shav e low ironcontents ,0.03 %o r less. The thirdprofil e is aGleyi cPodzo lwhic hi sintergradin gt oHumi c Podzol. All Gleyic Podzols inth e ISMmonolit h collection had C/F e atomic p p ratios of B horizons greater than 150.Onl y one of theHumi c andOrthi c Podzols had aC /F e ratioo fB horizo ngreate rtha n150 .Th erati oo fth e P P Bhlhorizo nwa s15 9bu ttha to fth eBh 2wa sonl y24.6 .Consequently ,Gleyi c Podzols without gleymottle smigh tb edefine da shavin gratio shighe rtha n 150i nal lsubhorizon so fth eB ,whil eOrthi c andHumi cPodzol shav ea rati o lowertha n15 0i na tleas ton esubhorizon . Theothe rC/F e ratiosgiv eseparatio nbetwee nGleyi cPodzol san dHumi c andOrthi cPodzol sa tvalue so f11 0t o150 .Ther ei ssom eoverlap ,especial ­ lyi nth eB hhorizons .

9.2.3 Carbon/sesquioxide ratios

TheC/Se satomi cratio s forth ethre eorgani cC fractionsan dth ethre e aluminum and iron extractionsal ldecreas ewit hdepth ,i.e . fromth eA ht o the Chorizon s (Appendix 4a,4b and Figures6-8) .Thi stren dhold s foral l Podzols included inthi sstudy .C./Ses , ratioshav eno tbee ninclude di n 2 h' d,o thefigures .Fo rvalues ,th ereade r isreferre d toAppendi x4 .

Pyrophosphate sesquioxides Noneo fth eC/Se s atomicratio sgive sa goo d separationbetwee neluvia l andilluvia lhorizon si nth eDutc han dBelgia nsoils .I nth eHumi c andOrthi c Podzolsth eC/Se s ratiogive sseparatio nbetwee nth eeluvia l and illuvial horizons atvalue s of 25-35. The highestrati oi nth eB horizo ni s3 5an d the lowest in the E horizon is 25.Th e C,/Ses ratio showsa noverla po f values forE and B horizons.Als oth eC /Se s ratiossho wsom eoverla po f values forA han dE horizon swit hB horizons . Inth eGleyi cPodzol sC/Se s ratiosgiv efai rseparatio n ata valu eo f 35.Th eoverlappin gvalue s fromth eE horizon s are forsample swit hver ylow , lesstha n0.02% ,A lan dF econtents .Th eoverlappin gvalue s forA hhorizon s are fromprofile sNL-10 3an dB-103 ,whic hhav e sandcover san dth eA hhorizon s 36

1 5 10 50 100 200 400 800 I I I I I I M I I I I I I I I I I I I I _9_5_ Ah _, -D'«14-4-3 2 8_c. FG C Fe -2 „-9 — 5 .4 7 _8. 8 t/ d C B - D E" A —6? ^r E F -ÀEG 9 1 3 1 5 7_82_ 6 __ 8 "E Bhl ,2 CC B -^ E ABDG - Bh3,4 CC b D—E 7_9_6_3g2 54 Bsl -

9_ 1 5_34_8_ _ Bs2 - 19 3_ _2 3 4gB 56 BC - -AG

C -79-9 -E_3_9_F4_ _8_5 ~G~" f i ber—'

I I I I I I I I I I I I I I I I

Ah —, 5.B_9_ . _5_4 4_2_18_ D "FG* C e E „„95_„1_ —3_144_2 _7 8_ |Z|_ tA p BC D-- A fi

Bhl,2- 9_3_1_5. _8 4 6 64_ -f)D BC —Q- -DF- —ABG Bh3,4 ~C~ —4B- Bsl - Ig4_7_8.

Bs2 . 51_4

BC -6_3 -i—%\-*- "B"G" C - 9-g7- _ _44-9_6_8_ 3. E S "B-C- flber- 1 1 J Ç I I I I I I I I I I I I I M I I I I I |

Ah 5 _4 .4 .3-J8- B 2D -E FG — E C,/Fe0 9_5l -!- 76 78 — - DC -M- A —ABEFG Bhl,2 Legend .3—1. 7 8 -H- -B D- "E— Ç F pD-C |BEG Bh3,4- Orthic/Humic "C_DC" "BE — P0d20ls Bsl - 1 = NL 101 -9 &-

Bs2 - 2 = NL 104 -1_54_ -83 3 = NL 105 BC - .1. 4 - NL 106 3 6 -AFG C - 9_9 .9 4- _3 6_ -S — 5 « NL 107 CFG fiber- 1 6 = NL 108 7 . NL 109 , | | | | | | | I I I I I I I I I I I I I I I I 8 = NL 110 Ah -i £ 5_Vl-32 8_ B —G_G

E - Cp/Fep 9C5_1B1344_D 2.7Ä -§7- 8_ ADG Bhl ,2— 9_3_ -5812- -D748DCB—C- _6 6_ - ABG Bh3,4- Gîeyic Podzols -C.-Q- -4-B- Bsl - A =N L 102 -IP- B =N L 103 Bs2 - -5_4 8_3_ C =B 10 2 2 63 _ BC - D =B 10 3 4e 5 3 - 6 A g E=8 10 4 h u a C -7_9_ _4_4. -86_ 3 9_ F =B 10 5 -- 5 B C~ ü fiber- J G =B 10 6 D "D I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 2 3 4 5 7 10 30 405 0 7010 0 400 100 200 300 600 800

Figure 5. C/Fe ratios of Orthic/Humic and Gleyic Podzols 37

1 50 100 400 I I I I I I I I I I I I I I I Ah —| 5—9 4-432|

E — Ct/Ses -3-4—6 — £74 8

Bh _ g5-1—8-2 8

Bs 9 1-1-6-9-34^-24 8

BC —I 11—9— 3 2-a—~6-6 5

-3,-4-6-

fiber—I 1- -1-5

I I I I I I I I I I I I I I I I I

Ah -• -94 4-5 2-1

E _ Ct/Se 6 5 6 *7 1-7- -8-81—2

Bh - 1 I ? 9-7—e 3 58-21 8

Bs - 8-7-e1-9-1-£-6|2 8

BC 9 1-446_283_5

C -7 4-|—5 3 8 T 1 5 1 fiber—I I I I I I I I I I I I I I I I I I I

Ah — 5- -9 44-8 <3 1 1 E — ct /Sesp 6-6,- -6 — -3-7-2-4 81 9 Bhl,2— 79— 6 -53- 1- -2-Î-8 Bh3,4— 8— -1— 8 1 — Bs — 9—v-i-is^l 1 - BC -, 9-3—3| 4-6 1 - C - 7 4 1 9 —9 9-6 -3-58 - fiber— 1 1-5 1 —

I I I I I I I I I 1 1 I I I I I I I

Ah —| 5— 9-4-458--132

E - cp/Ses p 7 3 T —2- -1 8 Legend — '6 '\ Orthic/Humic Podzols 3 Bhl ,2 — —21- 8 — 9?—6- "5 1 = NL 101 Bh3,4- 8— -1 -8 2 = NL 104 _ 3 = NL 105 Bs _ 9 1-6_J>5342 4 = NL 106 — 9 5 • NL 107 BC - 1- 9-3-6364_ 25 6 « NL 108 C — 7- -34l8 9 7 = NL 109 — 9- 8 = NL 110 fi ber — 9 = B 101 I I I I I ! I I I I 1 1 I I I I I I 1 1 1 1 2 345 7 10 20 30 40 50 70 100 200 300 400 Figure 6. C/Sesratio so fOrthi c andHumi cPodzol s 38

1 5 10 50 100 200 400 I I I I I I M I I | I I I I I I I D- Ah -, I Ct/Se E_ E BD -D A-F-

Bh CSF-S-A^-DE-Ä-E E E-F Bs H F-B- -A A BC

C -I F- -B

C f iber— D I I I 1 II II II I I I I I I I I I

Ah —, -E-F E Ct/Ses0 D-!C-I-I- -A EE Bh CBCCDC - BB£ - -ED-f-E E-E-F F_ B -A A EF B-

D-C

I I I I I I I 11 I lil I I I I I I I I I

Ah -E—F

E Ct/S( DB C -E—D- -A I Bhl C—B-BDA—F—E D Bh2 - C' B E Bh3 - DB. CC Bh4 - EE-F F BC - B C -B-

fiber D—C I I I I I I M I I | I I I I I I I I I I I

B- -D E F S C-p/n/Ses"pr C-g-E—A— E- legend Bhl - t-A—F Gleyic Podzols — A = NL 102 Bh2 C -B E D - B • NL 103 ~-B_. —E C = B 102 — Bh3 CD D = B 103 Bh4 EE-F E = B 104 — F = B 105 _ BC FB G = B 106 C -E F- -B C

fiber—I D—C 1 I I I I I I I I I I I I I I I I I I I I 2 3 4 5 7 10 20 30 40 50 70 100 200 300 400

Figure7 . C/Sesratio so fGleyi cPodzol s 39

6 8 10 12 14 16 20 meq/gramC p I I I I I I I I I I 1 -4—45 32—8 Legend DB-EF Orthic/Humi c G Podzol -52'578/7- 6 1 — D 1 NL10 1 CG_D.FE_A E?—-A 2 NL10 4 9 3-7-5-8-6 1 3 NL10 5 CtFB-CD - 4 NL10 6 5 NL10 7 6 NL10 8 E-GC E D 7 NL10 9 CECsoil/cp B 8 NL11 0 9= 101 B-B-D—C C Gleyic Podzols 9e—7 54-3-28- E—F— E A = NL 102 B = NL 103 3-9- 5 C -B 102 8 D = B 103 34 E B 104 BC -V 8 2- F B 105 1 — A- -BG- -F A G B 106 3 5. -9 8 — F —

DC

—5 236 8- "l DR Fr- 2 7 7 8- B 6—4—9 8 6 D-D- -C G-A F- E —

2 '5—8-9-^-6-1 F—D AB G—E

8- -C B—E-E CEC8.2/Cp

8— -4 1- Bh3,4- D C-C-B- —B

-3 6 '952- Bsl - F—E-

5-3-4- -9-8

38 -2 5-6- -9-

-3 49 7,8 — E,F,G —

D C I I I I I I I 10 12 14 16 20 meq/gram Cp

Figure 8. Depth functions ofCE C .-,an dCE C soil 8.2 40 mayhav ereceive d someilluvia lsesquioxide s fromthi smaterial .Th eC./Se s ratiogive sseparatio na ta valu eo f2 5afte reliminatin g lessaccurat eval ­ ues.Th eC /Se s ratiogive sseparatio n atapproximatel y thesam evalu eafte r eliminating theles saccurat evalues .

Dithionite sesquioxides

There isconsiderabl e overlap ofC/Ses ,ratio sbetwee nth eAh ,E an dB horizons. Inth eHumi c and Orthic Podzols the C./Ses.an dC./Ses ,ratio s t d h d givepoo r separationa tvalue so f25-30 .Wit hbot hratio sther ei sconsider ­ ableoverla po fvalue s inth eE an dB horizons . In the Gleyic Podzolssimila rresult swer eobtained .Bot hth eC /Ses , ratioan dth eC./Ses .rati ogiv epoo rseparation . Oxalate sesquioxides

Inth eHumi c andOrthi cPodzol sth eC /Se s ratiogive s fairseparatio n atvalue s of ±30 .Th eoverla p ofvalue s fromA han dE horizon swit hthos e fromB horizon soccur si ntw oprofiles :NL-10 7an dNL-108 .Profil eNL-10 7ha s a plaggen epipedon andsom esesquioxide sma yhav eeluviate d fromabov ean d accumulated in the Ehorizon .Th eE horizo no fprofil eNL-10 8ma yhav eha d some admixture ofB horizo nmaterial .Th eC./Se s ratiogive s fairsepara ­ tion atvalue s of 25-30. Most ofth eoverlappin gvalue s fromth eA han dE horizons areles saccurate . Inth eGleyi cPodzol sth eC./Se s ratiosgiv e fairseparatio no feluvia l and illuvialhorizon s atvalue so fabou t35 .Th eE horizon swit hvalue swhic h overlap the B horizon range have either lowaluminu m andiro ncontent so r have a sand cover. TheA h horizonwit h a ratiowhic hoverlap swit hth eB horizonrang eals oha sa san dcover .Th eC./Se s ratiosgiv epoo rseparation . Mosto fth eoverlappin gvalue sar efro mprofile swit hlo waluminu m andiro n contents inth eE horizo no rwit ha san dcover .

9.2.4 Discussioncarbon/meta l ratios

Theseparatio nvalue s foral lcarbo n fractions andal lsesquioxid eex ­ tractions found inDutc h and Belgian soils alsohol dtru efo rmos to fth e podzols inth e ISMmonolit hcollectio n (Appendix4b )an d forsevera lrepor ­ ted inliteratur e (Appendix 5). Forth esoil stha td ono t fitth eabov esep ­ aration,th eC/A lratio si nth eB horizon sd ono texcee dth eseparatio nval ­ ues,bu tth eC/A l ratioso fth eE horizon s arelowe rtha nthes evalues .Pro ­ fileF-1 0i sth eonl yprofil ewher eC/A l ratioso fth eB horizo nexcee dth e separationvalue .Root si nth eB horizo nma yhav ecause dth ehig hC./A lratio . It is likely that the highest atomicratio si nth eB horizon ,o rth e separation values, indicate the minimum amounto f sesquioxides necessary 41 for theprecipitatio n of the complex. Inth eHumi c andOrthi cPodzol sth e C/Alseparatio nvalue s areabou t4 5 forC/Al , about3 5fo rC./A l andabou t 40 forC /Al . Inth eGleyi cPodzol sth eC/A l separationvalue sar eabou t4 0 forC t/Al,3 0fo rC h/Alan dabou t3 0fo rC /Al . C/Al andc/Se sratio si nE an dB horizon s tendt oincreas ewit hpodzo l development..Fo rth eE horizon s itindicate s ane tremova lo fsesquioxides ; for theB horizons it is accompaniedb ya cleare rseparatio no fB han dB s horizons.Becaus eno tal lsesquioxide s inth eB shorizo nar eboun dt oorgani c matter (comparedithionit ean dpyrophosphat e extractions)thi simplie stha t theC/A l andC/Se sratio si nth euppe rB hhorizon so fwell-develope dprofile s are more characteristic forth eminimu m amounto fsesquioxide srequire dt o precipitate organic matter than ratios obtained from B horizons of less strongly differentiatedprofiles .Consequently , the highest ratios inth e B-horizon shouldb euse d tose ti tof fagains tth eE horizon . The lowest C/Se s atomicratio si nth eB horizo nshoul d indicateth e P P maximum amount of sesquioxidestha torgani cmatte rca nbind ,provide dtha t pyrophosphate does not extract sesquioxides that areinorganicall ybound , sucha sF ei noxyhydrate s andA li nallophani ccompounds .I nth eGleyi cPod ­ zols fromth eNetherland s andBelgiu m allB horizon sha dratio sgreate rtha n 6.0. Inth eHumi c andOrthi cPodzol sonl yfou rBh ,Bh san dB shorizon sha d C/Se s ratios below 5.8 (Appendix 4a,b) .Mos t of theB horizon so fth e non-podzols reported in literature (Appendix5 )ha d C/Se s ratiosbelo w 5.8.Thi swoul d indicatetha ta C /Se s ratioo f5. 8 reflectsabou tth emax - P P imum amount of sesquioxides that organic matter inpodzo l Bhorizon sca n bind. Two profiles with fibers (NL-101 and NL-107)hav elo wC /Se s ratios in the Bs horizons (Figure 6). Inprofil eNL-10 1th eratio sfo rth eB san d BChorizon s arebelo w 5.8 andi nprofil eNL-10 7bot hth eBh san dth eB Chor ­ izonhav e arati oo f6.8 . Higashi et al. (1981),however ,assume dtha ti ti simpossibl e foror ­ ganicmatte rt obin dmetalli c ionsi nmetal/ Catomi cratio shighe rtha n0.12 , which is equivalent to aC/Se s ratioo fabou t8.5 .However ,thes eauthor s did notprov e thata valu eo f0.1 2 ismor e accuratetha nth evalu eo f 0.16 (orC/Se s= 6 )the y arrived at afterprovisiona l calculations.Th elatte r valuei si naccordanc ewit hth eassumption smad ei nthi spaper . C/Al ratiosbehav eregularl y andprovid e agoo dseparatio nbetwee neluv - ialan dilluvia lhorizons ;C/F e ratiosbehav eerratically , andC/Se sratio s behave regularly but separation isno t asgoo d aswit hC/A l ratios.This , andth enea rabsenc eo firo ni nGleyi cPodzol ssupport sth eearlie rassump ­ tion that aluminum rathertha niro nregulate s theprecipitatio no forgani c matter. Inpodzols , theB horizonmove s downwardwit htim ean dth eE horizo n becomes thicker (De Coninck, 1980). One ofth emechanism suse dt oexplai n thisproces s isth eoxidatio no forgani cmatte r fromth ecomplexe stha thav e 42 precipitated andfurthe rtranspor to fth esesquioxide sb y freshorgani cmat ­ ter from above.Thi stheor ydoe sno texplai nwh yon echelat ewoul db emor e resistantt ooxidatio ntha nanother ,no rdoe si texplai ntha ti nman ypodzol s themaxim ao forgani cmatter ,aluminu m andiro nd ono tcoincide . Ifon eaccept sth etheor ytha torgani cmatte r isimmobilize db yabsorp ­ tion of acertai n amount of sesquioxides,i ti sals opossibl etha ta onc e precipitated chelateca nb eremobilize db yth eadditio no ffresh ,undersat - urated organic ligands from above or fromdecompositio no froot s inth eB horizon.Thi sredissolutio nprocess ,togethe rwit ha pH-dependen tpreferen t Fe toA l complexation (Schnitzer and Skinner,1963 )ma yb eth eke yt oth e diverging ironan daluminu mmaxima . Inearl ystage so fpodzolization ,sufficien tiro nan daluminu m ispres ­ ent in the surface layer, and immobilization will occur nearth esurfac e layer. The soilwil l have a shallowB horizon .Furthe reluviatio nresult s indissolutio no fth euppe rpar to fth eB horizon ;th esolubilize d complexes are redeposited in the lower part of the same horizon.A smentione dpre - viously,fulvi cacid spreferentiall y complexF e atth 3+e prevailin gpH .Thi s causes agradua l depletiono firo ni nth euppe rpar to fth eB horizon ,an d consequently anenrichmen ti nth elowe rpar twhil eth eprecipitatio no for ­ ganicmatte ri nth euppe rpar to fth eB horizo ni smor edependen to naluminum . Thus, insteado fth eB hhorizo n forming on top ofa Bh shorizon ,i tma yfor m by differentiation ofth eBh shorizon . Differences inp Ho ri norgani cmatte rcompositio nma ycaus edifference si n preferential complexation, so that theplace s ofaluminu m andiro nmaxim a are exchanged. Inth ewell-draine dpodzol so fthi sinvestigation ,however , aB hhorizo nalway sha sles siro ntha nth eunderlyin gBhs . The formation of lamellaeo rfibre swit hhumu san dsesquioxide sbelo w Bh and Bs horizons isno texplaine db yth eprecipitatio no fhumu supo nin ­ creasing saturation with sesquioxides.Becaus e the C/Se s ratios of the fibers are lower thanthos ei nth eE an dB hhorizon s (Table4 ,Figur e 6,7) ofth esam eprofiles ,i ti slikel y thateithe ra differen tmechanis m isin ­ volved inth eprecipitatio no fth efibers ,o rth ecompositio no fth eorgani c matter inth e fibersi sdifferen tan dha sdifferen tcomplexatio nproperties . Possibly,thi sorgani cmatte ri sno tprimaril yprecipitate db ysesquioxides , but immobilized physically. Organicmatte rma yhav epercolate d throughth e soil with water, and come to astan dstil lwit hth ewate r front.Whe nth e soildrie sout ,th esolubl esubstance s areprecipitated .Thi swoul dexplai n theirregula r shapeo fhumu s fibersi nhomogeneou s sediments,an dth etenden ­ cy to accumulate attextura lchanges ,slips ,an dothe runconformitie s that hamperpercolatio no fwater . 43

Tabel A Carbon/aluminum atomic ratios for separating eluvial and illuvial horizons inOrthic/Humi c and GleyicPodzols .

Ratio Orthic/Humic Gleyic

Separation Value Separation Value

C ,A1 good + 45 good + 40 t/ P fair + 35 poor h p - good + 40 good + 30 VA1P fair 40-45 fair + 40 Ct/A1d good 45-55 good + 40 Ct/A1o poor fair + 30 Ch/A1d - good 35-40 poor Ch/A1o -

Table 5 Linear regression and correlation between C and C and C andC , t p t n

A) for all A-horizons 39 C = 0.35 + 0.18C 0.80 andE-horizon s P t B) for all B- and 81 C = 0.08 +0.86 C 0.96 C-horizons P t C) for all A- and 39 a = 0.14 +0.42 C 0.81 E-horizons a t D) for all B- and 81 C. = 0.06 + 0.73C 0.93 C-horizons t

Table 6 Linear regression and correlation between CEC. and carbon contents. o.2

n r'

A) for all profiles 120 CEC0 0 = 0.81+ 8.80C 0.86 8.2 p and allhorizon s 120 CEC. = 2.98+ 4.76 C. 0.61 ö.2 t 120 CEC., = 1.50+ 8.83 C, 0.76 o.z n

B) as forA ) less all A-horizons 102 CEC- ,= 0.64 + 8.27 C. 0.87 o.2 t

C) for dry podzols only

and all horizons 70 CEC0 „= 0.89 + 8.53 C 0.87 8.2 p 44

9.3 CEC-ORGANICCARBO NRELATION S

Sinceth epodzol sinvestigate d arever y lowi ncla ycontent ,i ti sas ­ sumed that the CECi nthes esoil s ismainl ydu et oorgani cmatte r andses - quioxides. Inhorizon s where Ses equals Ses,,whic hi sth ecas e inth eE andB horizons of Gleyic Podzols, and in some ofth eE an dB horizon so f Orthic and Humic Podzols from the Netherlands andBelgium ,th eCE Cca nb e fully attributed to organic matter alone.Bot h CEC at soilp Han dCE Ca t pH8. 2wer edetermine d (CEC ..,resp .CEC 0 _). SOU o , z To decide which organic carbon fraction would most likely be highly correlated with CEC, correlations between (C and C )an d (C. and C.)wer e calculated (Table 5).An y relation between C and C, was considered to orig­ inate from the preceding relations and was therefore not calculated. All correlations are significant at the 0.01%probabilit y level. Both in the C -C regression correlation and in the C.-C regression correlation, correlations are better for the B and C horizons than for A and E horizons, which is probably due to a relatively high and variable root content in A and E horizons. In the B and C horizons, the C -C correlation is better than the C,-C .. Pyrophosphat e extracts more organic matter from these hori­ zons than hydroxide. Regression of cation exchange capacities with C., C, and C respectively showed that CEC .,ha d a much lower correlation than CEC- _ (Table 6, only SOU a . Z regressions between CEC- _ and carbon contents are shown). Intra-profile o. z correlations for CEC .,wer e higher than the correlation over all profiles. The facts that 1) contents of sesguioxides vary more strongly within profiles than between profiles and 2) sesguioxide s have ahighe r negative charge at high pH suggest that sesguioxides are of minor importance for the CEC of the podzols investigated. This is corroborated by an estimate of the maximum contribution of sesguioxides to the CEC„ _: maximu m amounts of sesguioxides o. z encountered in the B horizons of any profile is about 1%. If no sesguioxides were bound by organic matter they might account for amaximu m CEC of about 0.35 me/100 g (Parfitt, 1980). This is negligible compared to the CEC deter­ mined in these horizons. The variations in CEC .. and its relatively low soil correlation with organic carbon content should therefore probably be explain­ ed by the variation of te charge of organic matter with pH (the soil-pH var­ ies per sample, viz.pH-KCl) . Of the CEC- --C regressions, CEC- 0-C gives o. Z o. Z p the best correlation (Table 6).Th e CEC -,-C. correlation is significantly ö• z t lower but becomes much better when A horizons are excluded. This again points to the inclusion of inactive organic material in the C determination. As correlation with C is better than with C. it is concluded that C more p h p closely represents the active organic fraction than does C, . From the high correlation between C and CEC . it can be concluded p ö. z that throughout the podzol profile and between various podzol profiles, the organic matter has a fairly constant CEC- „pe r gram C. Trends with depth o. z 45

Cp (%) Le gend 3.5 - Or th ic/Humic Podzols 1 = NL 101 2 = NL 104 3 = NL 105 3.0 - 4 = NL 106 5 = NL 107 6 = NL 108 7 = NL 109 8 = NL 110 9 = B 101 2.5 - Gleyic Podzols

A = NL10 2 B = NL10 3 C = B 102 2.0- D = B 103 E = B 104 F = B 105 G = B 106

1.5

1.0-

0.5-

1 1 25 30 meq/lOOg soil

Figure 9. Regression of CEC with C for all samples 46

are illustrated in Figure 8 forbot h CEC .,an d CEC_ _.Mea nvalue sar e 3 soil 8.2 3-4meq/ g C at soilp H and 8-10 me/g C atp H8.2 .Ther ei sn odistinc t trend of CEC with depth, although fibersten dt ohav ea highe rCEC/ Ctha n thehorizo ni nwhic hthe yar efound .N odifference s arefoun dbetwee nHumi c and Orthic Podzols on one hand andGleyi cPodzol so nth eother .Extremel y high CEC/Cvalue s occur whenbot h CEC and C figuresar elow .Suc hratio s aretherefor eles sreliable .Th eregressio nbetwee nCEC -_ an dC isillus - Ö. £. P tratedi nFigur e9 . 9.4 IMOGOLITE

Imogolitewa s not detected inth efin ecla yan dcla y fractionso fth e samplesexamined .Thi si si ncontras tt oth eimogolit e foundi nspodi choriz ­ onsi nScotlan dan dCanad a (Taite tal. ,1978 ;Ros san dKodama ,1979 ;Farme r etal. ,1980 ;Ross , 1980;McKeagu e andKodama ,1981) .Possibl eexplanation s forthi sdifferenc e areth eoccurrenc eo fimogolit ei nth eparen tmaterial , the addition ofvolcani c ash to thesoils ,an dth eformatio no fimogolit e aftertranspor to faluminu m toth eB horizons .I nth eScottis hsoil sstudie d by Farmer et al. (1980)imogolit e waspresen t in theC horizo no ri nth e deepesthorizo nsample si nth ethre eprofile swit himogolit ei nth eB horiz ­ ons. Inth eprofil e without imogolite'in the Chorizon ,n oimogolit ewa s foundi nth eB horizon .I nth eScottis hsoil sstudie db yTai te tal .(1978 ) onepodzo l had noimogolit ei nth eB horizo nan dn oC horizon swer eexami ­ ned.Th e soils inth eCanadia nstudie swer e fromBritis hColumbi a andonl y B horizons were examined (Ross and Kodama,1979 ;Ross , 1980;McKeagu ean d Kodama, 1981). Volcanic ashwa s detected in the sand fractiono fth etw o soilsstudie db yRos san dKodam a (1979). Another contrastbetwee n the soils of thisstud yan dthos ereporte d in literature is inth eA l content.I nonl ysi xsoil swa sth eA l content o o ofth eB horizon s greatertha n1 %an di ntw oo fthes esoil sth eA l content wasals orelativel yhigh .Th eB horizon so fthes e sixsoil sals ohav erelat ­ ivelyhig horgani ccarbo ncontent swhic hma yinhibi tth eformatio no fimogol ­ ite (Taite tal. , 1978).Thi sindicate stha tth eB horizon so fmos to fthes e soils dono thav emuc hamorphou sA lwhic hi sno torganicall ybound . Inth e Canadianan dsom eo fth eScottis hsoil sth eA l contentswer ehigh ,greate r than1 % (Taite tal. ,1978 ;Ros san dKodama ,1979 ;Ross , 1980;McKeagu ean d Kodama, 1981). Farmer et al. (1980)foun daceti caci dextracte dmuc hmor e Altha ndi dEDTA .Thi sindicate stha tmos to fth eCanadia nan dScottis hsoil s havelarg eamount so famorphou sAl . It ispossibl e thatth eimogolit e formed inthos eB horion s afterth e Al had been deposited and released from the organic mattercomplex .Thi s would explain the absence of imogolite inan yo fth eeluvia lhorizon san d inth euppe rB horizon so fsevera lo fth esoils .O nth eothe rhand ,i fvol ­ canic ash or itsweatherin g products allophane and/or imogolite hadbee n 47 presenti nth eparen tmaterial ,thes ewoul d certainlyhav ebee nremove dfro m the eluvial horizons by the podzolization process, and thus resulti na n absenceo fallophan e inth eeluvia l anda presenc e inth eilluvia l andlowe r horizons.Certainly ,i nsoil scontainin gvolcani cas hparticle si nth esan d fraction,a nexplanatio n forth epresenc eo fimogolit eshoul dno tb esough t in thepodzolizatio n process. Furthermore, the present authors feel that the transport of aluminum as a silicatecomple xwoul dno texplai nth eco - precipitation of aluminum and organic matter.No r is it likely thatth e transportmechanis m foriro nwoul db edifferen t fromtha tfo raluminum .Th e transporto firo nwoul dno tb eexplaine db yth eimogolit emodel .

9.5 IRONCONTEN TAN DCOLO RAFTE R IGNITION

Bothth econten to f 'free'iro nan dcolo rafte rignitio nhav ebee nuse d to separate Gleyic Podzols fromwell-draine d Podzols.Mos tclassification s do not state aminimu m iron content forwell-draine dpodzols ,no rar ean y definite criteria available for the amount ofcolo rchang eafte rignitio n that should be present to call a sample 'redder'. I norde rt osolv ebot h problems and arrive at suitable criteria for t}ieiro n contentan dcolo r forGleyi cPodzol san dwell-draine dpodzols ,a neffor twa smad et ocorrelat e bothproperties . Forthi spurpos ei twa snecessar y toattribut enumerica lvalue st oMun - sellcolo rcodes .Thi swa sdon eb y attributingth evalu e1 t oth ecolo r2.5 Y 8/1 (the strongestwhit e color found inignite dsamples )an daddin g1 fo r thedistanc eo fon eunit ,bot hi nhorizonta l (chroma)an dvertica ldirectio n (value).Numerica lvalue s thenrea d 1,2 ,3 ,4 ,6 ,8 fo r2.5 Y8/1 ,8/2 ,8/3 , 8/4,8/ 6 and8/ 8 respectively andfo r8/1 ,7/1 ,6/1 , 5/1,3/ 1 and1/ 1respec ­ tively.Value swithi nth ematri xwer eobtaine db ymultiplyin gth erespectiv e rowan dcolum nvalues ,e.g .th enumerica lvalu e for2.5 Y4/ 5 is4 x 4 = 16 . Thesevalue swer emultiplie db y2 fo reac hredde rhue .Th eresultin gmatrice s aregive ni nTabl e7 .Eac hnumerica lvalu eca nb eotbaine db ysevera lcolors , e.g. the numerical value 96stand s for7.5Y R6/ 8 and5/6 ;5Y R7/6 ,6/ 4 and 5/3; 2.5YR 8/6, 7/3 and 6/2; and 10YR 8/3 and6/1 .No tal lcolor so fth e matrices occur in ignited samples.Thos ecolor sencountere d areprinte di n italics. Dithionite-citrate extractable ironplotte d againstth enumerica lcolo r valueo fth eignite dsampl egive sa populatio ntha tca nb edivide d intotw o subpopulations (Figure 10). Onese to fB horizo nsample sha snumerica lcolo r valuesbelo w 100an d freeiro ncontent so fles stha n0.125% .Th esecon dse t of samples has color values above 100an diro ncontent sabov e0.135% .Th e population with the low contents contains Bhorizon so fPodzol stha thav e been classified inth efiel da s 'GleyicPodzols 'an dBh lhorizon so fwell - drained profiles.Colo r valueso fove r100 0ar ereache dwit hiro ncontent s aslo wa s0.5 %i nBh san dB shorizons . 48

Table 7 Numerical values assigned toMunsel l color codes.

Hue 2.5Y Hue 10YR

/I /2 /3 /4 /6 /8 /l /2 /3 /4 /6 /8

8/ 1 2 3 4 6 8 8/ 2 4 6 S 12 16 11 2 4 6 8 12 16 7/ 4 8 12 25 24 32 6/ 3 6 9 12 18 24 6/ 6 12 18 24 35 4S 5/ 4 8 12 16 24 32 5/ 8 16 24 32 45 54 4/ 5 10 15 20 30 40 4/ 10 20 30 40 60 80

Hue 7.5YR Hue 5YR

/I /2 /3 /4 /6 /8 /l /2 /3 /4 /6 /8

8/ 4 8 12 26 24 32 8/ 8 16 24 32 48 64 7/ 8 25 24 32 48 64 11 16 32 48 64 96 228 6/ 12 24 35 48 72 96 6/ 24 48 72 96 144 2S2 5/ 16 32 48 64 96 128 5/ 32 64 96 128 192 255 4/ 20 40 60 80 120 160 4/ 40 80 120 160 240 320

Hue 2.5YR Hue 10R

/I /2 /3 /4 /6 /8 /l /2 /3 /4 /6 /8

8/ 16 32 48 64 96 128 8/ 32 64 96 128 192 256 7/ 32 64 96 128 192 256 11 64 128 192 256 384 512 6/ 48 96 144 192 288 384 6/ 96 192 288 384 576 768 5/ 64 128 192 256 384 512 5/ 128 256 384 512 768 1024 4/ 80 160 240 320 480 640 4/ 160 320 480 640 960 1280 49

o s. o o O r- ^ O

o u •I'­ o W LT) S- H CU 0 E N 3 •0 O C 0 O CM ro u o >i o IV CM r-H o Ü in 13 r-H ß 10

•P O

O pc 0) p fi o o

a tu •a a m ß o

fi

u p 'M m u o H o u

O) 1-1 o» -H 50

It appears that color after ignition and iron content of the sample are well-correlated and that either a free iron content of < 0.12% or a num­ erical color value of less than 150 would serve to define the Gleyic Podzol profiles 'that lack iron coatings'.

9.6 SPODIC HORIZON CRITERIA

Tables 8, 9 and 10 summerize the data used to classify the soils into the FAO-Unesco system (FAO-Unesco, 1974) and Soil Taxonomy (Soil Survey Staff, 1975). Most of the soils studied had the morphology of a Spodosol or aPodzol ; however, several soils did not classify as Spodosol or Podzols according to these systems. Because the spodic horizon is considered as a horizon having an illuvial accumulation of organic matter and aluminum, with or without iron, it was decided to concentrate on these three properties to develop new criteria with which to define the spodic horizon. Pyrophosphate is generally consider­ ed to extract Al and Fe bound to organic matter. By complexing Al and Fe pyrophosphate makes the organic matter soluble. Therefore it was concluded that pyrophosphate extractable C, Al and Fe would be the best properties on which to define the spodic horizon. The chemical criteria for defining the spodic horizon were developed based on the data collected from the soils sampled in the Netherlands, Bel­ gium and Switzerland (Table 8).I twa s assumed that a B horizon with a 7.5YR 4/4 color would morphologically qualify as a spodic horizon, a B horizon with a 10YR 4/4 color would sometimes qualify as a spodic horizon, a B hor­ izon with a 5/4 color or lighter would not qualify. B horizons with a 7.5YR 4/4 color had C + AI + Fe > 0.50 and B and C horizons with a 10YR 5/4 P P P color or lighter and no mottles had C + Al + Fe i 0.42. Two BC horizons P P P with 10YR 4/4 color had C +A I + Fe of 0.76 and 0.36. P P P From this it was concluded the minimal value of C + AI + Fe for a spodic P P P horizon should be 0.50. In Gleyic Podzols without mottling, B horizons have C /Fe atomic ratios P P greater than 150 and inHumi c and Orthic Podzols B horizons have ratios less than 150. The C /(AI + Fe )atomi c ratios of B horizons in Gleyic Podzols were less than 30.0 and those of B horizons in Humic and Orthic Podzols were less than26.0 . The amount and distribution of amorphous material varies greatly in spodic horizons. Some horizons have large amounts in thin horizons and others have small amounts in thick horizons. Therefore aminimu m accumulation of amorphous materials must be defined. The minimum C /(AI + Fe )atomi c ratio P P P was taken as 5.8, which is the value between the highest C /(AI + Fe )atomi c y P P P ratios in the two Swiss soils, one having the morphology of a Spodosol or Podzol and the other not (Table 8).Also , the minimum C /(AI + Fe ) atomic P P P ratio in most subhorizons of the B horizons was 5.8. The minimal thickness 51

CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM 53 CM

o m ™ O -3" CO O O O LO -3- o-> r^ o> vO u~> f-^

CN IT) CJ\ u0 O CO CN 00 -3" LD ui O LH co CN 00 00 CO CO CN CN o CO CO CO

co o NT r^ CO \D

00 co CO r*. CO CN o> CT\ 00 -3- O o CN m m «M CN CN CN CN CN

E 1 O O UO CTi vO •u CN 00 CN CN -3- CN CO CN CN -3- CN

fa + 00 CO O -3- -3" 00 CO CN 00 00 c o o o^ CT! iiO co CN -3" CO CO i CM CO

5

5

O to CM FM CM CM CM 53 CM CM CM CM CM CM CM CM CM CM 53 a < -i

n

C

-3" •4- O 00 CO CN CN CO T3 CO co CO CO O CM CN CN CN CN -3" -3- 6 c

• -3" o CTN CO o CN O IT) co CO CN co co o o CTt O O CN o O 00 O O co CN — ~ ~ — ~ ~ ~ — ~ ~ ~" ~~ »

+ + + + + + f^- O CN co 00 o> - o> CO 00 CO 00 o o CN CN o o o CN o o O o 00 o o V o *~ U

CM PM CM CM CM CM CM O, CM CM CM CM CM CM CM CM 53 CM

CN CO -3" m 00 o> o O o O O o O o CN CO -3" in co o o o O O o O O O J3 1 i 1 1 k 1 1 i i i ij 1 H 53 k 53 53 A m A A A A 00 * •H- ^ ä 53 53 52

eu CO 3 S

O en

o -a- -3-

eu PH CN o\ oo in CN oo r-- oo en p. + eu ni vO 00 O oo J3 PH —

o ON en — o en — — O o — — — en -a- m m o eu —

eu &H + r^ m en o eN m o oo oo en oo ^o en en m O c m eN m 00 vO r^ CT\ eN o

O o S

eu

en o en

« -o eu Pu -H m en o r*-~. r» o\ o_ - m m vO o eN o . T3

et! JD en eN en co VO o 00 O-i o o — •s ~- eN ^- O — O eN o o — en <ï- + — + — "8 eü o — co r^ en <3- — -Cf v* o oo — -tf o o. — o taeu 6-s

CU Q. •Ol eN ^o en \o r~ o -er en O eu 4- en en en esl m o en o o

13 eu

O. PH PH PH OH Pi OH S3 OH --- eu ss ES SS SS e/3 ê + + ej\ 1 1 1 O 1 1 eN eN o SS ss CN ,-J •J eN 1 eN u O 1 1 Bi 1 1 •J 1 •s PH O« u a 1*. l* M M S3 S3 SS C/l co H o 53

h II m CO A fL, 53 g PJ Z o CU H lil 4J +

o in o o vo o o o m m •d JB —A • cj 0e1 CM 00 vo co CM 0 "~' CT\ i—i IN; •H m sr c* vO o\ CO r^ 0 o •U N m CO • r4 O o Pu A' CJ •H -a- m m m 00 o II 0) H C__M , CM 14 0 C^M~ P4 4J + P dj T-l

•H e 3 h O O 4J X O CJ O UI 4J rH •r-i e CO CO 3 0 O CU ^CU N P. a 4-1 •t-i CU o — 00 CM O n (n 4-J ou CM CO o e o — u J3 \ CL •o •rH CO U CU CO X! TJ 4-4 CO 3 CJ CU O M-l 3 P. (3 O co O O ro r-l co O C>O^ •H CJ CU CU r~•. i—i 4J •rH e in• cj CO 60 >CU CM X O O -o -*o! 1 P. —r-N •r4 T—) •H 00 p. U-l O X! • 4J i-H •H X! i->H> 4J m CO CO O. M <+! CO 00 IJ CO II O p. CO I C_) u 3 W ü v—• CJ CO u e * H c/) CJ o e * » + * 54

in

m CM m cN CO CM uO CM CM CM CM CO

CTi CM ^O CM CPi in CO CO vD CO (Ti m CM CO CO — — m m m m CM m CM — CO

i_n \£> \£j m r-^ CM m CO

CO — —

G — —

~ O — \D

— co m m cr> r*

M Öd 00 M H

.o cd H 55

\D CM \D ^D

^£> — O —

m ~- t^ r» CO CO 00 CM CO

0> CO CO

p. o J 'g

tU vD 03 56

of a spodic horizon was taken tob e 10c m which isuse d inth e Canadian (Can­ ada Soil Survey Committee, 1978)an dEnglis h (Avery, 1980)systems . Therefore the sum of the products C /(AI + Fe ) atomic ratio andhorizo n thickness P P P must exceed58 . In summary, the proposed chemical requirements for a spodic horizon are: 1. C /(AI +F e )> 0.50%; p/x p P 2. C /(AI +F e )atomi c ratio = 5.8 to 30.0i fC /F e atomic ratio >150 , or 5.8 to26. 0i fC /F e atomic ratio <150 ; P P and 3. Sumo fhorizo n thickness x C/(A I + Fe )atomi c ratio > 58,fo rB hor - P P P izons with 1an d 2 above. All soils inTabl e 8wit h podzol morphology meet these requirements andth e one soil without podzol morphology didno tmee t these requirements. The criteria were tested by applying them toth e soils inth e ISMmono ­ lith collection (Table 9).Al l soils with definite podzol morphology meet the requirements andtw oo fth ethre e soils with weak podzol morphology meet the requirements. Soils that didno thav e apodzo l morphology didno tmee t the requirements. The criteria were further tested by applying them to soils which have been reported in literature (Table 10).Th e soils were limited to those which had been classified according to Soil Taxonomy and had been analyzed for

C p, A l pan dF e .O fp the2 4 soils classified as Spodosols byf the authorsJ eight did not have (AI + Fe )/clay or (C +A l )/clay equal too r greater than 0.20 and should nothav e been classified as Spodosols. When using the propos­ ed criteria only four soils fail tomee t the chemical criteria for spodic horizon andon eo f these soils has anortstei n which is sufficient to clas­ sify it as a Spodosol. None of the , including the Cryandept, meet the proposed criteria forspodi c horizon. Note that the present proposal does notus e the ratios of amorphous matter to clay. 57 10 Conclusions Precipitation of organic matteri nth eB horizo ni nbot hOrthic/Humi c andi nGleyi cPodzol s isregulate db yaluminu m rathertha niron . Totalcarbo ni sno ta nappropriat emeasur e forth eactiv eorgani cmatte r inpodzols .Pyrophosphat eextractabl ecarbo n (C )gav ebette rcorrela ­ tionswit hCE Ctha neithe rtota lcarbo no rsodiu mhydroxid eextractabl e carbon.Therefore ,C isconsidere dt orepresen tmor eclosel yth echem ­ ically activefraction . Carbon/metal atomicratio sca nb euse dt oseparat e illuvial andeluvia l horizons inpodzols .O f C/Al, C/Fe and C/Sesguioxide atomicratios , theC/A l ratios and,mor especifically ,th eC /A l (pyrophosphateex ­ tractablecarbo nt opyrophosphat e extractable aluminum)an dC./A l (to­ talcarbo nt oC )atomi cratio s aremos tsuitabl e forthi sseparation . Thepresenc e of rootsi nth eB horizo nappear sno tt oinfluenc ethes e ratios.Pelleta ihumu s formed fromdecayin groot si nth eB horizo nap ­ pears to have the same chemical characteristics asorgani cmatte ri n organans.

Organic matter inpodzol s ismobil e atC /A l atomicratio sabov e3 0 (GleyicPodzols )o r4 0 (Orthic/Humic Podzols),an dimmobilize d atlowe r ratios. C/Fe atomic ratios do notprovid e agoo dseparatio nbetwee nilluvia l and eluvial horizons ineithe rOrthic/Humi co rGleyi cPodzols .Humic / Orthic Podzols canb e separated from GleyicPodzol stha tar epoo ri n iron (nomottles )b y aC /F e atomicrati oo f150 .I nGleyi cPodzol s all subhorizons in theB horizon shav eratio sabov e150 ;i nHumic/Or - thicPodzols ,a tleas tsom esubhorizo no fth eB ha sa rati o lowertha n 150. An iron content ofmor etha n0.12 % (dithioniteextractable )wa sfoun d tosuffic e forth esampl et otur nredde rupo nignition . AlthoughC/Sesquioxid e ratiosar eles ssuitabl e forseparatin g illuvial andeluvia lhorizon stha nar eC/A l ratios,th eC /Se s ratio isusefu l P P for identifying a spodic horizon.A minimum C/Se s ratio of5. 8 in the B horizon,whic h represents an estimateo fth emaximu m amounto f metal bound per unit C, canb euse dt odefin ea naccumulatio nindex . Thepropose dcriteri a fora spodi chorizo nar ea sfollow s: a.C +A I +F e :> 0.50 % P P P b. Cp/Sesp atomicrati o ishighe rtha n5. 8bu tlowe rtha n4 0i na t leaston esubhorizo no fth eB (spodichorizon ) c.Th eaccumulatio ninde xshoul dexcee d58 .Th eaccumulatio ninde xi s defineda sthicknes s (cm)x C /Se s atomicratio . P P 58

7. Thegradua ldeepenin go fth epodzo lprofil ean dth edifferentiatio no f the B horizon intoB han dB sca nb eexplaine db yredissolutio no fth e upper part of theB horizonb y added unsaturated organiccompounds , anda preferenc eo fthes ecompound s forFe ,whil eprecipitatio n isreg ­ ulatedb yAl .Th eB han dB shorizon sthu sfor mb ydifferentiatio nwith ­ in theB horizonan dno tbecaus eth eB hprecipitate d onto po fth eB s horizon. 8. Fibersbelo w theB horizon are notprecipitate d atth esam eC/meta l ratiosa sth eorgani cmatte r inth eB horizo nan dsaturatio nwit hmet ­ alsma yno tpla ya crucia lrol ei nth eprecipitatio no famorphou smatte r infibers . 9. Imogolitedoe sno tpla y anessentia lpar ti nth epodzolizatio nprocess . Althoughimogolit emigh tb eforme di nB horizons ,i ti sno tinstrumenta l inth etranspor to faluminum .

11 Acknowledgements Theauthor sthan kth estaf fa tth e International SoilMuseu m forthei r co-operation and assistance in the laboratory work andth erealizatio no f this paper.W e alsothan kMr .Pete rOomens ,Departmen to fSoi lScienc ean d Geology,Agricultura lUniversity ,fo rhi shelp .D.L .Mokm athank sth eInter ­ nationalAgricultur e Centrean dth eDepartmen to fSoi lScienc ean dGeology , AgricultureUniversit y forfinancia l supportdurin ghi s stayi nWageningen . 59 12 References Adams,W.A. ,M.A .Raz a and L.J. Evans. 1980.Relationship s betweenne tredistrib ­ ution of AI and Fe extractable levels inpodzoli c soilsderive d fromLowe r Palaeozoic sedimentary rocks.J . Soil Sei.31:533-545 . Aguilera,N.H .an dM.L .Jackson . 1953.Iro noxid e removal from soils andclays . Soil Sei. Soc.Amer .Proc .17:359-364 . Aleksandrova,L.N . 1960.Th e useo f sodiumpyrophosphat e for isolating freehum - ic substances and their organic-mineral compounds from soil. SovietSoi lSei . no. 2,p .190-197 . Andriesse,J.P . 1969.A studyo fth eenvironmen t and characteristics oftropica l podzols inSarawa k (East-Malaysia).Geoderm a 2:201-227. Andriesse,J.P . 1970.Th edevelopmen to fth epodzo lmorpholog y inth etropica l lowlands ofSarawa k (Malaysia). Geoderma 3:261-279. Anonymous. 1927.Soi l scienceo fUSSR : collection of soils exposed inWashingto n inth eyea r 1927.Leningrad . 31pp . Arbeitsgemeinschaft Bodenkunde. 1971.Kartieranleitung .Anleitun g und Richtlinien zurHerstellun g derBodenkart e 1:25.000.2n d ed.Bundesanstal t fürBodenfor ­ schungun d Geologischen Landesämtern derBundesrepubli kDeutschland .Hanover , Germany. 169pp . Avery, B.W. 1973.Soi l classification inth e soil survey ofEnglan d andWales . J. SoilSei .24:324-338 . Avery,B.W . 1980.Soi l classification forEnglan d andWale s (higher categories). SoilSurv .Tech .Monogr .No .14 .Harpenden ,England .6 7pp . Avery, B.W., B.Clayden ,an d J.M. Ragg. 1977.Identificatio n ofpodzoli c soils (Spodosols)i nUplan d Britain.Soi lSei .123:306-318 . Bailey,G.D . 1980.A brie fhistor yo f theRussia nmonoliths .Persona l communic­ ation. Baker,W.E .1973 .Th e roleo fhumi cacid s fromTasmania npodzoli c soils inmin ­ eraldegradatio n andmeta lmobilization . Geochem.Cosmochim .Act a37:269-281 . Baldwin,M ., CE . Kellogg andJ . Thorp. 1938.Soi lClassification . In:Yearboo k Agr. U.S.D.A. Soils and Men. U.S. Govt. Printg. Off. Washington,D.C . p.979-1001 . Ball,D.F . and P.Beaumont . 1972.Vertica ldistributio n ofextractabl e ironan d aluminum in soil profiles from a -Peaty Podzol association. J. Soil Sei.23:298-308 . Baril, R. and G. Britton. 1967.Anomalou s values of free ironi n someQuebe c soils containingmagnetite .Can .J . Soil Sei. 47:261. Baril, R.W. and T.S. Tran. 1977.Etud e sur la valeur des critères chimiques proposés par lacommissio npédologiqu e duCanad a pour la classificationtax - onomiquede s solsd uQuébec . Can.J . Soil Sei.57:233-247 . Barshad, I. and L.A. Rojas-Cruz. 1950.A pédologie studyo fa podzo lprofil e from theequatoria l regiono fColombia ,Sout hAmerica .Soi lSei .70:221-236 . Bascomb, C.L. 1964.Rapi d method forth edeterminatio n of cation-exchange cap­ acity ofcalcareou s and non-calcareous soils.J . Sei.Fd .Agric .15:821-823 . Bascomb, C.L. 1968.Distributio n ofpyrophosphate-extractabl e ironan d organic carbon insoil so fvariou s groups.J . Soil Sei.19:251-268 . Bleackley,D . andE.J.A .Khan . 1963.Observation s onth ewhite-san d areas ofth e BerbiceFormation ,Britis h Guiana.J . SoilSei .14:44-51 . 60

Bloomfield,C . 1963.Mobilizatio nphenomen a insoils .Rep .Rothamste d Exp.Sta . pp226-239 . Blume,H.P .an dU .Schwertmann . 1969.Geneti c evaluation ofprofil e distribution ofaluminum , ironan dmanganes e oxides.Soi l Sei. Soc.Amer .Proc .33:438-444 . Borggaard,O.K . 1976.Selectiv e extraction ofamorphou s ironoxid eb yEDT A from a mixture of amorphous iron oxide, goethite, and hematite. J. Soil Sei. 27:478-486. Brammer,H . 1973.Podzol s inZambia .Geoderm a10:249-250 . Brandon,CE. ,S.W . Buol,E.E . Gamble andR.A . Pope. 1977.Spodi c horizonbrit - tleness inLeo n (AerieHaplaquod )soils .Soi l Sei.Soc .Amer .J .41:951-954 . Bruckert, S. 1979. Classification des sols bruns ocreux et cryptopodzoliques par analyse desextrait s tetraborates tamponnés àp H9.5 . Geoderma22:205-212 . Bruckert,S .an dSouchier . 1975.Mis ea upoin t d'un testd edifférenciatio n chim­ ique des horizons cambiques et spodiques. CR. Acad. Sei.Paris ,Sér .D ., 280:1361-1364. Buurman,P. , L.va nde rPla san d S.Slager . 1976.A toposequence ofalpin e soils on calcareous micaschists,norther nAdul a region,Switzerland .J . Soil Sei. 27:395-410. Byers,H.G. , C.E.Kellogg ,M.S .Anderso nan dJ . Thorpe. 1938.Formatio n ofsoil . In: Yearbook Agr. USDA. Soils and Men.U.S .Govt .Printg .Off .Washingto n D.C.,p .948-978 . Canada SoilSurve y Committee. 1974.Th e system of soil classification forCanada . Can.Dept .Agric . Publ. 1455.Informatio n Canada,Ottawa ,Ont .25 5pp . Canada Soil Survey Committee. 1978.Th e Canadian system of soil classification. Can.Dep .Agric .Publ .1646 .Suppl y and Services Canada,Ottawa ,Ont . 164pp . Chandler,R.F. ,Jr . 1942.Th e time required forpodzo lprofil e formation asevid ­ encedb y theMendenhal l glacial deposits nearJuneau ,Alaska .Soi l Sei.Soc . Amer.Proc . 7:454-459. Chen,Y. ,N . Senesi andM . Schnitzer. 1978.Chemica l andphysica l characteristics of humic and fulvic acids extracted from soils ofth eMediterranea nRegion . Geoderma20:87-104 . Clark,J.S. ,J.A .McKeagu e andW.E .Nichol . 1966.Th eus eo fpH-dependen t cation- exchange capacity for characterizing theB horizon s ofBrunisoli c andPodzol - ic soils.Can .J . Soil Sei.46:161-166 . Clark,J.S .an dW.E .Nichol . 1968.Estimatio n ofth e inorganic and organicpH-de - pendent cation exchange capacity ofth eB horizon s ofPodzoli c and Brunisolic soils. Can.J . Soil Sei.48:53-63 . Coen,G.M . andR.W .Arnold . 1972.Cla yminera l genesis of someNe wYor kSpodosols . Soil Sei. Soc.Amer .Proc .36:342-351 . Coffin,D.E . 1963.A metho d forth edeterminatio n of free iron insoil s andclays . Can.J . Soil Sei.43:7-17 . Commission de Pédologie etd eCartographi e des Sols-CPCS. 1967.Classificatio n des sols.ENSA ,Grignon ,France .8 7pp . Deb,B.D . 1950.th eestimatio n of free ironoxide s insoil s and clays and their removal.J . Soil Sei. 1:212-220. De Bakker, H. 1979.Majo r soils and soil regions in theNetherlands .Pudoc , Wageningen,20 3pp . De Bakker,H . andJ . Schelling, 1966.Systee m vanbodemclassificati evoo rNeder ­ land.D ehoger e niveaus.Pudoc ,Wageningen . 217pp . 61

De Coninck,F . 1980.Majo rmechanism s informatio no f spodichorizons .Geoderm a 24:101-128. DeKimpe ,C.R . andY.A .Martel . 1976.Effect s ofvegetatio n onth e distribution of carbon,iron ,an d aluminum and theB horizon s ofNorther nAppalachia nSpod - osols.Soi l Sei. Soc.Amer .J .40:77-80 . Duchaufour,P . 1976.Atla s écologique dessol sd emonde .Masson ,Paris .17 8pp . Farmer,V.C. ,J.D . Russell andM.L .Berrow . 1980.Imogolit e andproto-imogolit e allophane inspodi chorizons :evidenc e fora mobil e aluminum silicate complex inpodzo l formation.J . Soil Sei.31:673-684 . Flach, K.W., CS . Holzhey, F. De Coninck andR.J . Bartlett. 1980.Genesi san d Classification of Andepts and Spodosols.In :B.K.G .Then g (ed.),Soil swit h variable charge.N.Z .Soc .Soi l Sei.,p .411-426 . Flaig,W. ,H .Beutelspache r andE .Rietz .1975 .Chemica l composition andphysica l properties of humic substances. In: J.E.Giesekin g (ed.),Soi lComponents . Vol. 1.Organi c Components.Springer-Verlag ,Berlin ,p . 1-211. Food andAgricultur e Organization. 1974.Soi lMa po f theWorld .Volum e I.Legend . Unesco,Paris ,5 9pp . Food andAgricultur e Organization. 1977.Guideline s for soilprofil e description (second edition).FAO ,Rome .6 6pp . Franzmeier,D.P. ,B.F .Haje k and C.H. Simonson. 1965.Us e ofamorphou s material to identify spodic horizons.Soi l Sei.Soc .Amer .Proc .29:737-743 . Hayes,M.H.B ,an dR.S .Swift .1978 .Th e chemistry of soilorgani c colloids.In : D.J. Greenland andM.H.B .Haye s (eds.), The chemistry of soilconstituents . JohnWile y and Sons,Ne wYork .p .179-320 . Hayes, M.H.B.,R.S . Swift, R.E. Wardle and J.K. Brown. 1975.Humi c materials from an organic soil: a comparison ofextractant s and ofpropertie s ofex ­ tracts.Geoderm a 13:231-245. Higashi,T. ,F . DeConinc k andF . Gelaude. 1981.Characterizatio n of some spodic horizons ofth eCampin e (Belgium)wit hdithionite-citrate ,pyrophosphat e and sodiumhydroxide-tetraborate . Geoderma25:131-142 . Higashi, T. andA .Shinagawa . 1981.Compariso n of sodium hydroxide-tetraborate and sodiumpyrophosphat e asextractant s ofAl/Fe-humu s "complexes"i nDystran - depts,Japan .Geoderm a25:285-292 . Holmgren, G.G.S. 1967.A rapid citrate-dithionite extractable ironprocedure . Soil Sei.Soc .Amer .Proc .31:210-211 . Holzhey,CS. ,R.B .Daniel s and E.E.Gamble . 1975.Thic kB hhorizon s inth eNort h Carolina Coastal Plain: IIPhysica l and chemicalpropertie s and rates ofor ­ ganic additions from surface sources.Soi l Sei.Soc .Amer .J .39:1182-1187 . Hubert,G . andA .Gonzalez . 1970.Extractio n et repartition dufe re td el'alum - inum liésà l amatièr eorganiqu e dans quatre Podzols duQuebec .Can .J . Soil Sei.50:281-290 . Ivanova,E.N . andN.N .Rozo . 1960.Classificatio n of soilsan d thesoi lma po f theUSSR . 7th Intern.Cong .Soi l Sei.,Madison ,Wis .IV:77-87 . Khan,S.U . 1969.Interactio nbetwee n thehumi c acid fractiono f soils and certain metallic cations.Soi l Sei. Soc.Amer .Proc .33:851-854 . Khanna, S.S. and F.J. Stevenson. 1962.Metallo-organi c complexes insoil :I . Potentiometrie titration ofsom e organic matter isolates inth epresenc e of transitional metals.Soi l Sei.93:298-305 . 62

Kilmer, J. 1960.Th e estimation of free ironoxide s insoils .Soi lSei .Soc . Amer.Proc .24:420-421 . Kilmer,V.J . andL.T .Alexander . 1949.Method s ofmakin gmechanica l analyses of soils.Soi lSei .68:15-24 . Klinge,H . 1965.Podzo l soils inth eAmazo nBasin .J . SoilSei .16:95-103 . Knuteson,J.A .an dM.I .Harpstead . 1980.Variatio n ofspodi c characteristics in NorthCentra lWisconsin .Agronom yAbstracts .72n dAnnua lMeeting ,Amer .Soc . Agron.,Madison ,Wisconsin ,p .182 . Kononova,M.M .an dN.P .Bel'chikova . 1970.Us eo fNa-pyrophosphat e for extracting and characterizing organic compounds of ironan d aluminum in soil.Pochvoved - enieNo .6:61-75 . Kodama,H . and M. Schnitzer. 1972.Dissolutio n of chloritemineral sb y fulvic acid.Can .J . Soil Sei.53:240-243 . Kubota, J. andL.D .Whittig . 1960.Podzol s inth evicinit y ofth eNelchin a and Tazlina Glaciers,Alaska .Soi l Sei.Soc .Amer .Proc .24:133-136 . Loveland,P.J . and P. Bullock. 1975.Crystallin e andamorphou s components of the clay fractions inBrow nPodzoli c soils.Cla yMineral s 10:451-469. Loveland, P.J. and P. Bullock. 1976.Chemica l andmineralogica lpropertie s of Brown Podzolic soils incompariso nwit hsoil so fothe r groups.J . Soil Sei. 27:523-540. McKeague,J.A .1967 .A nevaluatio no f0. 1 Mpyrophosphat e andpyrophosphate-dith - ionite incompariso nwit hoxalat e asextractant s ofth eaccumulatio nproduct s inPodzol s and someothe r soils.Can .J . Soil Sei.47:95-99 . McKeague,J.A . 1968.Humic-fulvi c acid ratio,AI , Fe,an d Ci npyrophosphat e extracts as criteria ofA andB horizons .Can .J . Soil Sei.48:27-35 . McKeague,J.A. ,J.E . Brydon and N.M.Miles .1971 .Differentiatio n ofform so f extractable ironan d aluminum insoils .Soi lSei .Soc .Amer .Proc .35:33-38 . McKeague,J.A . and J.H. Day. 1966.Dithionite - and oxalate-extractable Fean d Al as aids in differentiating various classes ofsoils .Can .J . Soil Sei. 46:13-22. McKeague,J.A . and J.H. Day. 1969.Oxalate-extractabl e Ala sa criterio nfo r identifyingpodzo lB horizons .Can .J . SoilSei .49:161-163 . McKeague,J.A .an dH .Kodama . 1981.Imogolit e incemente d horizons of someBrit ­ ishColumbi a soils.Geoderm a25:189-197 . McKeague,J.A. ,G.J . Ross andD.S .Gamble . 1978.Properties ,criteri a ofclassif ­ ication,an d concepts of genesiso fPodzoli c soils inCanada . In:W.C .Mahane y (ed.),Quaternar y Soils.Ge oAbstracts ,Norwich ,Englan dp .27-60 . McKeague, J.A.,M . Schnitzer and P.K. Heringa. 1967.Propertie s ofa n Ironpan HumicPodzo l fromNewfoundland .Can .J . Soil Sei.47:23-32 . McKeague,J.A .an dB.H .Sheldrick . 1977.Sodiu mhydroxide-tetraborat e incompar ­ ison with sodiumpyrophosphat e asa nextractan t of"complexes "characteris ­ ticso f spodichorizons .Geoderm a19:97-104 . McKeague,J.A .an dR.J . St.Arnaud . 1969.Pedotranslocation :Eluviatio n -illuv - iation insoil sdurin g theQuarternary . SoilSei .107:428-434 . McKeague,J.A .an dC .Wang . 1980.Micromorpholog y andenerg ydispersiv e analysis of ortstein horizons of podzolic soils fromNe wBrunswic k andNov aScotia , Canada.Can .J . SoilSei . 60:9-21. Mehra, O.P. andM.L .Jackson . 1960.Iro noxid e removal from soils and claysb y a dithionite-citrate systembuffere d with sodiumbicarbonate .Cla yan dMin ­ erals 7:317-327. 63

Miles, N.M., C. Wang and J.A. McKeague. 1979.Chemica l and clay mineralogical properties of ortstein soils from theMaritim e Provinces.Can .J . Soil Sei. 59:287-299. Mitchell,B.D . andR.C .Mackenzie . 1954.Remova l of free ironoxid e fromclays . Soil Sei.77:173-184 . Muir,A . 1961.Th epodzo l andpodzoli c soils.Adv .Agron .13:1-56 . NCSS,NSS Can dFAO .Nationa lCo-operativ e SoilSurve y ofUnite d States ofAmer ­ ica, National SoilSurve y Committee ofCanad a andFoo d andAgricultur eOrgan ­ izationo fUnite d Nations. 1975.Soi lMa p ofth eWorld ,Volum e II.Nort hAmer ­ ica, Unesco,Paris ,21 0pp . Nguyen Kha and S. Bruckert. 1972.Rol e dep Hdan s l'extraction des complexes organo-ferriques par l'hydroxide ou le pyrophosphated e sodium.C.R . Acad. Sei. Paris,Sér .D. ,274:667-670 . Parfitt,R.L . 1980.Chemica l properties of variable charge soils.In :B.K.G . Theng (ed.): Soils with variable charge,p . 167-194.Ne w Zealand Soc.Soi l Sei. Petersen,L . 1976.Podzol s andpodzolization .Diss .Roya lVeterinar y andAgricul ­ turalUniversity ,Copenhagen . 293pp . Ponomareva,V.V . 1964.Theor yo fpodzolization . "Nauka",Moskva-Leningrad , Israel Program forScientifi c Translations,Jerusalem , 1969.30 9pp . Ponomareva,V.V . andA.L .Ragim-Zade . 1969.Comparativ e study of fulvic andhumi c acids asagent so f silicateminera ldecomposition .Sov .Soi lSei .2:157-166 . Racz,Z . 1968.Podzol s onth eterritor y ofCroati a (Yugoslavia)an d theirmicro - morphological properties.Geoderm a 2:41-55. Ragg,J.M. , J.M. Bracewell,J . Loganan dL .Robertson . 1978.Som e characteristics of theBrow nFores t soils ofScotland .J . Soil Sei.29:228-242 . Ragg,J.M . andB .Clayden . 1973.Th e classificatono fsom eBritis hsoil saccord ­ ing toth eComprehensiv e System ofth eUnite d States.Soi lSurv .Tech .Monogr . No. 3.Harpenden .22 7pp . Righi, D. andF .D eConinck . 1977.Mineralogi e evolution inhydromorphi csand y soils andpodzol s in"Lande s duMédoc" ,France .Geoderm a 19:339-359. Ross,G.J . 1980a.Mineralogical ,physica l and chemical characteristics ofamor ­ phous constituents insom ePodzoli c soils fromBritis h Columbia.Can .J . Soil Sei.60:31-43 . Ross, G.J. 1980b. The mineralogy of spodosols. In: B.K.G. Theng (ed.),Soi l withvariabl e charge.N.Z .Soc . Soil Sei.,p .127-143 . Ross,G.J . andH .Kodama . 1979.Evidenc e for imogolite inCanadia n soils.Clay s ClayMin .27:297-300 . Schnitzer,M . 1969.Reaction sbetwee n fulvic acid,a soi lhumi c compound and in­ organic soil constituents.Soi lSei . Soc.Amer .Proc .33:75-81 . Schnitzer,M . 1978.Humi c substances:chemistr y and reactions.In :M . Schnitzer and S.U. Khan (eds.), SoilOrgani cMatter .Elsevier ,Amsterdam ,p .1-64 . Schnitzer,M . andJ.G .Desjardins . 1962.Molecula r and equivalentweights-o fth e organicmatte r ofa podzol .Soi l Sei.Soc .Amer .Proc .26:362-365 . Schnitzer, M. andJ.G .Desjardins .1969 .Chemica l characteristics ofa natura l soil leachate from ahumi cpodzol .Can .J . Soil Sei.49:151-158 . Schnitzer,M . andE.H .Hansen . 1970.Organo-metalli c interactions insoils :8 . Anevaluatio n ofmethod s forth edeterminatio n ofstabilit y constants ofmetal - fulvicaci d complexes.Soi lSei .109:333-340 . 64

Schnitzer,M . andS.U .Khan .1972 .Humi c substances inth eenvironment .Marce l Dekker,Ne wYork .32 7pp . Schnitzer,M .an dH .Kodama . 1976.Th edissolutio no fmica sb yfulvi c acid.Geo - derma15:381-391 . Schnitzer,M .an dH .Kodama . 1977.Reaction so fmineral swit h soilhumi c substan­ ces. In:J.B .Dixo nan dS.B .Wee d (eds.),Mineral s inSoi lEnvironments .Soi l Sei.Soc .Amer. ,Madison ,Wis. ,p .741-770 . Schnitzer,M .an dS.I.M .Skinner . 1963.Organo-metalli c interactions insoils:l . Reactions between anumbe ro fmeta l ionsan dth eorgani cmatte ro fa podzo l Bhhorizon .Soi l Sei.96:86-94 . Schnitzer,M .an dS.I.M .Skinner .1964 .Organo-metalli c interactions insoils:3 . Properties of iron and -organic matter complexes,prepare d inth e laboratoryan dextracte d from soil.Soi lSei.98:197-203 . Schnitzer,M . and S.I.M. Skinner. 1968.Alkal iversu s acid extractiono fsoi l organicmatter .Soi l Sei.105:392-396 . Schnitzer,M. ,J.R .Wrigh t andJ.G .Desjardins .1958 .A compariso no fth eeffec ­ tiveness ofvariou s extractants fororgani c matter fromtw ohorizon s ofa Podzolprofile .Can .J .Soi l Sei.38:49-53 . Schofield,R.K .1949 .Effec to fp Ho nelectri c charges carriedb ycla yparticles . J.Soi l Sei. 1:1-8. Schwertmann, U. 1959.Di e fractionierte Extraktion der freien Eisenoxide in Böden,ihr emineralogische nForme nun dihr eEntstehungsweisen .Z .Pflanzener ­ nähr.Düng .Bodenkunde ,84:194-204 . Schwertmann,U .1964 .Differenzierun g derEisenoxid e desBoden s durchExtraktio n mitAmmoniumoxalat-lösung .Z .Pflanzenernähr .Düng .Bodenkund e 105:194-202. Schwertmann,U .1973 .Us eo foxalat e forF eextractio n from soils.Can .J .Soi l Sei.53:244-246 . Singer,M. ,F.C .Ugolin i andJ .Zachara . 1978.I nsit ustud yo fpodzolizatio n ontephr a andbedrock .Soi l Sei.Soc .Amer .J .42:105-111 . Smith,G.D .1965 .Lecture s onsoi l classification.Pédologie .Specia l IssueNo .4 . BelgianSoi lSei .Soc .Ghent .13 4pp . SoilSurve y Staff.1960 .Soi lclassification ,a comprehensiv e system,7t happrox ­ imation.U.S .Gov't .Prtg .Off. ,Washington ,D.C .26 5pp . SoilSurve y Staff.1967 .Supplemen t toSoi l Classification System (7thApproxim ­ ation).U.S .Gov't .Prtg .Off .Washington ,D.C .20 7pp . Soil Survey Staff. 1975.Soi l Taxonomy.A basi c systemo fsoi l classification formakin g andinterpretin g soil surveys.Agric .Handbk .No .436 .U.S .Gov't . Prtg.Off. ,Washington ,D.C .20402 .75 4pp . Stace,H.C.T. ,G.D .Hubble ,R .Brewer ,K.H .Northeote ,J.R . Sleeman,M.J .Mulcah y and E.G.Hallsworth . 1968.A handboo ko fAustralia n soils.Relli m Technical Publications,Glenside ,Sout hAustralia .43 5pp . Stanley,S.R . andE.J .Ciolkosz .1980 .Classificatio nan dgenesi so fspodosol s of theCentra l Appalachians. Agron. Abstr.72n dAnnua lMeeting ,Amer .Soc . Agron.,Madison ,Wisconsin ,p .187 . Stevens,M.E .1963 .Podzo l development ona morain e nearJuneau ,Alaska .Soi l Sei. Soc.Amer .Proc .27:357-358 . Stobbe, P.C.an dJ.R .Wright .1959 .Moder n concepts ofth egenesi so fPodzols . Soil Sei.Soc .Amer .Proc .23:161-164 . 65

Tait, J.M., N. Yoshinaga and B.D.Mitchell . 1978.Th eoccurrenc e ofimogolit e in someScottis h soils.Soi l Sei. PlantNutr .24:145-151 . Tamm,0 . 1922.O mbestämnin ga vd eoorganisk a componenterna imarken s gelkomplex. Medd. Stat.Skogsförsöksanst .19:385-404 . Tamm,0 . 1932.Übe r dieOxalatmethod e inde rChemische n Bodenanalyse.Medd .Stat . Skogsförsöksanst.27:1-20 . Tan,K.H. ,H.F .Perkin s andR.A . McCreery. 1970.Th e characteristics,classific ­ ation and genesis of some tropical spodosols. Soil Sei. Soc. Amer.Proc . 34:775-779. Tavernier, R. 1963. The 7th approximation: its application inwester nEurope . Soil Sei.96:35-39 . Taylor, N.H. and I.J. Pohlen. 1968.Classificatio n ofNe w Zealand soils.Soil s ofNe w Zealand.Par t I.N.Z .Soi lBur .Bull .26(1) . 142pp . Tokashiki, Y. and K. Wada. 1975.Weatherin g implications ofth emineralog y of clay fractions of twoAnd o soils,Kyushu ,Geoderm a14:47-62 . Truog,E . 1928.Genera l exhibits.Soi l Sei.25:89-95 . U.S. Department of , SCS. 1972.Soi lsurve y laboratorymethod s and procedures for collecting soil samples. Soil Survey Investigations Report No. 1.Washington ,D.C .6 3pp . Van den Broek,J.M.M . 1965.Podzole n inTertiair e zanden inZuid-Limburg .Boo r enSpad e 14:184-195. VanDijk ,H . 1971.Catio nbindin g ofhumi cacids .Geoderm a5:53-67 . Van Oostrum, A.J.M. andD.L .Mokma . 1981.Determinatio n of carbon insoil san d soil extracts.Se eAppendi x of thisreport . Wada,K . andD.J . Greenland. 1970.Selectiv e dissolution and differential infra­ red spectroscopy for characterization of "amorphous" constituents insoi l clays. ClayMiner .8:241-254 . Walkley, A. and I.A. Black. 1934.A n examination of theDegtjaref fmetho d for determining and apropose d modification ofth e chromic acid titrationmethod . Soil Sei.37:29-38 . Wang, C, G.J. Beke and J.A.McKeague . 1978.Sit e characteristics,morpholog y and physicalpropertie s of selected ortstein soils from theMaritim eProvin ­ ces. Can.J . Soil Sei.58:405-420 . Wright,J.R . andM . Schnitzer. 1959.Oxygen-containin g functional groups inth e organic matter ofa podzo l soil.Natur e 184:1462-1463. Wright, J.R. and M. Schnitzer. 1963.Metallo-organi c interactions associated withpodzolization . Soil Sei.Soc .Amer .Proc .27:171-176 . 66

APPENDIX 1. DESCRIPTION OF THE DUTCH AND BELGIAN PROFILES

PROFILE NO.: NL-101 (Plate)

Location :Galgenberg , Province of Limburg, Netherlands 51°31'13" N; 6°07'52" E

Profile description 0 3 - 0 cm Very dark gray (10YR 3/1) decomposed needle litter; very friable; abrupt wavy boundary.

Ah 0 - 5 cm Very dark gray (10YR 3/1) and light brownish gray (10YR 6/2) sand; weak medium granular structure; very friable; abrupt wavy boundary; pH 4.0.

El 5-24 cm Dark brown (7.5YR 4/2) sand with common coarse distinct pinkish gray (7.5YR 6/2) mottles; single grained; loose; abrupt wavy boundary; pH 4.2

E2 24 - 41 cm Dark brown (7.5YR 4/2) sand with many coarse distinct pinkish gray (7.5YR 6/2) mottles; single grained; loose; abrupt wavy boundary; pH 4.2.

Bhl 41 - 45 cm Black (7.5YR 2/0) sand; weak medium subangular blocky to massive structure; friable; abrupt wavy boundary; pH 3.8.

Bh2 45 - 47 cm Black (5YR 2.5/1) sand; weak medium subangular blocky to massive structure; very friable; abrupt wavy boun­ dary; pH 3.8.

Bsl 47 - 53 cm Strong brown (7.5YR 5/8) sand; single grained; loose; clear wavy boundary; pH 4.1.

Bs2 53 - 82 cm Dark brown (7.5YR 3/2) sand; single grained; loose; clear wavy boundary; pH 4.4; contains tongues of Bh and Bs materials.

C/B 82 -150 cm Yellowish brown (10YR 5/4) sand, single grained, loose, C part; dark brown (7.5YR 3/2) sand, massive, very friable, B part as thin regularly spaced humus lamellae; pH 4.6. 67

PROFILE NO.:NL-10 2 (Plate)

Location :Swolgende r Heide, Province of Limburg, Netherlands 51°31'01" N; 6°07'51"E .

Profile description 0 5 - 0 cm Undecomposed ; abrupt smooth boundary.

El 0-19 cm Light gray (10YR 6/1) and gray (10YR 5/1) fine sand; single grained; loose; clear wavy boundary; pH 4.2.

E2 19 - 39 cm Light brownish gray (10YR 6/2) fine sand; single grain­ ed; loose; many fine vertical root casts; few vertical humus lamellae; abrupt wavy boundary; pH 4.0.

Bh 39 - 44 cm Dark brown (7.5YR 3/2) and brown (7.5YR 4/2) fine sand; massive; friable; composed of lamellae; clear wavy boundary; pH 4.1.

BC1 44 - 89 cm Brown (7.5YR 4/4) fine sand; single grained; loose; clear wavy boundary; common fine vertical root casts; pH 4.4.

BC2 89 -150 cm Yellowish brown (10YR 5/4) fine sand; single grained; loose; few fine vertical root casts; lamellae at 100 cm; pH 4.4.

PROFILE NO.: NL-103 (Plate)

Location :Swolgende r Heide, Province of Limburg, Netherlands 51°31'01" N, 6°07'51" E

Profile description 0 - 55 cm Wind blown fine sand.

Ahb 55 - 59 cm Dark gray (10YR 4/1) fine sand; loose;ver y friable; abrupt smooth boundary; pH 4.4.

Eb 59 - 73 cm Light gray (10YR 7/1) fine sand; single grained; loose- abruptwav y boundary; pH 5.0.

BEb 73 - 76 cm Gray (10YR 5/1) fine sand; single grained; loose; abrupt wavy boundary; pH 4.5.

Bhlb 76 - 80 cm Black (7.5YR 2/0) fine sand; weak medium subangular blocky structure to massive; very friable; abrupt wavy boundary; pH 4.3.

Bh2b 80 - 82 cm Black (5YR 2.5/1) fine sand; weak medium subangular blocky structure; very friable; abrupt wavy boundary; pH 4.2. 68

Bh3b 82 - 86 cm Dark reddish brown (5YR 3/2) fine sand; weak medium subangular blocky to platy structure; very friable; abrupt wavy boundary; pH 4.3.

BCb 86 -102 cm Yellowish brown (10YR 5/6) fine sand; single grained; loose; clear wavy boundary; pH 4.5.

C 102 -150 cm Pale yellow (2.5Y 7/4) fine sand; single grained; loose; pH 4.6.

PROFILE NO.: NL-104 (Plate)

Location :Wellerlooi , Province of Limburg, Netherlands 51°32'42" N, 6°07'44" E

Profile description 0 7 - 0 cm Decomposed needle litter and roots;ver y friable; abrupt smooth boundary.

Ah 0-18 cm Very dark gray (10YR 3/1) sand; weak medium granular structure; very friable; clear wavy boundary; pH 3.7.

E 18-38 cm Dark gray (10YR 4/1) sand; few fine gravels; single graines; loose; abrupt wavy boundary; pH 4.2.

Bhm 38 - 47 cm Black (7.5YR 2/0) sand; weak medium subangular blocky structure; very firm; strongly cemented; clear wavy boundary; pH 3.8.

Bhs 47 - 61 cm Very dark gray (5YR 3/1) sand; weak medium subangular blocky structure; very friable; abrupt wavy boundary; pH 3.8.

BC 61 -120 cm Brown (10YR 4/3) sand; single grained; loose; pH 4.2.

PROFILE NO.: NL-105 (plate)

Location :Renderklippen , Province of Gelderland, Netherlands 52°22'32" N, 5°59'10" E

Profile description 0 3 - 0 cm Decomposed'leaf an needle litter; very friable; abrupt smooth boundary.

Ah 0 - 7 cm Black (7.5YR 2/0) sand; weak medium granular structure; very friable; abrupt smooth boundary; pH 3.8. 69

E 7 - 16 cm Brown (7.5YR 5/2) fine sand; single grained; loose; abrupt wavy boundary; pH 4.0.

Bh 16 - 22 cm Black (7.5YR 2/0) sand; weak medium subangular blocky structure; very friable; abrupt wavy boundary; pH 3.9.

Bhsl 22 - 30 cm Dark reddish brown (5YR 2.5/2) sand with many coarse distinct strong brown (7.5YR 4/6) mottles; single grain­ ed; loose; clear wavy boundary; pH 4.0.

Bhs2 30 - 43 cm Dark brown (7.5YR 3/4) sand with many coarse distinct yellowish brown (10YR 5/6) mottles; single grained; loose; clear wavy boundary; pH 4.6.

BC1 43 - 61 cm Yellowish brown (10YR 5/6) gravelly sand; single grain­ ed; loose; clear wavy boundary; pH 4.7.

BC2 61 - 88 cm Brownish yellow (10YR 6/6) gravelly sand; single grain­ ed; loose; clear wavy boundary; pH 4.7.

C 88 -150 cm Light yellowish brown (10YR 6/4) fine sand; single grained; cryoturbate with streaks of iron accumulation and bleaching; pH 5.0.

PROFILE NO.: NL-106 (Plate)

Location :Havelterberg , Province of Drente, Netherlands. 52°47'19" N, 6°13'05" E.

Profile description 0 5 - 0 cm Decomposed leaf litter; very friable; abrupt smooth boundary.

Ahl 0 - 6 cm Very dark gray (10YR 3/1) loamy fine sand; weak medium granular structure; very friable; abrupt wavy boundary; pH 4.0.

Ah2 6 - 11 cm Black (5YR 2.5/1)loam y fine sand; weak medium granular structure; very friable; abrupt wavy boundary; pH 4.0.

E 11-22 cm Pinkish gray (7.5YR 6/2 and 7.5YR 5/2) loamy fine sand; massive; very friable; abrupt irregular boundary; pH 4.4.

Bhsl 22 - 29 cm Dark reddish brown (5YR 2.5/2) loamy fine sand; weak medium subangular blocky structure; very friable; ab­ rupt wavy boundary; pH 4.3.

Bhs2 29 - 35 cm Dark brown (7.5YR 4/4) loamy fine sand; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 4.4. 70

2BC 35- 4 5c m Darkyellowis hbrow n (10YR4/4 ) loam;wea kmediu msub - angular blocky structure; friable;abrup twav ybound ­ ary;p H4.5 . 2Cg 45- 6 5c m Pale yellow (2.5Y 7/4) loam; weak medium subangular blocky structure;blac k (5YR2.5/1 )Fe-M nconcretions ; friable;clea rwav yboundary ;p H4.6 .

PROFILENo. :NL-10 7

Location :Paasloo ,Provinc eo fFriesland ,Netherland s 52°49'06"N ,5°59'47 "E

Profiledescriptio n 0 7- 0c m Undecomposedlea flitter ;abrup twav yboundary . Ah 0-10 cm Verydar kgra y (10YR3/1 ) finesand ;wea kmediu mgranu ­ larstructure ;friable ;abrup twav yboundary ;p H3.6 . Aan 10- 4 5c m Very dark gray (10YR3/1 )fin esand ;wea kmediu mgra ­ nular structure;ver y friable; abruptwav yboundary ; pH3.9 . E 45-49 cm Darkgra y (10YR4/1 ) finesand ;singl egrained ;loose ; abruptbroke nboundary ;p H4.2 . Bh 49- 5 2c m Black (10YR 2/1) fine sand; weak medium subangular blocky structure;ver y friable;abrup twav yboundary ; pH4.1 . Bhsl 52- 5 7c m Dark reddishbrow n (5YR2.5/2 )fin esand ;wea kmediu m subangularblock ystructure ;ver y friable;abrup twav y boundary;p H4.2 . Bhs2 57- 6 0c m Darkreddis hbrow n (5YR3/2 ) finesand ;singl egrained ; loose;clea rwav yboundary ;p H4.3 . BC 60- 7 8c m Brown (7.5YR 4/4) fine sand; single grained;loose ; clearwav yboundary ;irregularl y spacedhumu slamellae ; pH4.4 . C 78-15 0c m Light yellowish brown (10YR 6/4) fine sand; single grained; loose;p H4.6 . 71

PROFILE NO.: NL-108 (Plate)

Location :Winterswijk , Province of Gelderland, Netherlands 51c57'57" N, 6°46'44" E

Profile description 0 4 - 0 cm Very dark brown (10YR 2/2) decomposed leaf litter; very friable; abrupt wavy boundary.

El 0 - 22 cm Gray (10YR 5/1) fine sand; single grained; loose; clear wavy boundary; pH 4.4.

E2 22 29 cm Gray (10YR 5/1) and very dark gray (10YR 3/1) fine sand; single grained; loose; abrupt wavy boundary; pH 4.5. Bh 29 - 37 cm Dark reddish brown (5YR 3/2) fine sand; weak medium subangular blocky structure; very friable; abrupt wavy boundary; pH 4.6.

Bsm 37 53 cm Strong brown (7.5YR 5/6) fine sand with thin light yel­ lowish brown (10YR 6/4) bands, massive; very firm; very strongly cemented; abrupt wavy boundary; pH 4.6.

BC1 53 82 cm Yellowish brown (10YR 4/6) fine sand; massive; very firm; strongly cemented; clear wavy boundary; pH 4.6.

BC2 82 -109 cm Light yellowish brown (10YR 6/4) fine sand; single grained; loose; clear wavy boundary; pH 4.6.

109-150 cm Very pale brown (10YR 7/4) fine sand; single grained; loose; pH 4.6.

PROFILE NO.: NL-109 (Plate)

Location :Winterswijk , Province of Gelderland, Netherlands 51c57,57" N, 6°45'16" E

Profile description 0 cm Very dark gray (10YR 3/1) decomposed leaf litter; very friable; abrupt smooth boundary.

El 0 - 18 cm Light brownish gray (10YR 6/2) loamy fine sand; 5% coarse gravel; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 3.6.

E2 18 22 cm Light gray (10YR 7/2) and very dark gray (10YR 3/1) gravelly loamy fine sand; 20%coars e gravel;wea k medium subangular blocky structure; very friable; abrupt wavy boundary; pH 3.4. 72

Bh 22 - 29 cm Dark reddish brown (5YR 3/2) gravelly fine sandy loam; weak coarse subangular blocky structure; friable; abrupt wavy boundary; pH 3.9.

Bhs 29 - 52 cm Dark brown (7.5YR 4/4) loamy fine sand with many medium faint light gray (10YR 7/2) and many coarse distinct strong brown (7.5YR 4/6) mottles; weak medium subangu­ lar blocky structure; very friable; abrupt wavy bound­ ary; p H 4.2.

2Cr 52 -100 cm Light gray (2.5Y 7/2) fine sandy loam with many medium prominent strong brown (7.5YR 5/8) mottles; pseudogley; massive; firm; pH 4.0.

PROFILE NO.:NL-11 0 (Plate)

Location :Brunssumerheide , Province of Limburg, Netherlands 50°55'49" N, 6°0'35" E

Profile description 0 5 - 0 cm Undecomposed leaf and needle litter; abrupt smooth boundary.

Ah 0 - 9 cm Very dark gray (10YR 3/1) fine sand; weak medium granu­ lar structure;ver y friable; clear wavy boundary; pH 3.8.

El 9 - 20 cm Gray (10YR 5/1) gravelly fine sand; single grained; loose; abrupt wavy boundary; pH 4.2.

Fiber 20 cm Very dark gray (10YR 3/1) fine sand; weak fine suban­ gular blocky structure; very friable; abrupt wavy bound­ ary; p H 4.0.

E2 20 - 70 cm Light gray (10YR 7/1) fine sand; single grained; loose; abrupt irregular boundary; concentration of gravel at lower boundary; pH 4.6.

Bhl 70 - 72 cm Black (7.5YR 2/0) fine sand; weak medium subangular blocky structure to massive; very friable; abrupt wavy boundary; pH 3.9.

Bh2 72 - 75 cm Black (5YR 2.5/1) fine sand; weak medium subangular blocky structure to massive; very friable; abrupt wavy boundary; pH 4.0.

Bhs 75 - 80 cm Dark reddish brown (5YR 3/2) fine sand with many coarse distinct yellowish red (5Y R 5/6) mottles; weak medium subangular blocky structure; clear wavy boundary; pH 4.2. 73

Bs 80 - 85 cm Dark reddish brown (5YR 3/3) fine sand with many coarse distinct strong brown (7.5YR 4/6) mottles; single grai­ ned; loose; clear irregular boundary; pH 4.5.

Bh3 85 - 87 cm Black (5YR 2.5/2) fine sand; weak medium subangular structure; very friable; abrupt irregular boundary; pH 4.5.

BC 87 -100 cm Very pale brown (10YR 7/4) fine sand; single grained; loose; clear broken boundary; many lamellae along joints, vertical and horizontal; pH 4.6.

C 100-150 cm Pale yellow (2.5Y 8/4) fine sand; single grained; loose; pH 4.9.

PROFILE NO.:B-10 1 (Plate)

Location :Meerhout , Province of Antwerpen, Belgium 51°09'02" N, 5°03'51" E

Profile description 0 8 - 0 cm Undecomposed needle litter; abrupt smooth boundary.

Ah 0 - 5 cm Dark gray (10YR 4/1) fine sand; weak medium granular structure; very friable; abrupt smooth boundary; pH 3.6.

E 5 - 15 cm Light gray (10YR 7/1) and light brownish gray (10YR 6/2) fine sand; single grained; loose; abrupt smooth boundary; pH 4.1.

Bh 15 - 18 cm Black (5YR 2.5/1) fine sand; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 4.1.

Bhs 18 - 28 cm Dark brown (7.5YR 3/2),yellowis h brown (10YR 5/4) and strong brown (7.5YR 4/6) fine sand; single grained; loose; clear wavy boundary; pH 4.2.

Bs 28 - 37 cm Dark reddish brown (2.5YR 3/4) and light yellowish brown (10YR 6/4) fine sand; single grained; loose; clear wavy boundary; pH 4.2.

B/C 37 - 59 cm Pale brown (10YR 6/3),brownis h yellow (10YR 6/6) and strong brown (7.5YR 5/8) fine sand, B part; light gray (2.5Y 7/2) fine sand, C part; single grained; loose; clear wavy boundary; pH 4.3.

Cr 59 - 89 cm Light gray (2.5Y 7/2) and yellowish red (5YR 5/6 and 5YR 4/6) fine sand; single grained; loose; abrupt ir­ regular boundary; pH 4.5. 74

Cg 89-12 0c m Brownishyello w (10YR6/6 ) andstron gbrow n (7.5YR 5/8) finesand ;singl egrained ;loose ;p H4.3 . C 120-150c m Pale olive (5Y 6/3) finesand ;singl egrained ;loose ; pH4.3 .

PROFILENo. :B-10 2 (Plate)

Location :Meerhout ,Provinc eo fAntwerpen ,Belgiu m 51°09I17"N ,5°04*17 "E

Profiledescriptio n 0 3- 0c m Decomposed needle litter;ver y friable,abrup tsmoot h boundary. Ep 0-29 cm Lightgra y (10YR6/1 ) finesand ;singl egrained ;loose ; abruptwav yboundary ;p H4.4 . Bhml 29- 4 7c m Dark reddish brown (2.5YR 2.5/2)fin e sand,massive ; verystrongl ycemented ;ver y firm,clea rwav yboundary ; pH4.4 . Bhm2 47- 6 2c m Dark reddish brown (5YR3/2 )fin esand ;massive ;ver y strongly cemented; very firm; clear wavy boundary; pH4.4 . Bhm3 62- 7 7c m Darkbrow n (7.5YR3/4 ) finesand ;massive ;ver ystrong ­ lycemented ;ver y firm;clea rwav yboundary ;p H4.6 . B 77-92 cm Brown (10YR4/3 )an ddar kbrow n (7.5YR3/4 ) finesand ; singlegrained ;loose ;abrup twav yboundary ;p H4.6 . Bhm4 92-11 0c m Dark reddish brown (5YR3/3 ) finesand ;massive ;ver y firm;abrup twav yboundary ;lamella eo fvaryin gthick ­ ness;p H4.5 . C 110-150c m Light yellowish brown (10YR 6/4) fine sand; single grained;loose ;p H4.7 .

PROFILENO. :B-10 3 (Plate)

Location :Meerhout ,provinc eo fAntwerpen ,Belgiu m 51°09'17"N ,5°04'17 "E 75

Profile description 0 - 23 cm Wind blown sand.

Ahb 23 - 30 cm Very dark gray (10YR 3/1) fine sand; weak medium granu­ lar structure; very friable; abrupt smooth boundary; pH 4.3.

Eb 30 - 58 cm Light gray (10YR 7/1) fine sand; single grained; loose; abrupt wavy boundary; pH 4.7.

EBb 58 - 85 cm Grayish brown (10YR 5/2) fine sand; single grained; loose; clear wavy boundary; pH 4.6.

Bhlb 85 -103 cm Dark reddish brown (5YR 3/3) fine sand; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 4.6.

Bh2b 103-125 cm Dark reddish brown (5YR 3/3) fine sand; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 4.5.

Bh3b 125-155 cm Dark reddish brown (5YR 3/4) fine sand; single grained; loose; abrupt wavy boundary; pH 4.5.

Bhmb 155-170 cm Black (5YR 2.5/1) fine sand; weak coarse subangular blocky structure to massive; strongly cemented; very firm; abrupt wavy boundary; pH 4.6.

PROFILE NO.: B-104 (Plate)

Location :Opgrimbie , Province of Limburg, Belgium 50°57'10" N, 5°38'03" E

Profile description 01 2 - 1 cm Undecomposed needle litter; abrupt smooth boundary.

02 0 cm Black (7.5YR 2/0) well decomposed needle litter; very friable; abrupt smooth boundary.

5 cm Very dark gray (10YR 3/1) loamy fine sand; weak medium Ah granular structure; very friable; abrupt wavy boundary; pH 3.8.

18 cm Grayish brown (10YR 5/2) gravelly fine sand; weak me­ El dium subangular blocky structure;ver y friable; clear wavy boundary; pH 4.1.

18 33 cm Brown (7.5YR 5/2) gravelly fine sand; weak medium su­ E2 bangular blocky structure; very friable; abrupt wavy boundary; pH 4.1. 76

Bhl 33- 3 6c m Black (ÏOYR 2/1) slightly gravelly loamy fine sand; weakmediu m subangularblock y structure;ver yfriable ; abruptwav yboundary ;p H3.9 . Bh2 36- 4 0c m Black (5YR2.5/1 )gravell yloam y finesand ;wea kmediu m subangular blocky to platy structure;ver y friable; abruptwav yboundary ;p H3.9 . Bh3 40- 4 2c m Darkreddis hbrow n (5YR2.5/1 )gravell y finesand ;wea k medium subangularblock yt oplat ystructure ;ver y fri­ able;wav yboundary ;p H4.1 . Bhsl 42- 5 3c m Dark reddishbrow n (5YR3/3 )gravell y finesand ;wea k medium subangularblock yt oplat ystructure ;ver y fri­ ableclea rwav yboundary ;p H4.3 . Bhs2 53- 7 0c m Darkbrow n (7.5YR4/4 )gravell y finesand ;wea kmediu m subangular blocky structure;ver y friable;clea rwav y boundary;p H4.4 . 2Cg 70-10 0c m Light reddish brown (5YR6/3 )wit hman ycoars epromi ­ nent strong brown (7.5YR 5/6)mottle s and yellowish brown (10YR5/6 )wit hman ycoars eprominen tdar kbrow n (7.5YR4/4 )mottles ;loam y finesand ;massive ;friable ; pH4.3 .

PROFILENO. :B-10 5 (Plate)

Location :Opgrimbie ,Provinc e ofLimburg ,Belgiu m 50°57,23"N ,5°38'34 "E

Profiledescriptio n 0 2- 0c m Decomposed needle litter;ver y friable;abrup tsmoot h boundary. Ah 0- 8c m Verydar kgra y (10YR3/1 ) finesand ;wea kmediu mgranu ­ lar blocky structure; very friable; abrupt smooth boundary;p H4.3 . E 8- 2 3c m Lightgra y (10YR6/1 ) finesand ;singl egrained ;loose ; abruptwav yboundary ;p H4.6 . Bh 23- 3 0c m Verydar kgra y (10YR3/1 ) finesand ;wea kmediu msuban ­ gularblock y structure;ver y friable;clea rwav ybound ­ ary;p H3.9 . Bhs 30- 3 5c m Dark reddish brown (5YR2.5/2 )fin esand ;wea kmediu m subangular blocky structure;ver y friable;clea rwav y boundary:p H4.1 . 77

BC 35- 9 1c m Darkyellowis hbrow n (10YR4/4 ) finesand ;singl egrain ­ ed;loose ;abrup tsmoot hboundary ;man ythi nhorizonta l lamellae,irregularl y spaced;p H4.6 . C 91-15 0c m Light gray (2.5Y 7/2)an dpal eyello w (2.5Y7/4 )fin e sand;singl egrained ;loose ;p H4.6 .

PROFILENO. :B-10 6 (Plate)

Location :Opgrimbie ,Provinc eo fLimburg ,Belgiu m 50°57'23"N , 5°38'34"E

Profiledescriptio n 0 7- 0c m Verydar kgra y (10YR3/1 )decompose d leaflitter ;ver y friable;abrupt ;smoot hboundary . Ah 0- 1 5c m Verydar kgra y (10YR3/1 ) finesand ;wea kmediu msuban - gularblock y structure;ver y friable;clea r smoothbound ­ ary;p H3.6 . E 15-31 cm Lightbrownis hgra y (10YR6/2 ) finesand ;singl egrained ; loose; clear smooth boundary;man y fine rootcasts ; pH4.2 . BE 31- 4 0c m Brown (7.5YR 4/2) fine sand; weak medium subangula r blocky structure;ver y friable;clea rsmoot hboundary ; common fineroo tcast s;p H4.2 . Bh 40- 4 9c m Darkbrow n (7.5YR3/4 ) finesand ;wea kmediu msubangu - larblock ystructure ;ver y friable;clea rsmoot hbound ­ ary;commo n fineroo tcasts ;p H4.2 . BC 49- 6 1c m Darkbrow n (7.5YR4/4 )uppe r2 c man dbrow n (10YR 4/3) finesand ;singl egrained ;loos eabrup twav yboundary ; commonfin eroo tcasts ;p H4.4 . C 61-15 0c m Lightgra y (10YR7/2 ) finesand ;singl egrained ;loose ; common fineroo tcasts ;p H4.5 .

ISMPROFIL ENO. :USA- 1 (Plate)

Location :Emme tCounty ,Michigan ,Unite d Stateso fAmeric a 40°27'52"N ,84°43'53 "W

Profiledescriptio n 0 5- 0c m Black (10YR2/1 )wel ldecompose d leaflitte rcontainin g a large amount ofminera l soil;wea kmediu mgranula r structure;ver y friable;abrup tsmoot hboundary . 78

E O- 2 3c m Lightbrownis h gray (10YR 6/2) sand; singlegrained ; loose;abrup tirregula rboundary ;p H5.0 . Bh 23- 3 2c m Darkreddis hbrow n (5YR2/2 )sand ;wea kmediu msubangu - larblock y structure;ver y friable;som e fragmentso f stronglycemente d ortstein;abrup tirregula rboundary ; pH4.7 . Bhs 32- 5 0c m Brown (7.5YR 4/4) sand;wea kmediu m subangularblock y structure; very friable; some fragments of strongly cemented ortstein;clea r irregularboundary ;p H4.9 . BC 50- 8 8c m Yellowishbrow n (10YR5/6 )sand ;wea kcoars e subangular blocky structure;ver y friable;som efragment so fweak ­ lycemente d ortstein;gradua lwav yboundary ;p H5.1 . C 88-13 0c m Yellowishbrow n (10YR5/4 )sand ;singl egrained ;loose ; pH5.8 .

APPENDIX2 . DESCRIPTIONSO FTH ERUSSIA NPROFILE S

ISMPROFIL ENO. :GMC- 4 (Plate)

Location :Nea rLeningrad , SovietUnio n About60 °N ,30 °E

Profiledescriptio n 0 5- 0c m Black (10YR 2/1) decomposed leaf litter;wea kmediu m platystructure ;friable ;abrup tsmoot hboundary . El 0-12 cm Pinkish gray (7.5YR 6/2) loamyver y finesand ;singl e grained;loose ;clea rwav yboundary ;p H3.7 . E2 12- 1 9c m Lightbrownis h gray (10YR 6/2) loamyver y finesand ; singlegrained ;loose ;abrup twav yboundary ;p H4.1 . BE 19- 2 3c m Darkbrow n (7.5YR4/2 )ver y finesand ;wea k finesuban ­ gularblock ystructure ;ver y friable;clea rwav ybound ­ ary;p H4.3 . Bh 23- 3 0c m Darkreddis hbrow n (5YR3/4 )loam yver y finesand ;wea k finesubangula rblock y structure;friable ;abrup tsmoot h boundary;p H4.2 . Bhs 30- 3 6c m Darkbrow n (7.5YR3/4 )ver y finesand ;wea kmediu msub - angular blocky structure; very friable; clear wavy boundary;p H4.3 . Bs 36- 4 2c m Dark yellowish brown (10YR4/4 )loam yver y finesand ; weak fine subangular blocky structure;ver y friable; abruptsmoot hboundary ;p H5.2 . 79

2Cg 42- 5 8c m Pale brown (10YR 6/3) very fine sandyloa mwit hman y coarseprominen tstron gbrow n (7.5YR5/6 )mottles ;wea k coarse subangular blocky structure; friable; clear smoothboundary ;p H5.0 . 2Crl 58- 7 5c m Light gray (2.5Y 7/2) very fine sandyloa mwit hman y coarseprominen tdar kbrow n (7.5YR4/4 )mottles ;moder ­ atever y coarse subangularblock ystructure ;friable ; clearsmoot hboundary ;p H5.6 . 2Cr2 75- 9 5c m Light gray (2.5Y 7/2) very fine sandyloa mwit hman y coarseprominen tdar kyellowis hbrow n (10YR4/4 )mott ­ les;wea kmediu m subangularblock y structure;friable ; pH6.4 .

ISMPROFIL ENO. :GMC- 6

Location :Velikiy eLuk iRegion ,Sovie tUnio n About56 °N ,30 °E

Profiledescriptio n Ap 0-12 cm Dark grayish brown (10YR 4/2) clay loam;wea kmediu m subangularblock ystructure ;firm ;abrup tsmoot hbound ­ ary;p H6.5 . E/B 12- 2 1c m Palebrow n (10YR6/3 )A part ;dar kbrow n (7.5YR4/4 )B part; silty clay loam;wea k medium subangularblock y structure;firm ;clea rwav yboundary ;p H5.4 . B/E 21- 3 0c m Reddish brown (5YR 4/4)B part ;ligh tyellowis hbrow n (10YR 6/4) A part; silty clay;wea k fine subangular blocky structure; very firm; clear wavy boundary; pH5.1 . Bt 30- 5 7c m Reddishbrow n (5YR4/4 )silt yclay ;moderat ever yfin e angularblock ystructure ;ver y firm;abrup twav ybound ­ ary;p H5.0 . 2Cr 57- 6 6c m Gray (10YR6/1 )cla ywit hcommo nmediu mprominen tstron g brown (7.5YR 4/6) mottles;wea k fine angular blocky structure,ver y firm;abrup twav yboundary ;p H4.9 . 2C1 66- 7 3c m Dark brown (7.5YR 4/4)cla ywit hcommo n finedistinc t yellowish brown (10YR 5/6)an dgra y (5Y6/1 )mottles ; weak medium subangular blocky structure;ver y firm; abruptwav yboundary ;p H.5.0 . 80

2C2 73- 8 5c m Darkbrow n (7.5YR4/4 )sand ycla yloam ;moderat emediu m subangularblock y structure;firm ;clea rwav yboundary ; pH5.0 . 2C3 85- 9 2c m Light olive gray (5Y6/2 ) sandycla yloa mwit hcommo n mediumprominen tstron gbrow n (7.5YR 5/8)mottles ;wea k medium subangular blocky structure;firm ;abrup twav y boundary;p H5.4 . 3C 92-10 0c m Darkbrow n (7.5YR4/4 )sand yloa mwit hman ycoars epro ­ minent gray (5Y 6/1) and yellowish brown (10YR 5/8) mottles;wea kcoars esubangula rblock y structure;fri ­ able;p H5.4 .

ISMPROFIL ENO .: GMC- 7

Location :Nea rLeningrad ,Sovie tUnio n About60 °N ,30 °E

Profiledescriptio n Ah 0- 5c m Very dark grayish brown (10YR 3/2) loam;wea kmediu m granularstructure ;friable ;clea rsmoot hboundary . Bs 5-13 cm Yellowishbrow n (10YR5/4 )loam ;wea kmediu m subangular blocky structure; friable; clear smooth boundary; pH4.8 . E 13-25 cm Light brownish gray (2.5Y 6/2) loam;ver y weak fine subangularblock y structure;friable ;abrup tirregula r boundary;p H4.9 . Btl 25- 5 4c m Darkyellowis hbrow n (10YR4/4 )loam ;wea kmediu msub - angularblock y structure;friable ;clea rwav yboundary ; pH5.1 . Bt2 54- 6 9c m Yellowishbrow n (10YR5/4 )loa mwit hcoars emediu mdis ­ tinct strong brown (7.5YR 5/6) mottle s; wea k medium subangular blocky structure; friable; clear smooth boundary;p H5.8 . BCr 69- 8 5c m Grayishbrow n (2.5Y5/2 )loa mwit hcoars emediu mpromi ­ nent yellowish brown (10YR 5/6)mottles ;wea kcoars e platyt owea k finesubangula rblock y structure;friable ; clearsmoot hboundary ;p H5.8 . C 85- 10 0c m Lightoliv ebrow n (2.5Y5/4 )loa mwit hman ycoars edis ­ tinct olive gray (5Y 5/2)mottles ;wea kcoars eplat y towea k medium subangular blocky structure;friable ; pH5.3 . 81

ISM PROFILE NO.: GMC-8 (Plate)

Location :Nea r Leningrad, Soviet Union About 60° N, 30e E

Profile description Ah 17 cm Very dark grayish brown (10YR 3/2) fine sandy loam; weak medium granular structure; friable; abrupt smooth boundary; pH 6.1.

17 32 cm Light gray (10YR 7/2) loamy fine sand; single grained; loose; clear wavy boundary; pH 6.3.

EB 32 37 cm Grayish brown (10YR 5/2) loamy fine sand; weak fine subangular blocky structure; very friable, abrupt wavy boundary; pH 5.6. Bhml 37 49 cm Dark reddish brown (5YR 3/2) fine sand; strong coarse subangular blocky structure to massive; very firm; clear wavy boundary; pH 4.7.

Bhm2 49 64 cm Dark brown (7.5YR 4/4) fine sand; strong coarse suban­ gular blocky structure to massive; very firm; clear wavy boundary; pH 4.5.

Bs 64 78 cm Dark brown (7.5YR 4/4) fine sand; weak medium subangular blocky structure; very friable; clear wavy boundary; pH 4.6.

BC 78 93 cm Yellowish brown (10YR 5/4) fine sand; single grained; loose; pH 4.7.

2C 93 -100 cm Pale brown (10YR 6/3) fine sandy loam; weak coarse sub- angular blocky structure; friable; pH 4.7.

ISM PROFILE NO.: GMC-13

Location :Rzhè v District of Kaolin Oblast, Soviet Union About 56° N, 35° E

Profile description 0 4 - 0 cm Black (10YR 2/1) charred twigs; abrupt smooth boundary.

Ah 0-10 cm Grayish brown (10YR 5/2) sandy loam; weak medium sub- angular blocky structure; friable; clear wavy bound­ ary; pH 4.0.

El 10 - 19 cm Light gray (10YR 7/2) sandy loam, weak medium subangular blocky structure; friable; abrupt smooth boundary; pH 4.8. 82

Bs 19- 3 2c m Yellowishbrow n (10YR5/4 )sand yloam ;wea kmediu msub - angularblock ystructure ;friable ;clea rwav yboundary ; pH5.2 . E2 32- 4 6c m Lightyellowis h brown (10YR6/4 ) sandyloam ;wea kme ­ dium subangularblock y structure;friable ;abrup twav y boundary;p H5.7 . 2Btl 46- 6 8c m Lightyellowis hbrow n (10YR6/4 ) loamwit hcommo ncoar ­ se distinct strong brown (7.5YR 5/6),dar k brown (7.5YR 4/4) andpal e brown (10YR 6/3) mottles;wea k medium subangular blocky structure; friable;abrup t smoothboundary ;p H4.5 . 2Bt2 68- 9 6c m Brown (7.5YR 5/4) sandy loam with commonmediu m dis­ tinct reddish brown (5YR 5/4) and lightbrow n(7.5Y R 6/4)mottles ;moderat emediu m subangularblock ystruc ­ ture; friable;p H4.6 . 83

ONMNOO-O

•> *3 CM — — m m (N o o o c

) Oi m >o in s ^ IN - o 0\ oo a\ r--

' CO N O (•! O *

fl>îi/linyO->IvO < >C iC >C OiO

o o oo, ooooooooo o o o o o o o oor

OOm

I I I ( I I I I I I I I I I I I I I I m O \D — MOimm •IONOM ^- N O ^ lO CO — CM CS t-1 *ï

-„.cgiu i o <2 < w m o i O<

1 %C r*- — O O - O - N N • l o — < o no-

. o — o o o o o

JOO — — o o o o — o

j -a- *» (M -a aim o cc m \D O •

coofMcn-croor -» -3- -» -» f

o o sO -»-»•* -» oo, 'tor«vt)OAcKi o mr

O O o o o o o oooooooo o o o o o ooL M « o of a3 r — ui r- M-ci o *•»•»•» m o m — m o

M^-jinco

> M J) - J w m M « oS U y U< WPQP co m « o i o < W ( 84

— O O O O O - O O — O O O

3vCvC*vÛ^\CvC\0-J

t -3- Cl CN O \o N oo n IO n

>ï O W (O •» IS " o> O I*» o — o\ r»0 0 r-r *i~ -f -0 0

\0 —— -ï m in oo o>o \0 0 O 00- ^

O O t CM Cv| CMC M en O O o O m

o o — O O ~ O CM O • o — o o o o o o — o o o o o o

.0 .ß .O Ä m > A .o- O O .C .£> tO J — u < w w e OO

•JOOOrt'J'JM^MO joenm — — oo

• mcMmon — ooo- JO___-_ooo O O O — O O O

èsU OA 00 00 O** 00 I4N1MN(S---- - O O O tM — —

HrtiO-JCCO-JMnN-J ^»•ïifltni^iö'iK

.CO>D-jeONO>JO 1 O — — »© t

OON^-Ï-NO** i \c m -» * ~» -»

o o OOI. o ml

o o o oL OOOOOOO oor

I I I I I I t I l l 1 O «1 M OtM * 00 00 00 o ooomioooeor^CTicriO

— CM en <_>u o i owcQosmcooau 85

S ft -T vj vT -vT vj o: o; en S >4 >4 >. « Î ai aü ai « na B! . in m i/ï &-.

^ O N ^o <^ co I-J4-JO • * - -COCOI

o O — — I-v oo oo m

rs o — -vT ei r vj vt

- \o ü-i u-i \o m

f> S ei ei PI ^ __ f

) v* vT CM O O Os IA (O ffi •» 1- » -* ^Tn u > ei O CM< t o

co rv. oo rv •& \o ï ooo PIo m • O O O O O O

O O OO — OO — o o o - iO d f-v oo - - O O O O O O oO oo

nnoooo CM ei m oo ci

I I I i i O e> CM O 00

k °S; j d d tfiU

\orv.cMc*ieMeiP"icMO"> v£i (O — m o * Otomnt

1 OA — O "1 |v (^ \0 Oir-l/KNNM-l »O* NN N «•

*•» - ON t O — CM PI — O 0*>«00CH0\0"iO-

>sO00C0u-»v?v?\Ou vv5-CMOO\OOPlrv,cji

(MCMvtCM — O — CM - ion>o-vD- O O vO 0> 0 i-ï io o o ~ (o n

Oo oo j o — m u-i o -» v -» *0 UI -ï O ui oo oo - O O O O O O •OO-W-JiO OO — vJo — — o oo

-0!-vvDC*lu*ICMO i-vooonvï-ocno JPlu-lvOr-OOOiO I I I I I I I l' I I I I I Orv.ooopt-3-om

OUUMMMMNiNN (J

•o -a- -» -» -» st

l©-fr-»-tfvO-ï-

«^tonoo>444vo -*OCTs-»(N — eo-ïc

-O-NiOOlO'-iOf

4 O — O — O O

I I I I I I I I I Ofl0i0M0iN-\0- 1'

Z H< Wffl (O C

r -a- oo -^. oo *© ^. r^ ID co oo i ro Pd Pi OS OS od >H« Pd Pd PÜ >. >* s- PS ca cd >- oi >- cdu- i >- &->->-iU-iinm S« t« >• m p- o >< • o o o o • • • o o o -o

•4NN O O O O - — — c-l -

-MO-J nNNMOV'ï § ml°l»

(O

» 00 \0 * *0 ^ "^ *

O O O O O

O O o o o o o o o o o o o o o o o o o o O O, oor

se I I I I Ö Ó Ó 00 ••O 00 u

OUtfltQU 87

« >- pö ai ps pij os &- od od od od 1 « ifl >< |H Dn >< >4 UI JM >4 >4 Jw . >4 . o o o o o • o o o o

O O rsl —

ö\ ~ oi 0 O P"l »- 00 Of^iOiOulOO IO ifl ifl Oi

m O 1^ 00 O O u

I I I t I o o m o co O «*ï o o o o

[dpapapaPQU — uooooflQo uunnMca i unnu

lO CM £ *£> <•;• * •* od Pd Od pd BS m «_, od Pd od Pd Pd od S- >< ad ad p- >->-&-. od >i Pa od od pj pd Pd pd pd cd i» m m >H ^ m m in ifl oi >-m >< ;w >* s* >* >• »H >4 >4 m '' • • o o . • • • >t o «o o o o O O O O O r- r> — — (M >< s

N-ONf

ff - M(N

ID M •» m »ï \o - - O r^ eo m m vo

JNNNM

O O o oL « Ol >} « N ON'

oi in o o m o -ï o o in m m oo

53i isiSc < 5| » pa (_> CM o $*i 88

APPENDIX 4A. SELECTED CHEMICAL PROPERTIES AND CARBON/SESQUIOXIDES ATOMIC RATIOS* OF DUTCH, BELGIAN AND SWISS PROFILES

Amorphous Matter Extractions Pyrophosphate Extract Atonic Ratios

Soil pH Hori­ Depth KCl H 0 C C pH 8.2 Ses AM clay clay clay Ses. ? t h zon (») I %

NL-101 Netherlands Orthic Podzol Haplohumod Ah 0- 5 3.0 4.0 2.76 1.16 .09 .02 .0.1 .77 3.7 12.7 .05 .82 86.6 119 50.2 El 5- 24 3.4 4.2 .43 .19 .06 .00 .01 .15 .05 .05 .14 0 69.8 69.8 £2 24- 41 :i,s 4 2 .20 .11 .16 .00 .01 .13 1.1 2.1 29.3 60.5 19.7 Bhl 41- 45 .1.1 3.R 2.39 1.45 .35 .12 .14 2.43 3,2 25.5 32.2 62.8 21,3 Bh2 45- 47 3.4 3 R 2.11 1.75 .47 .19 .30 2.06 24.6 22.1 34.3 13.4 Bsl 47- 53 4.1 4.1 .45 .32 .49 .09 .35 .46 fi.fi3.0 7.7 10.4 6.9 4.1 BsZ 53- 82 4.4 4 4 .38 .30 .29 .10 .1? .42 6.2 5.9 8.6 17.8 5.8 C/B 82-150 4.6 4.6 .06 .05 .14 .03 .03 .05 2.9 4.4 .11 2.8 11.6 2.3 fiber 95 4.4 4.4 .41 .29 4.0 I.H .58 6.4 21.6 4.9 fiber 150 4.6 4.6 .07 .06 .04 .04 .07 .06 4.2 4.2 1.23 1.17 1 .22 4.1 15.4 .50 1.58

NL-102 Netherlands Gleyic Podzol Aerie Haplaquod 0- 19 3.3 4.2 .01 .01 .01 .45 .01 .01 2.3 1.00 101 68.3 E2 19- 39 3.6 4.0 2.7 4.5 .02 .34 .34 1.00 36.0 36.0 Bh 39-4 4 3.84. 1 .00 .06 .00 .84 .09 .00 6.5 7.7 .47 1.50 21.0 21.0 BC1 44-8 9 4.1 4.4 .00 .04 .00 .43 .07 .00 0 6.8 .25 1.40 13.8 13.8 BC2 89-150 4.3 4.4 .00 .04 .00 .37 .05 .00 3.1 5.1 .42 1.00 16.7 16.7

NL-103 Netherlands Gleyic Podzol Aerie Haplaquod Ahb 55- 59 4.3 4.4 .85 .61 3 .07 .09 .0! .06 2.6 5.5 .05 .30 .28 .94 18.5 57.4 14.0 Eb 59- 73 4.7 5.0 .12 .05 0 .01 .01 .01 .01 1.1 .2 1.00 69.1 BEb 73- 76 4.3 4.5 .77 .60 1 .10 .02 .0! .03 .81 .09 .02 3.1 7.8 11 .92 .90 .92 20.3 188 18.3 Bhlb 76- 80 4.1 4.3 2.58 2.27 1 .34 .01 .31 .01 2.92 .37 .01 9.0 27.7 .38 3.30 38 3.30 3.29 1.09 17.8 1363 17.5 Bh2b 80- 82 4.0 4.2 2.47 1.16 1 .32 .01 .3C .01 2.26 .33 .01 7.9 29.6 .34 2.60 34 2.60 2.59 1.03 15.4 1055 15.2 Bh3b 82- 86 4.1 4.3 1.79 1.68 1 .39 .03 .41 .01 1.81 .40 .01 0 19.2 .41 2.22 41 2.22 2.21 .98 10.2 845 10.1 BCb 86-102 4.5 4.5 .51 .55 .01 .60 .20 .01 1.5 5.8 .21 .81 .80 1.00 6.8 279 102-150 4.5 4.6 .21 .24 1.6 3.4 .10 .83 5.3 97.7

NL-104 Netherlands Orthic Podzol Typic Haplohumod Ah 0- 18 2.7 3.7 3.58 2.27 1 .04 .07 .03 04 1.61 04 6 7 14.3 09 1.70 .09 1.70 1,65 .82 90.6 150 56.5 E 18- 38 3.2 4.2 .54 .31 1 .03 .15 .00 01 .36 .01 1,1 0 02 .38 .02 .38 .37 54.6 Bhm 38- 47 3.0 3.8 3.81 3.15 3 .22 .27 .20 24 3.01 .24 12.3 21.2 .45 3.46 .15 1.15 1.08 28.2 66.9 19.8 Bhs 47- 61 3.5 3.8 1.94 1.91 0 .18 .71 .16 59 1.83 .21 8 3 21.0 .8.3 2.66 19.6 13.8 8.1 BC 61-120 4.2 4.2 .27 .28 1 .08 .24 .07 OB .35 .08 3.2 2.0 .17 .52 -.17 -.52 -.43 9.8 6.4 NL-105 Netherlands Orthic Podzol Typic Haplorthod/Typic Haplohumod Ah 0- 7 2.8 3,8 3.89 1.55 6.0 14.4 09 1.60 84.9 141 52.9 E 7- 16 3.2 4,0 1.05 .44 5.1 4.4 OR .56 .03 .28 0.27 57.4 79.1 33.3 Bh 16- 22 3.4 3.9 2.68 1.32 47 2.41 4.9 22.3 .64 3.05 .21 1.02 .87 28.5 24.9 13.3 Bhsl 22- 30 3.7 4.0 1.59 1.31 56 1.35 5.2 12.2 .70 2.05 .35 1.03 .76 19.0 11.6 7.2 Bhs2 30- 43 4.4 4.6 1.04 .7! 15 .86 .13 1.3 7.7 .39 1.25 7.4 30.8 BC1 43- 61 4.6 4,7 .38 .30 06 .29 4.7 45.0 BC2 61- 88 4.7 4.7 .10 .13 03 .10 3.8 23.3 C 88-150 4.8 5.0 .07 .06 3.4 27.9

NL-106 Netherlands Cambic Arenosol Spodic Udipsamment Ahl 0- 6 3.1 4 0 6.02 2.46 09 .09 2.25 5.9 22.0 ,21 2.46 50.6 33.1 Ah2 6- 11 3.2 4,0 2.98 1.68 .05 .05 1.14 2.1 11.1 .10 1.24 .05 .62 .59 .71 64.1 37.2 E 11- 22 3.5 4.4 .36 .39 .02 .02 .38 2.9 03 .41 85.5 43.5 Bhsl 22- 29 3.7 4,3 2.20 1.49 .25 .64 1.96 (6.)9 18.2 .92 2.88 .28 1.02 16.9 13.8 7.6 Bhs2 29- 35 4.1 4,4 2.11 1.55 ,46 .54 2.07 5.0 19.1 1.03 3.10 .43 1.01 9.0 18.9 6.1 2B e 35- 45 4.4 4.5 .55 .35 .28 .13 .47 0 6.0 .29 ,/6 6.2 18.2 4.6 2Cg 45- 65 4.4 4.6 .19 .14 .17 .09 .20 4.5 11.6

NL-107 Netherlands Orthic Podzol Plaggeptic Haplohumod 0- 10 2.7 3.6 4.49 2.67 5,0 13.6 2.00 09 1.00 .94 1.06 65.5 40.0 10- 45 3.4 3.9 2.07 1.53 .16 .05 .15 1.30 .07 3,5 9.5 1.54 12 .77 .69 1.09 41.8 35.6 19.2 45- 49 3.7 4.2 1.25 .88 2.4 3.0 .99 14 .99 .91 1.27 31.9 49.6 19.4 Bh 49- 52 3.7 4.1 3.31 2.32 2 31 9.5 23.6 3.94 37 1.97 1.78 1.07 20.1 40.4 13.4 Bhsl 52- 57 3.8 4.2 1.76 1.32 1 .20 4 6 16.1 2.21 2.21 1.65 1.04 13.2 11.8 6.2 Bhs2 57- 60 4.0 4.3 1.04 .82 2 .13 .28 1.01 3 6 H.4 1.51 25 .76 .60 .96 12.6 14.7 6.8 BC 60- 78 4.2 4.4 .73 .54 0 .16 .09 ./7 1.1 5.3 1.00 8.7 32.6 6.8 3.9 27.9 3.4 C 78-150 4.5 4.6 .14 .11 0 06 .02 .12 69.8 fiber 90 4.5 4.5 .32 .30 0 .10 .03 .30 6.1

NL-108 Netherlands Humic Podzol Tj pic El 0- 22 3.6 4.4 1.68 1.09 .01 1.07 R,n 11.2 .08 1 16 .58 .57 1.00 34.4 498 32.2 22- 29 3.8 4.5 1.49 1.03 .00 1.20 4 6 8.2 .13 1 31 1.33 1.33 1.00 20.8 20.8 29- 37 4.0 4.5 1.53 1.46 .02 .00 1.41 5 8 14.3 .30 l.7l .86 .85 1.20 10.9 658 10.8 Bsm 37- 53 4.4 4.6 .48 .45 .23 .1/ .53 0,5 5.0 .34 R7 .87 7.0 14.5 4.7 8C1 53- 82 4.5 4.6 .41 .35 0 3.0 .25 .66 .86 5.8 21.2 BC2 82-109 4.5 4.6 .21 .18 0 0.5 .12 .32 1.00 4.5 46.5 C 109-150 4.6 4.6 .08 .09 .04 .07 .02 20.9 NL-109 Netherlands Orthic Podzol Aquic Haplorthod El 0- 18 3.0 3.6 1.61 .89 5 .03 .03 .01 .81 .04 .02 3.4 8.0 .06 .87 .17 .86 45.6 36.7 E2 18- 22 3.2 3.4 1.96 1.31 2 .07 .46 1.00 32.3 29.9 Bh 22- 29 3.9 3.9 1.31 1.14 4 .05 1.37 .37 1.74 .42 1.06 9.6 9.0 Bhs 29- 52 4.2 4.2 .79 .70 2 .42 .81 .49 1.30 .56 4.7 2Cr 52-100 3.7 4.0 .13 .11 17 .47 .65 .03 .58 89

Atomic Ratios CEC/

V V Ct Ch

Soil pH Soil pH A, Fe S A F S Fe S F S pH 8.2 pH 8.2 d d "d '. «. ". P P ^P *'d d "d *'o 'o ". *'p F8P SeSp

NL-101 Netherlands Orthic Podzol Typic Haplohumod 311 143 98 311 429 180 311 429 180 131 60.1 41.2 131 180 75.7 131 186 75.7 1.3 4.6 3.2 10.9 96.7 33.4 24.9 200 200 200 200 42.7 14.8 11.0 88.7 88.7 88.7 88.7 8.8 11.4 20.0 25.8 45.0 5.8 5.2 - 93.3 93.3 45.0 93.3 30.4 24.8 3.2 2.8 - 51.3 51.3 24.- 8 51.3 16.7 5.5 10.5 10.0 19.1 38.4 31.9 17.4 44.- 8 79.7 28.7 31.6 62.0 20.9 23.3 19.3 10.6 27.- 2 48.3 17.4 19.2 37.6 12.7 5.5 10.7 9.1 17.6 25.0 21.0 11.4 25.0 32.8 14.2 22.6 35.2 13.8 20.7 17.4 9.5 20.7 27.2 11.8 18.8 29.2 11.4 7.9 11.7 9.5 14.1 10.1 4.3 3.0 11.3 6.0 3.9 10.1 6.8 4.1 7.2 3.0 2.1 8.0 4.3 2.8 7.2 4.8 2.9 6.7 17.1 9.4 24.1 7.1 6.1 3.3 8.6 14.8 5.4 7.8 16.1 5.2 5.6 4.8 2.6 6.7 11.7 4.3 6.1 12.7 4.1 16.3 15.5 20.7 19.7 2.7 2.0 1.1 4.5 9.3 3.0 3.4 14.0 2.7 2.3 1.7 1.0 3.8 7.8 2.5 2.8 11.7 2.3 48.3 73.3 58.0 88.0 9.2 10.1 4.8 9.2 23.9 6.7 7.1 23.9 5.5 6.5 7.1 3.4 6.5 16.9 4.7 5.0 16.9 3.9 9.8 19.0 13.8 26.9 2.6 2.0 1.1 3.9 8.2 2.7 2.6 8.2 2.0 2.3 1.8 1.0 3.4 7.0 2.3 2.3 7.0 1.7 1.4 14.3 1.7 16.7 12.6 18.5 7.5 10.6 26.1 7.6 8.9 30.2 6.9 12.0 17.6 7.1 10.1 24.8 7.2 8.5 28.7 6.6 3.3 12.5 3.5 13.2 NL-102 Netherlands Gleyic Podzol Ae ric Haplaquod 185 383 125 185 383 125 185 383 125 106 219 71.3 106 219 71.3 106 219 71.3 2.8 5.1 4.7 8.9 39.4 - 39.4 78.8- - 78.8 39.4 39.4 28.1 - 28.1 56.2 - 56.2 28.1 - 28.1 7.7 12.9 10.8 18.0 30.8 - 30.8 30.8 - 30.8 20.5 20.5 27.0 - 27.0 27.0 - 27.0 18.0 - 18.0 7.9 • 9.4 9.0 10.7 19.4 - 19.4 24.2 - 24.2 13.8 13.8 21.2 - 21.2 26.4 - 26.4 15.1 - 15.1 0 15.8 0 14.5 14.4 - 14.4 18.0 - 18.0 14.4 14.4 14.0 - 14.0 17.4 - 17.4 14.0 - 14.0 9.7 15.9 10.0 16.5 NL-103 Netherlands Gleyic Podzo 1 Aerie Haplaquod 27.3 44.1 16.9 21.3 66.1 16.1 21.3 66.1 16.1 19.6 31.6 12.1 15.3 47.4 11.5 15.3 47.4 11.5 3.1 6.5 4.3 9.0 27.0 56.0 18.2 27.0 27.0 27.0 56.0 18.2 11.3 23.3 7.6 11.3 11.3 11.3 23.3 7.6 9.2 1.7 22.0 4.0 17.3 180 15.8 19.3 120- 16.6 19.3 180 17.4 13.5 140 12.3 15.0 93.- 3 12.9 15.0 140 13.5 4.0 16.1 5.2 13.0 17.1 1204 16.8 17.1 1204 16.8 15.7 1204 15.4 15.0 1059 14.8 15.0 1059 14.8 13.8 1059 13.6 3.5 10.7 4.0 12.2 17.4 1153 17.1 18.5 1152 18.2 16.8 1153 16.6 8.2 541 8.0 8.7 541 8.6 7.9 541 7.8 3.2 12.0 6.8 25.5 10.3 278 10.0 9.2 835 9.1 10.1 835 9.9 9.7 261 9.3 8.6 784 8.5 9.5 784 9.3 0 10.7 0 11.4 6.4 79.3 5.9 5.5 238 5.3 5.7 238 5.6 6.9 85.6 6.4 5.9 257 5.8 6.2 257 6.0 2.9 11.4 2.7 10.5 5.3 32.7 4.5 4.3 98.0 4.1 5.3 98.0 5.0 6.0 37.3 5.2 4.9 112 4.7 6.0 112 5.7 7.6 16.2 6.7 14.2

NL-104 Netherlands Orthic Podzol 1 Typic Haplohumod 201 239 109 269 418 163 201 334 126 128 151 69.3 170. 165 104 128 212 79.7 1.9 4.0 3.0 6.3 40.5 16.8 11.9 252 252 122 252 82.0 23.3 9.6 6.8 145 145 69.7 145 47.1 2.0 36.3 3.5 0 39.0 65.9 24.5 42.- 9 74.1 27.2 35.7 84.7 25.1 32.2 54.4 20.2 35.- 4 61.3 22.4 29.5 70.0 20.8 3.2 4.2 3.9 6.7 24.3 12.8 8.4 27.3 15.3 9.8 20.8 14.6 8.6 23.9 12.6 8.2 26.9 15.1 9.7 20.5 14.4 8.4 4.3 10.8 4.4 11.0 7.6 5.3 3.1 8.7 15.8 5.6 7.6 14.0 4.9 7.9 5.4 3.2 9.0 16.3 5.8 7.9 14.5 5.1 11.9 7.4 11.4 7.1 NL-105 Netherlands Orthic Podzol I Typic Haplorthod/Typic 1 Haplohumod 219 165 94.1 292 363 162 219 363 137 87.2 65.8 37.5 116 145 64.5 87.2 145 54.4 1.5 3.7 3.9 9.3 118 49.0 34.6 118 163 68.5 118 163 68.5 49.5 20.5 14.5 49.5 68.4 28.7 49.5 68.4 28.7 4.9 4.2 11.6 10.0 35.5 23.2 14.0 37.7 26.6 15.6 31.7 27.8 14.8 17.5 11.4 6.9 18.6 13.1 7.7 15.6 13.7 7,3 1.8 8.3 3.7 16.9 29.8 11.2 8.2 27.5 13.5 9.1 22.4 13.7 8.5 24.6 9.3 6.7 22.7 11.1 7.5 18.4 11.3 7.0 3.3 7.7 4.0 9.3 9.4 16.2 5.9 7.3 32.4 6.0 9.0 37.3 7.3 6.4 11.0 4.0 5.0 22.1 4.1 6.1 25.5 5.0 1.3 7.4 1.8 10.8 5.7 7.7 3.3 4.1 29.6 3.6 6.1 59.1 5.5 4.5 6.1 2.6 3.2 23.3 2.8 4.8 46.7 4.4 0 13.6 0 16.0 4.5 2.9 1.8 4.5 15.6 3.5 3.8 23.3 3.2 5.8 3.8 2.3 5.8 20.2 4.5 4.9 30.3 4.2 0 0 0 0 3.9 3.0 1.7 3.2 16.3 2.6 3.9 32.7 3.5 3.4 2.5 1.5 2.7 14.0 2.3 3.4 28.0 3.0 0 15.7 0 18.3

NL-106 Netherlands Camb ic Arenosol Spodic Udipsamment 150 200 86.0 150 312 101 135 255 88.5 61.5 82.0 35.1 61.5 128 41.5 55.4 104 36.2 1.0 3.7 2.4 8.9 134 154 71.8 134 278 90.5 168 232 97.3 75.6 87.1 40.5 75.6 157 51.0 94.5 131 54.8 0.7 3.7 1.3 6.6 193 134 79.1 96.8 201 65.3 194 201 98.5 87.7 60.7 35.9 43.9 91.0 29.6 87.7 91.0 44.7 0 3.4 0 7.4 22.5 15.1 9.0 19.8 16.0 8.9 19.0 15.6 8.6 15.2 10.2 6.1 13.4 10.9 6.0 12.9 10.5 5.8 3.1 8.3 4.6 12.2 11.6 16.1 6.7 10.6 18.2 6.7 9.1 19.3 6.2 8.5 11.9 5.0 7.8 13.4 4.9 6.7 14.2 4.6 2.4 9.1 3.2 12.3 6.5 11.7 4.2 4.4 19.7 3.6 7.3 21.4 5.4 4.1 7.4 2.7 2.8 12.6 2.3 4.6 13.6 3.5 0 10.9 0 17.1 3.9 4.7 2.1 2.5 9.9 2.0 4.3 11.1 3.1 2.9 3.4 1.6 1.9 7.3 1.5 3.2 8.2 2.3 7.4 18.4 10.0 25.0

NL-107 Netherlands Orth ic Podzol Plaggeptic Haplohumod 336 161 109 337 191 122 253 161 98.4 200 95.8 64.8 200 113 72.3 150 95.8 58.5 1.1 3.0 1.9 5.1 77.6 60.4 34.0 93.1 64.4 38.1 66.5 56.8 30.6 57.4 44.6 25.1 68.8 47.6 28.1 49.2 42.0 22.7 1.7 4.6 2.3 6.2 70.3 83.3 39.1 56.3 83.3 33.6 46.9 72.9 28.5 49.5 58.7 26.8 39.6 58.7 23.6 33.0 51.3 20.1 1.9 2.4 2.7 3.4 24.0 41.7 15.2 43.8 42.9 21.7 20.7 41.7 13.8 16.8 29.3 10.7 30.7 30.1 15.2 14.5 29.3 9.7 2.9 7.1 4.1 10.2 19.8 14.4 8.3 18.9 16.1 8.7 16.5 14.7 7.8 14.9 10.8 6.3 14.1 12.1 6.5 12.4 11.0 5.8 2.6 9.1 3.5 12.2 18.0 12.4 7.4 15.6 17.3 8.2 13.0 15.2 7.0 14.2 9.8 5.8 12.3 13.7 6.5 10.3 12.0 5.5 3.5 8.1 4.4 10.2 10.3 22.7 7.1 9.1 37.9 7.4 8.2 31.0 6.5 7.6 16.8 5.2 6.8 28.0 5.4 6.1 22.9 4.8 1.5 7.3 2.0 9.8 5.3 9.3 3.4 3.2 32.7 2.9 4.5 32.7 4.0 4.1 7.3 2.6 2.5 25.7 2.3 3.5 25.7 3.1 0.0 0.0 0.0 0.0 7.2 21.3 5.4 5.1 49.8 4.7 6.5 74.7 6.0 6.7 20.0 5.0 4.8 46.7 4.4 6.1 70.0 5.6 0.0 12.8 0.0 13.7

NL-108 Netherlands Humic Podzol Typ'i c Haplohumod 54.0 784 50.5 63.0 784 58.3 54.0 784 50.5 35.0 509 32.8 40.9 509 37.8 35.0 509 32.8 3.0 6.7 4.6 10.3 25.8 25.8 25.8 25.8 25.8 25.8 17.8 17.8 17.8 17.8 17.8 17.8 3.1 5.5 4.5 8.0 15.0 357- 14.4 13.8 - 13.8 11.9 714 11.7 14.3 341- 13.7 13.1 - 13.1 11.3 68-1 11.1 3.8 9.3 4.0 9.8 6.8 9.7 4.0 5.4 13.- 2 3.8 6.4 13.2 4.3 6.3 9.1 3.7 5.1 12.- 4 3.6 6.0 12.3 4.0 1.0 10.4 1.1 11.1 6.6 12.8 4.3 5.1 19.1 4.0 5.8 21.3 4.5 5.6 10.9 3.7 4.4 16.3 3.5 4.9 18.1 3.9 0.0 7.3 0.0 8.6 5.9 24.5 4.8 4.7 49.0 4.3 4.7 49.0 4.3 5.1 21.0 4.1 4.1 42.0 3.7 4.1 42.0 3.7 0.0 0.2 0.0 0.3 3.6 9.3 2.6 2.6 18.7 2.3 3.6 18.7 3.0 4.1 10.5 2.9 2.9 21.0 2.5 4.1 21.0 3.4 0.0 15.0 0.0 13.3 NL-109 Netherlands Orth-ic Podzol (Aquic) Haplohumod 90.6 250 66.5 121. 751 104 90.6 376 73.0 50.1 138 36.8 66.8 415 57.5 50.1 208 40.3 2.1 5.0 3.8 9.0 73.5 915 68.0 73.5 915 68.0 73.5 915 68.0 49.1 611 45.5 49.1 611 45.5 49.1 611 45.5 1.6 4.6 2.4 6.9 12.8 50.9 10.2 11.8 122 10.8 9.2 122 8.6 11.2 44.3 8.9 10.3 106 9.4 6;0 106 7.6 2.7 7.4 3.1 8.5 5.7 6.5 3.0 4.8 8.8 3.1 5.9 19.4 4.5 5.1 5.7 2.7 4.3 7.8 2.8 5.3 17.2 4.0 1.8 11.1 2.0 12.6 2.4 .9 .6 2.7 3.6 1.5 1.0 3.6 .8 2.1 .7 .5 2.3 3.0 1.3 .8 3.0 .6 6.9 71.5 8.2 84.5 90

Appendix 4A (ctd). Selected chemical properties and carbon/sesquioxides atomic ratios* of Dutch, Belgian and Swiss profiles

Amorphous Hatter Extractions Pyrophosphate Extract Atonic Ratios

Soil Depth KCl H20 A1d PH Ses AM clay clay clay Sesd (cm) I

NL-110 Netherlands Humic Podzol Typic Haplohumod Ah 0- 9 3.1 3.8 4.00 1.49 4 .06 .05 .07 .04 1.48 7.2 14.8 .10 1.58 .91 55.5 172 42.0 El 9- 20 3.2 4.2 .70 .33 0 .00 .00 .01 .00 .30 1.1 3.0 0 .30 fiber 20 3.0 4.0 1.22 .68 0 .02 .01 .01 3.6 4.4 .02 .68 .67 149 307 100 E2 20- 70 3.7 4.6 .08 .03 0 .00 .00 .00 0.7 0 0 .05 Bhl 70- 72 2.9 3.9 2.41 1.88 3 .03 2.24 8.8 18.9 .20 2.44 .79 1.05 38.8 149 8h2 72- 75 3.2 4.0 2.36 1.80 4 .18 .14 2.22 8.7 20.6 .35 2.57 29.4 57.4 19.4 Bhs 75- 80 3.8 4.2 .68 .56 4 .28 .25 .70 3.2 4.7 .37 1.07 13.1 13.0 6.5 8 80- 85 4.2 4.5 .50 .43 2 .12 1.9 8.9 .24 .76 8.4 24.3 6.2 Bh3 85- 87 4.2 4.5 1.46 1.25 3 .05 1.49 .29 .07 b.1 15.6 .36 1.86 11.6 99.3 10.4 BC 87-100 4.4 4.6 .21 .11 2 1.4 3.0 .12 .311 5.1 20.9 4.1 C 100-150 4.5 4.9 .05 .01 0 1.1 1.7 .03 .07 4.5 18.6 3.6 Belgiui Orthic Podzol Typic Haplorthod 0- 5 2.9 3.6 1.72 .78 2 .01 .15 .10 0 2.9 35.4 29.3 5- 15 3.4 4.1 .29 .16 0 .00 .02 .02 0 1.6 Bh 15- 18 4.0 4.1 1.14 .84 3 .16 .32 .29 1.08 .24 0.8 9.9 .41 .83 15.2 20.9 8.t Bhs 18- 28 4.1 4.2 1.15 .88 3 .24 .66 .61 1.21 .41 0.8 13.2 11.3 6.2 28- 37 4.3 4.3 .47 .29 1 .24 .75 .35 1.0 7.2 5.5 2.8 37- 59 4.3 4.3 .16 .11 1 .09 .34 .13 0 2.7 5.1 5.7 2.7 59- 89 4.3 4.5 .03 .01 0 .02 .04 .01 0.8 1.6 .50 9.0 37.2 7.3 89-120 4.2 4.3 .07 .04 0 .06 .46 .11 0.5 0.7 .29 7.9 5.9 3.4 120-150 4.1 4.3 .03 .03 3 .04 .11 0 0

Bel9ium Gleyic Podzol Aerie Haplaquod EP 0- 29 4.0 4.4 .39 .24 .32 .71 33.8 46.5 19.6 Bhml 29- 47 3.9 4.4 1.25 1.11 .02 1.14 .22 .03 5.5 10.7 .25 1.39 .22 1.04 11.7 177 10.9 8hm2 47-6 2 3.9 4.4 1.11 1.11 .01 1.07 .23 .02 3.3 8.8 .25 1.32 .33 1.00 10.5 250 10.0 Bhm3 62-7 7 4.1 4.6 .88 .83 .20 .01 4.9 6.8 .19 1.00 8.5 8.3 8 77- 92 4.2 4.6 ,60 .63 .15 .01 3.4 5.5 .41 1.00 9.9 9.6 Bh 92-110 4.1 4.5 .86 .83 .11 .01 3.2 6.7 .46 1.09 16.4 15.7 110-150 4.3 4.7 .05 .01 1.6 2.5 .17 1.00 13.1 11.9

Belgium Gleyic Podzol Aerie Haplaquod Ahb 23- 30 3.7 4.3 3.40 2.09 1 .14 .12 .11 2.52 1.2 17.1 .29 2.81 2.69 1.11 33.4 97.7 24.9 Eb 30- 58 4.1 4.7 .18 .13 0 .01 .01 .01 .23 .00 .01 0.8 0.3 .50 58- 85 4.1 4.6 .26 .24 1 .03 .00 0.3 .39 1.33 27.0 23.3 85-103 4.0 4.6 .87 .75 1 .09 .01 4.1 6.3 .92 1.11 18.5 17.6 Bh2b 103-125 4.0 4.5 .84 .81 3 .11 .01 4.5 5.2 .20 .99 .32 1.67 10.5 9.6 Bh3b 125-155 4.0 4.5 .78 .70 4 .13 .01 6.7 .22 1.19 .29 1.57 11.5 150 10.7 Bh4b 155-170 3.9 4.6 1.54 1.44 4 .19 .01 .01 1.47 .25 .03 5.5 10.8 .28 1.75 .43 1.40 12.8 221 12.1 8-104 Belgium Gleyic Podzol Typic Haplaquod Ah 0- 5 2.8 3.8 4.26 1.99 5 .05 .04 .03 1.34 5.5 18.4 1,.11 50.3 38.0 5- 18 3.0 4.1 1.11 .51 2 .01 .00 .00 .21 0.9 5.2 1.00 47.3 47.3 18- 33 3.2 4.1 .46 .27 .01 .01 .18 1.3 5.8 .10 1.00 40.5 B3.8 27.3 33- 36 3.1 3.9 1.82 1.22 .09 .04 1.11 3.5 13.3 .14 1.25 .25 1.08 25.0 129 20.9 36-40 3.3 3.9 2.99 1.68 .01 1.97 9.0 19.4 .22 2.19 .96 21.1 919 2.6 40- 42 3.6 4.1 4.13 3.28 .0? 3.00 .02 6.1 27.8 .43 3.43 1.02 16.5 698 16.1 Bhsl 42- 53 3.9 4.3 1.89 1.76 .16 1.91 .12 10.0 25.3 .67 2.58 1.00 74.1 7.1 Bhs2 53- 70 4.1 4.4 1.12 1.03 .05 1.12 4.0 16.6 .42 1.54 1.05 86.9 6.5 70-100 4.1 4.3 .13 .03 .14 .07 2.3 5.2 .36 .50 1.33 9.3 4.1 4.3 .18 .11 8 .12 .57 3.4 5.2 .42 .53 2.7 B-105 Belgium Gleyic Podzol Aerie Haplaquod Ah 0- 8 3.1 4.3 1.69 .67 2 .02 .01 .01 2.5 5.4 .03 .59 .29 1.00 63.0 261 E 8-23 3.4 4.6 .29 .13 1 .01 .01 .00 0.6 1.7 .15 Bh 23- 30 3.3 3.9 2.89 2.02 5 .20 .04 .04 2.86 .03 9.6 19.2 .26 3.12 .05 62 1.08 27.9 444 26.3 Bhs 30- 35 3.8 4.1 1.30 1.23 2 .30 .03 .03 1.31 .03 5.7 16.3 .37 1.68 .19. 83 1.12 8.7 204 8.3 BC 35- 91 4.4 4.6 .23 .25 1 .08 .03 .01 1.7 3.1 .10 .36 .10 35 .91 6.5 121 6.2 C 91-150 4.4 4.6 .04 .02 2 .03 .08 .02 1.9 1.7 .06 .09 .03 04 .55 1.7 6.9 1.4 B-106 Belgium Gleyic Podzol Typic Haplaquod 0- 15 3.3 3.6 5.14 1.06 .06 .07 .01 1.53 80 1.10 49.2 714 46.0 15- 31 4.2 4.2 .40 .18 0.4 71 2.00 21.4 21.4 31- 40 .2 4.2 .66 .44 1.8 24 1.14 17.7 - 17.7 40- 49 4.2 1.32 .00 1.14 .20 .00 3.3 4.4 20 1.34 34 1.33 12.8 - 12.8 49- 61 4.3 4.4 .59 .40 .00 .48 .14 .01 1.4 4.0 15 .63 21 1.88 7.7 224- 7.5 61-150 4.3 .06 .•01 .00 .05 .02 .00 0.2 1.3 .07 .07 2.00

SEP.-3 Lithic Cryumbrept Ahl 0- 9 5.2 .18 1.46 .30 1.02 .34 1.36 .07 .27 .71 17.7 22.6 9.9 9- 17 5.4 .17 1.29 .38 .60 .41 1.01 .08 .20 .28 11.3 9.6 5.2 17- 21 5.4 .20 1.42 .23 .58 .06 .15 .14 7.9 12.5 4.8 21- 27 5.6 .14 1.55 .12 .38 .20 .05 .06 .11 .31 .04 10 .07 9.0 15.5 5.7 27- 50 .09 2.48 02 .08 01 13.5 27.9 9.1 50* .03 .50 - 105 109 53.8 .00 .48 * .06 SER-10 Switzerland Dystric Cambisol Typic Dystrochrept Ah 0- 3 2.8 3.7 25.9 .30 4.79 .16 .32 .48 5.27 .02 .19 56 67.4 69.7 34.3 E 3- 12 2.5 4.1 2.0 .06 .45 .05 .06 .11 .56 .01 06 .47 20.3 34.9 12.8 BE 12- 15 3.5 4.6 2.5 .38 4.09 1.44 1.67 .24 .94 1.18 2.85 .12 .29 76 15.7 8.3 5.4 Bhs 15- 28 5.1 5.8 4.9 .36 4.28 2.67 4.15 .99 1.24 2.23 6.38 .37 1.06 .40 9.4 15.6 5.9 P, 28» .00 .18 .01 .32 - - 91

Atonic Ratios CEC/

V V Ct Ch

Soil pH Soil pH F Fe Ses A, F S *'„ «„ A F S Ft S FS S pH 8.2 pH 8.2 «'d d d o «. "o P P *», 'd 'd «d *'o o "o A'p P «P

NL-110 Netherlands Hum* c Podzol Typic Haplohumod 150 373 107 129 467 101 150 467 114 55.9 139 39.9 47.9 173 37.5 55.9 174 42.3 1.8 3.7 4.8 9.9 158 158 74.2 74.2 1.6 4.3 3.3 9.1 137 - 569- 111 274 569- 185 274 - 569 185 - 76.-5 317 - 61.-6 153 317- 103 153 - 317 - 104- 3.0 3.6 5.3 6.5 0.9 0 2.3 0 45.2 161 35.3 45.2 375 40.3 41.7 161 33.1 35.3 125 27.5 35.3 292 31.5 32.5 125 25.8 3.7 7.8 4.7 10.1 33.2 61.2 21.5 33.2 78.7 23.3 31.2 61.2 20.7 25.3 46.7 16.4 25.3 60.0 17.8 23.8 46.7 15.8 3.7 8.7 4.8 11.4 15.3 11.3 6.5 12.8 12.7 6.4 12.8 12.7 6.4 12.6 9.3 5.4 10.5 10.5 5.2 10.5 10.5 5.2 4.7 6.9 5.7 8.4 8.7 19.4 6.0 8.7 29.2 6.7 8.0 23.3 6.0 7.4 16.7 5.2 7.4 25.1 5.7 6.9 20.1 5.1 3.8 17.8 4.4 20.7 11.7 75.7 10.2 11.7 136 10.8 11.3 97.3 10.1 10.0 64.8 8.7 10.0 116.7 9.2 9.7 83.3 8.7 3.5 10.7 4.1 12.5 5.9 12.3 4.0 6.7 49.0 5.9 5.9 24.5 4.8 3.1 6.4 2.1 3.5 25.7 3.1 3.1 12.8 2.5 6.7 14.3 12.7 27.3 5.6 7.8 3.3 5.6 - 5.6 5.6 23.3 4.5 1.1 1.6 0.7 1.1 - 1.1 1.1 4.7 0.9 22.0 34.0 110 170 B-101 Belgiun Orthlc Podzol Typic Haplorthod 387 53.5 47.0 387 115 88.5 387 80.3 66.5 175 24.3 21.3 176 52.0 40.1 176 36.4 30.1 0 1.7 0 3.7 67.7 67.7 67.7 67.7 67.7 67.7 37.3 37.3 37.3 37.3 37.3 37.3 0 5.5 0 10.0 16.-0 16.6 8.2 18.-3 18.3 9.2 16.0 22.2 9.3 11.-8 12.3 6.0 13.-5 13.5 6.8 11.-8 16.3 6.9 0.7 8.7 1.0 11.8 10.8 8.1 4.6 9.6 8.8 4.6 10.8 13.1 5.9 8.3 6.2 3.5 7.3 6.7 3.5 8.3 10.0 4.5 0.7 11.5 .9 15.0 4.4 2.9 1.8 5.0 4.9 2.5 5.9 6.3 3.0 2.7 1.8 1.1 3.1 3.0 1.5 3.6 3.9 1.9 2.1 15.3 3.4 24.8 4.0 2.2 1.4 4.5 3.7 2.0 5.1 5.7 2.7 2.8 1.5 1.0 3.1 2.6 1.4 3.5 3.9 1.9 0 16.9 0 24.5 3.4 3.5 1.7 3.4 7.0 2.3 3.4 14.0 2.7 1.1 1.2 0.6 1.1 2.3 .8 1.1 4.7 .9 26.7 53.3 80.0 160 2.6 .7 .6 3.2 1.6 1.0 3.9 3.0 1.7 1.5 .4 .3 1.8 .9 .6 2.3 1.7 1.0 7.1 10.0 12.5 17.5 1.7 1.3 .7 1.7 2.0 .9 1.7 3.5 1.1 1.7 1.3 .7 1.7 2.0 .9 1.7 3.5 . 1.1 33.3 16.7 33.3 16.7 B-102 Belgium Gleylc Podzol Aerie Haplaquod 29.3 45.5 17.8 43.9 91.0 29.6 43.9 60.7 25.5 28.0 28.0 11.0 27.0 56.0 18.2 27.0 37.3 15.7 1.5 4.6 2.5 7.5 14.1 146 12.8 14.1 292 13.4 12.8 194 12.0 12.5 129 11.4 12.5 259 11.9 11.4 173 10.7 4.4 8.6 5.0 9.6 11.9 129 10.9 11.4 518 11.1 10.9 259 10.4 11.9 129 10.9 11.4 518 11.1 10.9 259 10.4 3.0 7.9 3.0 7.9 11.0 137 10.2 10.4 411 10.2 9.9 411 9.7 10.4 129 9.6 9.8 387 9.6 9.3 387 9.1 5.6 7.7 5.9 8.2 9.6 140 9.0 8.4 280 8.2 9.0 280 8.7 10.1 147 9.5 8.9 294 8.6 9.4 294 9.2 5.7 9.2 5.4 8.7 19.4 401 18.4 21.5 21.5 17.6 401 16.9 18.7 387 17.8 20.8 20.7 17.0 387 16.3 3.7 7.8 3.g 8.1 11.7 121 10.7 11.7 - 11.7 11.7 121 10.7 11.3 117 10.3 11.3 - 11.2 11.3 117 10.3 6.2 9.6 6.4 10.0 - - B-103 Belgium Gleylc Podzol Aerie Haplaquod 54.6 132 38.7 54.6 144 39.6 45.0 132 33.6 33.6 81.3 23.8 33.6 88.7 24.4 27.7 81.3 20.6 2.4 5.2 3.g 8.5 40.5 84.0 27.3 40.5 84.0 27.3 84.0 84.0 29.2 60.7 19.7 29.2 60.7 19.7 60.7 60.7 4.4 1.7 6.2 2.3 19.5 19.5 29.3 121 23.6 19.5 121 16.8 18.0 18.0 27.0 112 21.8 18.-0 112 15.5 7.3 1.2 7.9 1.3 21.8 406 20.6 28.0 406 26.2 19.6 406 18.7 18.8 350 - 17.8 24.1 350 22.6 16.9 350 16.1 4.7 7.2 6.5 8.4 17.2 392 16.5 18.9 392 18.0 11.1 131 10.2 16.6 378 15.9 18.2 378 17.4 10.7 126 9.g 5.4 6.2 5.6 6.4 13.5 364 13.0 12.5 364 12.1 9.2 121 8.6 12.1 327 11.7 11.3 327 10.9 8.3 109 7.7 5.0 8.6 5.6 9.6 18.2 719 17.8 19.2 719 18.7 13.9 240 13.1 17.1 672 16.6 18.0 672 17.5 13.0 224 12.3 3.6 7.0 3.8 7.5 8-104 Belgiun Gl eyic Podzol Typic Haplaquod 192 497 138 160 663 129 160 497 121 89.5 232 64.6 74.6 310 60.1 74.6 232 56.5 1.3 4.3 2.8 9.2 250 - 250 250 250 250 250 115 115 115 115 115 115 0.8 4.7 1.8 10.2 104 215 69.8 51.8 215 - 41.7 104 215 69.8 60.8 126 - 41.0 30.4 126 - 24.5 60.8 126 41.0 2.8 12.6 4.8 21.5 45.5 212 37.5 58.5 212 45.9 41.0 212 34.3 30.5 142 25.1 39.2 142 30.7 27.5 142 23.0 1.9 7.3 2.9 10.9 32.0 698 30.6 35.4 1395 34.5 32.0 1395 31.3 18.0 392 17.2 19.9 784 19.4 18.0 784 17.6 3.0 6.5 5.3 11.5 24.5 482 23.3 27.3 964 26.6 22.7 964 22.1 19.0 382.7 18.5 21.7 765 21.1 18.0 765 17.6 1.5 6.7 1.9 8.5 9.0 44.1 7.5 8.5 55.1 7.4 7.7 73.5 7.0 8.4 41.1 7.0 7.9 51.3 6.9 7.2 68.4 6.5 5.3 13.2 5.7 14.2 7.6 74.7 6.9 6.6 105 6.2 7.0 87.1 6.5 7.0 68.7 6.4 6.1 96.1 5.7 6.4 80.1 6.0 3.6 14.8 3.9 16.1 3.8 4.7 2.1 2.9 26.4 2.6 1.3 11.3 1.2 2.7 3.3 1.5 2.1 18.7 1.9 0.9 8.0 0.8 13.5 30.6 19.2 43.3 3.4 1.5 1.0 3.4 3.5 1.7 1.8 4.4 1.3 2.1 0.9 0.6 2.1 2.1 1.1 1.1 2.7 0.8 18.9 28.9 30.9 47.3

B-105 Belgiun Gleyic Podzol Aerie Haplaquod 190 789 153 190 789 153 190 789 153 75.4 313 60.7 75.4 313 60.7 75.4 313 60.7 1.5 3.2 3.7 8.1 65.3 135 44.0 29.2 60.7 19.7 2.1 5.9 4.6 13.1 32.5 337 29.7 34.-2 337 - 31.-1 28.-3 450 26.-6 22.7 236 20.7 23.-9 236 - 21.-7 19.-8 314 - 18.-6 3.3 6.6 4.6 9.5 9.7 202 9.3 8.6 202 8.3 8.6 202 8.3 9.2 191 8.8 8.1 191 7.8 8.1 191 7.8 4.4 12.5 4.6 13.3 6.5 35.8 5.5 5.2 5.2 5.8 107 5.5 7.0 38.9 6.0 5.6 5.6 6.3 117 5.g 7.4 13.5 6.8 12.4 3.0 2.3 1.3 1.8 - 1.8 2.3 9.3 1.8 1.5 1.2 0.7 .09 - 0.9 1.1 4.7 0.9 47.5 42.5 95.0 85.0 - - B-106 Belgium Gleyic Podzol Typic Haplaquod 193 2400 178 165 2400 155 165 2400 155 39.8 495 36.8 34.1 495 31.9 34.1 495 31.9 1.0 3.0 5.0 14.3 90.0 90.0 45.0 45.0 45.0 45.0 40.5 40.5 20.3 20.3 20.3 20.3 1.0 4.3 2.2 9.4 21.2 21.2 21.2 - 21.2 18.6 18.6 14.1 - 14.1 14.1 . 14.1 12.4 - 12.4 2.7 10.6 4.1 15.9 19.8 19.8 16.5 - 16.5 14.9 14.9 12.6 - 12.6 10.5 - 10.5 9.5 - 9.5 2.5 3.3 3.9 5.2 16.6 16.6 12.1 - 12.1 9.5 275 9.2 11.3 - 11.3 8.2 - 8.2 6.4 187 - 6.2 2.4 6.8 3.5 10.0 13.5 13.5 6.8 - 6.8 6.8 6.8 2.3 - 2.3 1.1 . 1.1 1.1 1.1 3.3 21.7 20.0 130 - - - - SER-3 Switzerland Ranke r Lithic Cryumbrept 32.5 8.3 6.6 39.0 40.3 19.8 45.0 57.6 25.3 18.5 5.1 4.0 22.5 17.2 9.7 26.3 22.5 12.1 9.0 2.6 2.0 12.9 10.6 5.8 18.0 28.6 11.1 9.6 1.8 1.5 11.3 7.4 4.5 27.0 46.6 17.1

SER-10 Switzerland Dyst ric Cambisol Typic Dystrochrept 389 170 118 343 402 185 364 377 185 113 42.3 30.7 32.1 155 26.6 90.0 155 57.0 14.8 2.8 2.4 20.8 8.1 5.8 23.4 12.4 8.1 8.1 5.3 3.2 8.5 8.5 4.3 11.1 18.4 6.9 92

APPENDIX 4B. SELECTED CHEMICAL PROPERTIES AND CARBON/SESQUIOXIDES ATOMIC RATIOS* OF PROFILES IN THE ISM COLLECTION

Amorphous Matter Extractions Pyrophosphate Extract Atonic Ratios

AM Al+C Ses„

Soi 1 pH Depth pH 7 Ses AM clay clay clay Sesd (an)

CDN-14 Canada Gleyic Podzol Typic Haplaquod Ah .1,0 4.5 2.06 1.16 3 .04 .01 1.06 05 .01 7.4 .06 1.12 02 .37 .37 1.00 47.7 493 43.5 Bhgl 20- 26 3.3 4.1 2.95 2.68 15 .24 .01 2.66 2« .01 18.3 .29 2.95 02 .20 .20 1.21 21.4 1241. 21.0 Bhg2 26- 46 3.5 4.1 3.36 3.29 20 .44 .01 3.27 48 .00 23.5 .48 3.75 02 .19 .19 1.14 15.3 15.3 BCg 46- 61 3.9 4.5 2.97 .79 15 .17 .00 1.03 17 .00 6.2 .17 1.20 01 .08 .08 1.00 13.6 - 13.6 C 64« 3.9 4.8 .08 .09 3 .03 .06 .13 03 .04 1.0 .07 .20 02 .07 .05 .21 9.7 15.-1 5.9 F-10 France Cairt>1c Arenosol Spodlc Udipsanment 0- 15 3.1 4.2 7.39 2.50 3 .01 .04 1.69 0? .04 20.4 .06 1.75 02 .58 .57 .50 190 197 96.7 15- 25 3.2 4.3 1.78 .81 3 .01 .01 .58 01 .02 5.6 .03 .61 01 .20 .20 .43 131 135 66.3 25- 38 3.4 4.4 .55 .27 3 .00 .01 .20 01 .07 2.5 .03 .23 01 .08 .07 .60 45.0 46.5 22.9 Bh 38- 52 3.4 4.3 .80 .46 3 02 .13 .58 03 .14 5.5 .17 .75 06 .25 .20 .71 43.5 19.3 13.4 Gs 52- 66 3.9 4.7 .87 .60 1? .06 .73 .77 10 .77 6.1 .37 1.14 03 .10 .07 .77 17.3 13.3 7.5 6C 66- 75 4.0 4.9 .33 .23 6 .10 .15 .30 73 .69 5.7 1.42 1.72 24 .29 .17 1.73 .9 2.0 .6 C 75-123 3.8 4.6 .10 .06 4 .03 .04 .03 23 .24 3.0 .47 .50 12 .12 .06 1.24 .3 .6 .2

IRL-1 Ireland Camblc Arenosol SSpodl[ c Udipsanment Ahl 0- 20 3.5 4.2 1.60 92 3 .04 .08 .73 03 .07 6.6 .10 .83 03 .28 .25 .32 54.8 48.5 25.7 Ah2 20- 34 3.8 4.3 .57 27 3 .02 .03 .29 03 .03 3.4 .06 .35 02 .12 .11 .43 21.8 45.0 14.7 E 34- 50 4.2 4.6 .21 .10 7 .01 .01 .12 01 .01 1.7 .02 .14 01 .07 .07 .22 27.0 55.9 18.2 Bh 50- 60 3.9 4.7 .65 .47 4 .07 .34 .60 08 .?? 6.4 .30 .90 08 .23 .17 .60 16.9 12.7 7.2 Bsl 60- 75 4.6 5.3 .35 .21 1 .06 .17 .31 08 .1? 3.9 .20 .51 20 .51 .39 .74 8.7 12.0 5.1 Bs2 80-105 4.6 5.4 .33 .19 3 .10 .73 .33 11 ,1R 4.4 .29 .62 10 .21 .15 .52 6.8 8.5 3.8 C 135-145 4.7 5.5 .13 .07 1 .05 J .08 .04 .09 05 .03 2.4. .08 .17 08 .17 .14 .33 4.1 14.0 3.1

S-17 Sweden Orthic Podzol Typic Cryorthod 0- 15 3.3 4.5 .56 .30 1 3.3 .01 .24 01 .24 .24 .50 51.8 . 51.8 15- 20 3.5 4.7 .76 .51 1 5.9 .15 .71 15 .71 .60 .51 31.5 23.7 13.5 20- 35 3.8 4.9 6.98 5.77 0 1.23 1.78 1.34 1.78 6.36 1.34 1.32 55.1 2.66 9.02 .88 10.7 22.5 7.2 35-50 4.2 5.3 2.47 2.37 0 .84 .68 1.23 .64 2.04 .77 .34 26.4 1.11 3.15 . - .73 6.0 28.0 4.9 50- 65 4.4 5.3 .94 .76 2 10.6 .40 1.20 20 _.60 -.53 .59 7.2 24.8 5.6 65- 80 4.4 5.3 .58 .35 1 5.7 .23 .76 23 .76 .66 .61 9.2 24.7 6.7

SK-2 Sarawak Humic Podzol Tropohumod O+Ah 0- 10 3.6 4.9 1.29 .67 0 .00 5.2 0 .29 E 10- 58 4.5 5.0 .08 .06 0 .00 .2 0 .06 EB*8E 58- 75 4.0 4.8 .13 .06 0 .00 .00 .09 .00 .00 .6 0 .09 Bhl 75- 90 4.1 4.6 .74 .70 0 .07 4.1 .09 .77 1.00 21.9 158.7 19.2 8h2 90-108 4.4 4.8 1.56 1.40 1 .23 9.4 .31 1.86 31 1.8-6 1.8- 2 1.15 12.9 181. 12.1 Bh3 110-120 4.5 4.8 .72 .68 1 .14 4.5 .20 .66 20 .66 .61 1.00 6.9 42.9 5.9

USA-1 United States Orthic Podzol TypiTyp1 c Haplorthod E 0- 20 3.6 5.0 .27 .13 3 .00 .00 .02 1.1 .00 .02 0.0 .01 .01 0.0 . . Bh 20- 28 3.6 4.6 1.44 .89 4 .13 .30 1.04 9.3 .50 1.54 13 .39 .30 .91 14.6 14.3 7.2 Bhs 28- 38 4.0 4.8 1.41 1.11 4 .34 .22 1.25 9.4 .54 1.79 14 .45 .40 .83 8.3 29.2 6.4 BC 38- 50 4.2 5.1 .92 .79 4 .29 8.7 .31 1.17 08 .29 .28 .70 7.7 66.9 6.9 C 50+ 4.6 5.7 .07 .04 0 .04 1.2 .04 .07 - - .40 2.2 14.0 1.9 93

Atonic Ratios CEC/

V V Ct Cn

• Soll pH Soil pH S S A1 Fe Fe Al A1 F F pH 7 pH 7 d d *"« »'. o *'. P F'p >SP d

CON-14 Canada Gleyic Podzol Typlc Haplaquod 92.7 961 84.5 116 961 103 92.7 961 84.5 52.2 541 47.6 65.3 541 58.2 52.2 541 47.6 3.6 6.4 28.9 1377 28.3 27.7 1377 27.1 23.7 1377 23.3 26.2 1251 25.7 25.1 1251 24.6 21.5 1251 21.2 6.2 6.8 18.4 1568 18.2 17.2 1568 17.0 15.8 15.7 18.1 1535 17.8 16.8 1535 16.6 15.4 15.4 7.0 7.1 44.6 693 41.9 39.3 39.3 39.3 - 39.3 11.9 184 11.1 10.5 10.5 10.5 - 10.5 2.1 7.8 6.0 1.2 1.0 6.0 6.2 3.1 6.0 9.-3 3.7 6.8 1.4 1.1 6.8 7.0 3.4 6.8 10.-5 4.1 12.5 11.1 F-10 France Canblc Arenosol Spodlc Udlpsanment 831 345 244 1663 862 568 831 862 424 281 117 82.5 562 292 192 281 292 143 2.8 8.2 400 138 103 400 831 270 400 415 204 182 63.0 46.8 182 378 123 182 189 92.8 3.1 6.9 124 64.2 42.3 - 257 257 124 128 63.0 60.8 31.5 20.7 126 126 60.8 63.0 30.9 4.5 9.3 60.0 17.8 13.7 90.0 28.7 21.8 60.0 26.7 18.5 34.5 10.2 7.2 51.-8 16.5 12.5 34.5 15.3 10.6 6.9 12.0 24.5 10.2 7.2 32.6 17.7 11.5 19.6 15.0 8.5 16.9 7.0 4.9 22.5 12.2 7.9 13.5 10.4 5.9 7.0 10.2 6.7 2.2 1.6 7.4 10.3 4.3 1.0 2.2 0.7 4.0 1.6 1.1 5.2 7.2 3.0 0.7 1.6 0.5 17.3 24.8

IRL-1 Ireland Camblc Ar«nosol Spodi c Udlpsament 90.0 27.7 21.2 90.0 93.3 45.8 120 107 56.5 51.8 15.9 12.2 51.8 53.7 26.3 69.0 61.3 32.5 4.1 7.2 64.1 22.2 16.5 64.1 88.7 37.2 42.8 88.7 28.8 30.4 10.5 7.8 30.4 42.0 17.6 20.3 42.0 13.7 6.0 12.6 47.3 12.3 9.7 47.3 98.0 31.9 47.3 98.0 31.9 22.5 5.8 4.6 22.5 46.7 15.2 22.5 46.7 15.2 8.1 17.0 18.3 7.2 5.2 20.9 8.9 6.3 18.3 13.8 7.9 13.2 5.2 3.7 15.1 6.5 4.5 13.2 10.0 5.7 9.8 13.6 11.3 8.2 4.7 13.1 13.6 6.7 9.8 J3.6 5.7 6.7 4.9 2.8 7.9 8.2 4.0 5.9 8.2 3.4 11.1 18.6 6.8 3.4 2.3 7.4 6.7 3.5 6.8 8.6 3.8 3.9 2.0 1.3 4.3 3.9 2.0 3.9 4.9 2.2 13.3 23.2 S.8 3.2 2.1 3.7 15.2 2.9 5.8 20.2 4.5 3.2 1.7 1.1 2.0 8.2 1.6 3.2 10.9 2.4 18.5 34.3

S-17 Sweden OrtMc Podzol Typlc Cryorthod 126 261 85.0 126 261 85.0 126 126 67.5 140 45.5 67.5 140 45.5 67.5 67.5 5.9 11.0 34.2 15.4 10.6 34.2 17.7 11.7 42.8 32.-2 18.4 23.0 10.3 7.1 23.0 11.9 7.8 28.7 21.-6 12.3 7.8 11.6 12.8 18.3 7.5 11.7 18.3 7.1 11.7 24.7 7.9 10.6 15.1 6.2 9.7 15.1 5.1 9.7 20.4 6.6 7.9 9.5 6.6 17.0 4.8 4.5 18.0 3.6 7.2 33.9 6.0 6.3 16.3 4.6 4.3 17.3 3.5 6.9 32.5 5.7 10.7 11.1 7.1 11.5 4.4 3.9 14.2 3.1 8.5 29.2 6.6 5.7 9.3 3.5 3.2 11.4 2.5 6.8 23.6 5.3 11.3 13.9 8.7 11.8 5.0 4.0 14.2 3.1 10.0 27.1 7.3 5.3 7.1 3.0 2.4 8.6 1.9 6.1 16.3 4.4 9.8 16.3

SK-2 Sarawak Hunlc Podzol Tropohumod 602 602 290 290 313 313 151 151 4.0 7.8 " ~ " " " * " " " 2.0 3.3 4.6 10.0 23.8 173 20.9 27.8 173 23.9 23.8. 173 20.9 225 163 19.8 26.3 163 22.6 22.5 163 19.8 5.5 5.9 15.3 182 14.1 14.0 182 13.0 13.0 182 12.1 13.7 163 12.6 12.6 163 11.7 11.7 163 10.9 6.0 6.7 11.6 56.0 9.6 11.6 66.0 9.6 10.8 67.2 9.3 10.9 52.9 9.1 10.9 52.9 9.1 10.2 63.5 8.8 6.3 6.6 USA-1 United States OrtMc Podzol Typlc Haplorthod 31.5 31.5 60.8 60.7 15.2 15.2 29.2 29.2 4.1 8.5 24._9 16.0 9.7 24.9 22.4 11.8 20.-3 19.-8 10.-0 15.-4 9.9 6.0 15.4 13.-8 7.3 12.-5 12.-2 6.-2 6.5 10.4 9.3 21.2 6.5 6.7 29.9 5.5 9.3 32.9 7.3 7.3 16.7 5.1 5.3 23.5 4.3 7.3 25.9 5.7 6.7 8.5 7.1 28.6 5.7 5.0 53.7 4.6 8.3 71.6 7.4 6.1 24.6 4.9 4.3 46.1 4.0 7.1 61.4 6.4 9.5 11.0 3.9 5.4 2.3 3.2 32.7 2.9 5.3 32.7 4.5 2.3 3.1 1.3 1.8 18.7 1.6 3.0 18.7 2.6 17.1 30.0 94

Appendix 4B (ctd). Selected chemical properties and carbon/sesquioxides atomic ratios* of profiles In the ISM collection

clay Amorphous Hatter Extractions Pyrophosphate Extract

pH pH Hori­ Depth A1 Fe KCl H20 Ct c A1d Fed A,0 Feo Cp n „ 7 8.2 Ses AH clay clay clay Ses. zon (cm) D D % % % 11 % % % * I

CDN-13 Canada Dystric Cambisol Typic Fragiochrept Topsoi 1 1.76 .28 .89 .43 .41 .89 .26 . 20 9.3 .46 1.35 .06 .17 .14 39 Ap 0- 18 5.0 3.2 8 .37 1.16 .61 .62 1.12 .30 22 13.1 .52 1.64 .07 .21 .18 34 E 18- 26 5.2 2.1 6 .04 .39 .07 .02 .10 .06 01 11.9 .07 .17 .01 .02 .02 16 Bh 26- 43 5.3 1.8 7 .95 1.75 1.27 1.09 1.47 .64 46 8.5 1.10 2.57 .16 .37 .30 41 8 43- 59 5.1 .1 6 .11 .54 .18 .04 .12 .13 02 6.2 .15 .27 .03 .05 .04 23 Ex 59- 72 5.0 0 6 .07 .53 .11 .02 .02 .08 . 01 4.8 .09 .11 .02 .02 .02 15 Bxl 72- 81 5.2 0 5 .08 .51 .09 .02 .00 .06 00 3.3 .06 .06 .01 .01 .01 10 Bx2 81-106 5.0 0 8 .07 .48 .07 .02 .00 .05 00 4.5 .05 .05 .01 .01 .01 09 Bx3 106-131. 5.2 0 5 .10 .53 .11 .03 .01 .07 01 4.3 .08 .09 .01 .01 .01 13 Cx 131-180 4.9 0 8 .11 .58 .06 .02 .01 .04 00 4.9 .04 .05 .01 .01 .01 06

CDN-24 Canada Dystrlc Cambisol Dystrlc Sr yochrep t E 0- 1 5 .11 .45 .11 .16 1.62 .11 21 12.4 .32 1.94 57 Bhs 1- 9 4.8 5.9 21 2.07 1.38 4.27 1.00 1.47 2.05 45 40.0 2.53 4.00 -.12 -.19 -.17 73 Bhl 9- 17 5.1 3.8 15 1.00 1.36 2.16 .82 2.40 .80 33 34.3 1.13 3.53 .08 .24 .21 48 Bh2 17- 35 5.2 3.5 15 1.21 1.13 4.31 .83 2.66 .71 16 31.6 .87 3.53 .06 .24 .22 37 Bh3 35- 52 5.2 3.5 18 .72 .92 3.56 .68 1.39 .49 09 34.1 .58 1.97 .03 .11 .10 35 8h4 52- 67 5.2 4.6 15 1.16 1.31 3.30 .69 2.06 .56 . 16 39.0 .72 2.78 .05 .19 .17 29 Bh5 67- 89 5.0 5.3 25 .78 1.41 2.71 1.06 1.18 .43 23 45.2 .66 1.84 .03 .07 .06 30 BCr 89-114 5.6 1.7 12 .17 .44 1.22 .21 .23 .13 01 19.9 .14 .37 .01 .03 .03 23 Crl 114-134 6.2 .6 8 .15 .53 1.14 .42 .15 .11 01 9.1 .12 .27 .02 .03 .03 18 Cr2 134-171 6.1 .2 8 .11 .31 .95 .28 .18, .10 01 6.7 .11 .29 .01 .04 .04 26

D-ll Germany Jystrlc Cambisol Typ ic Dystrochrept Ah 0- 9 2.4 3.1 10.2 29 .21 2.44 .20 .70 3.75 .21 84 41.8 1.05 4.80 0.04 .17 .14 40 AB 9- 15 2.7 3.4 6.9 12 .36 3.19 .36 1.51 3.12 .34 1 43 36.4 1.77 4.89 .15 .41 .29 50 Bw 15- 40 3.8 4.3 1.7 29 .36 2.32 .34 .60 .91 .32 57 16.0 .89 1.80 .03 .06 .04 33 Bw 40- 60 3.8 4.2 .7 27 .27 2.14 .24 .47 .38 .16 24 13.2 .40 .78 .01 .03 .02 17 C 65- 75 3.7 4.2 .3 24 .18 2.99 .12 .16 .18 .09 12 9.0 .21 .39 .01 .02 .01 07 F-2 France Dystrlc Cambisol Typic Dystrochrept Al 0- 15 3.4 4.2 6.0 17 .39 1.11 .26 .73 2.31 .19 68 20.9 .87 3.18 .05 .19 .15 58 AB 15- 24 3.7 4.4 6.1 16 .25 1.25 .31 .88 2.08 .32 90 18.6 1.22 3.30 .08 .21 .15 81 Bl 24- 39 3.9 4.5 4.5 11 .34 1.35 .41 .92 2.22 .42 98 17.6 1.40 3.62 .13 .33 .24 83 B21 39- 53 4.1 4.7 3.5 11 .35 1.41 .41 .92 1.81 .43 81 14.0 1.24 3.05 .11 .28 .20 70 B22 53- 68 4.1 4.7 3.5 8 .40 1.18 .46 .97 1.76 .47 95 11.8 1.42 3.18 .18 .40 .28 90 BC 68- 81 4.2 4.7 3.0 8 .40 .98 .48 .90 2.07 .49 73 10.7 1.22 3.29 .15 .41 .32 88 C 81-104 4.4 4.9 2.6 5 .65 1.32 .82 .96 2.40 .67 90 15.8 1.57 3.97 .31 .79 .61 80

IRL-9 Ireland Placic Podzol Typic Placohumod E 10- 30 3.9 4.6 .6 1 .02 .03 .02 .02 .28 .02 01 4.0 .03 .31 .03 .31 .30 60 Bh 30- 36 3.8 4.4 1.4 4 .08 .08 .07 .04 .93 .10 05 7.9 .15 1.08 .04 .27 .26 94 Bs 40- 55 4.2 4.5 .2 2 .11 1.46 .06 .39 .31 .04 11 4.9 .15 .46 .08 .23 .18 10 C 70- 80 4.6 5.0 .2 2 .05 .83 .06 .19 .06 .04 02 3.8 .06 .12 .03 .06 .05 07 N-l Norway Calcaric Typic Cryorthent Ahl 0- 8 7.1 7.6 1.8 2 .03 .10 .05 .09 .74 .01 02 9.2 .03 .77 .02 .39 .38 23 Ah2 8- 14 6.5 7.1 4.8 1 .04 .14 .06 .12 1.07 .03 04 20.9 .07 1.14 .07 1.14 1.10 41 Ah3 14- 25 6.7 7.3 2.0 0 .04 .15 .05 .11 .71 .03 04 11.7 .07 .78 37 AC 25- 48 7.3 8.1 .7 2 .01 .06 .02 .04 .73 .00 01 4.6 .01 .74 -.01 -.37 -.37 14 C 48- 70 7.9 0.5 .3 2 .00 .05 .01 .03 .54 .00 01 2.2 .01 .55 .01 .28 .27 20 N-2 Norway Gl eyic Podzol PI aclc Hapiaquod E 0- 8 3.6 4.8 .8 1 .02 .06 .02 .06 .49 .03 .05 4.2 .08 .57 .08 .57 .52 1 .00 Bhl 8- 15 3.8 4.7 5.8 6 .79 .97 .77 .81 5.84 .90 .87 38.2 1.77 7.61 .30 1.27 1.12 1 01 Bh2 15- 30 4.1 5.1 3.4 1 .91 .61 .81 .59 3.70 .97 .56 31.8 1.53 5.23 1.53 5.23 4.67 1 .01 Bras 30- 33 4.6 6.2 1.0 1 .40 .99 .44 .70 .94 .46 66 14.8 1.12 2.06 1.12 2.06 1.40 .81

NL-2 Netherlands Cambic Arenosol Typic Udlpsamment Ah 0- 5 3.4 3.9 4.7 4 .17 .43 .17 .22 2.13 .17 .23 17.2 .40 2.53 .10 .63 .58 .67 AB 5- 10 4.1 4.3 2.0 4 .23 .39 .20 .15 1.03 .20 .17 9.7 .37 1.40 .09 .35 .31 .60 Bhl 10- 25 4.3 4.4 1.1 /•. .20 .33 .22 .12 .65 .17 .14 6.1 .31 .96 .08 .24 .21 .58 Bh2 35- 55 4.3 4.5 .4 3 .12 .25 .16 .07 .24 .11 .08 3.1 .19 .43 .06 .14 .12 .51 C 70- 80 4.6 4.6 .1 1 .03 .10 .05 .01 .06 .02 .01 1.3 .03 .09 .03 .09 .08 .23 95

Atomic Ratios CEC/C, V

pH pH Fe Ses„ AI Fe Ses 7 8.2 A,p Fep SeSp A,d Fed Ses, », o o p p p

CDN-13 Canada Dystric Cambisol Typic Fragiochrept 7.7 20.7 5.6 25.7 16.7 10.1 16.7 36.3 11.5 27.7 74.5 20.2 5.3 8.4 23.7 6.2 19.5 12.8 7.7 11.8 24.0 7.9 24.0 67.7 17.7 4.1 3.8 46.5 3.5 180 38.2 31.5 103 745 90.4 120 1490 111 5.7 5.2 14.9 3.8 4.3 4.8 2.3 3.2 7.7 2.3 6.3 18.2 4.7 4.7 2.1 27.9 1.9 2.0 0.9 0.6 1.3 11.6 1.1 1.7 23.3 1.6 61.0 .6 9.3 .5 0 0 0 0 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 - .3 4.7 .3 0 0 0 0 0 0 0 0 0 - .6 .6 0 0 0 0 0 0 0 0 0 - CDN-24 Canada Dystric Cambisct l Dystric Cryochrept 33.1 35.9 17.2 1.6 14.3 1.4 ' 6.4 19.9 4.8 3.1 27.5 2.8 6.5 57.2 5.8 6.8 6.8 33.8 5.6 8.6 13.0 5.2 4.0 21.6 3.3 10.7 53.6 8.9 9.0 8.4 77.4 7.6 6.5 14.4 4.5 1.8 19.6 1.7 11.1 102 10.0 9.0 6.4 71.9 5.9 10.9 17.7 6.8 2.2 24.0 2.0 16.1 181 14.8 9.7 8.3 59.9 7.3 8.9 16.3 5.8 3.1 31.0 2.8 18.5 134 16.2 8.5 6.2 23.9 4.9 15.3 17.5 8.2 4.4 23.3 3.7 27.7 107 22.0 8.5 4.0 107 3.8 22.5 18.0 10.0 3.1 37.7 2.9 29.4 791 28.4 11.7 3.1 69.8 2.9 9.0 5.3 3.3 1.2 6.6 1.0 12.3 279 11.8 15.2 4.1 83.8 3.9 4.1 3.0 1.7 0.5 3.3 0.4 4.5 93.1 4.3 33.5 D-ll Germany Dystric 1 Cambisol Typic Dystrochrept 40.2 20.8 13.7 109 19.5 16.5 115 67.8 42.6 109 56.5 37.3 4.1 20.6 10.2 6.8 43.1 10.1 8.2 43.1 20.5 13.9 45.7 22.5 15.1 5.3 6.4 7.4 3.4 10.6 3.4 2.6 11.3 13.2 6.1 12.0 13.9 6.4 9.9 5.3 7.4 3.1 5.8 1.5 1.2 6.6 6.9 3.4 9.8 13.6 5.7 18.9 4.5 7.0 2.7 3.8 .5 .4 5.6 8.7 3.4 7.5 11.6 4.6 30.0 F-2 France Dystric Canibisol Typic Dystrochrept 27.4 15.8 10.0 34.6 25.2 14.6 51.9 38.4 22.1 71.1 41.2 26.1 3.5 14.6 10.8 6.2 54.9 22.8 16.1 44.3 32.3 18.7 42.9 31.6 18.2 3.0 11.9 10.5 5.6 29.8 15.6 10.2 24.7 50.0 16.5 24.1 21.4 11.3 3.9 9.5 10.4 5.0 22.5 11.6 7.6 19.2 17.8 9.2 18.3 20.2 9.6 4.0 8.4 8.8 4.4 19.7 13.8 8.1 17.1 16.8 8.5 16.8 17.2 8.5 3.4 9.5 13.1 5.5 16.9 14.3 7.7 14.1 15.6 7.4 13.8 19.2 8.0 3.6 8.1 12.4 4.9 9.0 9.2 4.5 7.1 12.6 4.6 8.7 13.5 5.3 6.1

IRL-9 Ireland Placic Podzol Typi': Placohumod 31.5 130 25.4 67.5 93.1 39.1 67.5 140 45.5 67.5 279 54.4 6.7 20.9 86.8 16.9 39.4 81.4 26.5 45.0 163 35.3 31.5 130 25.4 5.6 17.4 13.2 7.5 4.1 .6 .6 7.5 2.4 1.8 11.3 8.5 4.8 24.5 3.4 14.0 2.7 9.0 1.1 1.0 7.5 4.9 3.0 11.3 46.5 9.1 19.0 N-l Norway Cal caric Regosol Typic Cryorthent 167 172 84.7 135 83.8 51.7 81.0 93.1 43.3 405 419 206 5.1 80.3 125 48.8 270 160 100 180 186 91.5 360 559 219 4.4 53.3 82.6 32.4 113 62.1 40.0 90.0 84.6 43.6 150 233 91.2 5.9 - 340 340 158 54.3 40.4 78.8 81.4 40.0 - 326 326 3.1 - 251 251 - 27.9 27.9 67.5 46.5 27.5 - 140 140 7.3 N-2 Norway Gleyic Podzol Placic Maplaquod 36.8 45.6 20.4 90.0 62.1 36.7 90.0 62.1 36.7 60.0 74.5 33.2 5.3 14.6 31.3 10.0 16.5 27.8 10.4 16.9 33.3 11.2 14.5 31.0 9.9 6.6 8.6 30.8 6.7 8.4 26.0 6.4 9.4 26.9 7.0 7.9 28.3 6.2 9.4 4.6 6.6 2.7 5.6 4.7 2.6 5.1 6.6 2.9 4.9 7.1 2.9 14.8 NL-2 Netherlands Cambic Arenosol Typic Udipsamment 28.2 43.1 17.0 62.2 50.9 28.0 62.2 99.4 38.3 62.2 95.1 37.6 3.7 11.6 28.2 8.2 19.6 23.9 10.8 22.5 62.1 16.5 22.5 54.8 25.9 4.9 8.6 21.6 6.2 12.4 15.5 6.9 11.3 42.7 8.9 14.6 36.6 10.4 5.5 4.9 14.0 3.6 7.5 7.4 3.7 5.6 26.6 4.6 8.2 23.3 6.1 7.8 6.8 27.9 5.4 7.5 4.7 2.9 4.5 46.7 4.1 11.3 46.7 9.1 13.0 96

Appendix 4B (ctd). Selected chemical properties and carbon/sesqm'oxides atomic ratios* ot profiles in the ISM collection

clay Amorphous Matter Extractions Pyrophosphate Extract

Ses AM Al+C Ses„

pH Hori­ Depth KCl H20 C c M Fe A Fe 7 8.2 Ses AM clay clay clay Ses. t d d 'o o CP A,P Fep zon (cm) % % % % % % % % %

GMC-4 Soviet Union G'leyi c Podzol Typic Cryaquod El 0- 12 3.0 3.7 1.55 3 .05 .01 .04 .01 .71 .05 .00 8.3 .05 .76 .02 .25 .25 .83 E2 12- 19 3.4 4.1 1.24 3 .07 .01 .07 .00 .78 .09 .00 6.7 .09 .87 .03 .29 .29 1.12 BE 19- 22 3.6 4.2 1.46 1 .15 .04 .14 .00 1.47 .14 .00 8.1 ,14 1.61 .14 1.61 1.61 .74 Bh 22- 30 3.7 4.2 2.58 1 .36 .01 .38 .01 2.47 .43 .01 14.8 .44 2.91 .44 2.91 2.90 1.19 Bhs 30- 37 3.8 4.3 2.33 1 .45 .14 .50 .03 2.01 .55 .04 13.8 .59 2.60 .59 2.60 2.56 1.00 Bs 37- 42 4.2 5.1 .60 2 .18 .23 .23 .04 .51 .18 .06 3.9 .24 .75 .12 .38 .35 .59 2Clr 42- 58 3.7 4.9 .18 6 .05 .77 .06 .35 .21 .04 .11 7.1 15 .36 .03 .06 .04 .18 2C2r 58- 75 4.2 5.6 .24 6 .03 .58 .03 .31 .09 .00 .02 3.4 ,02 .11 <.01 .02 .02 .03 2C3r 75- 95 4.8 6.4 .07 4 .02 .38 .02 .20 .10 .00 .01 2.2 .01 .11 <.01 .03 .03 .02

GMC-6 Soviet Union Orthic Luvisol Typic Glossoboralf Ap 0- 12 5.6 6.4 3.08 33 .11 1.76 .10 .72 1.16 .03 .14 21.7 .17 1.33 .01 .04 .04 .09 E/B 12- 21 4.7 5.4 .78 35 .25 3.05 .20 : 1.05 .44 .03 .07 17.3 ,10 .54 <.01 .02 .01 .03 B/E 21- 30 4.2 5.1 .50 52 .21 2.54 .21 : 1.16 .32 .04 .07 20.5 ,11 .43 <.01 .01 .01 .04 Bt 30- 57 3.8 4.9 .34 53 .16 2.10 .16 .77 .22 .06 .07 22.0 .13 .35 <.01 .01 .01 .06 2Cr 57- 66 3.8 4.9 .35 62 .20 2.33 .17 .82 .27 .16 .15 20.9 ,31 .58 .01 .01 .01 .12 2C1 66- 73 4.5 5.0 .40 45 .23 2.67 .13 .72 .26 .11 .12 16.6 ,23 .49 .01 .01 .01 .08 2C2 73- 85 4.1 5.0 .60 26 .28 5.37 .11 .84 .25 .09 .14 12.0 ,23 .48 .01 .02 .01 .04 2C3 85- 92 4.3 5.3 .23 23 .09 1.06 .08 .37 .06 .12 .09 9.2 .21 .27 .01 .01 .01 .18 3C 92-100 4.3 5.4 .20 14 .07 .76 .04 .27 .14 .02 .07 5.4 .09 .23 .01 .02 .01 .11

GMC-7 Soviet Union Orthic Luvisol Aquic Cryoboi'al f Bs 5- 13 3.9 4.8 1.31 13 .25 .74 .26 .35 .83 .24 .26 ,50 1.33 .04 .10 .08 .51 E 13- 25 3.9 4.9 .31 11 .11 .63 .08 .22 .22 .07 .09 5.0 .16 .38 .01 .03 .03 .22 Btl 25- 54 3.9 5.0 .20 19 .10 .97 .06 .29 .12 .02 .04 7.9 .06 .18 <.01 .01 .01 .06 Bt2 54- 69 4.5 5.7 .13 15 .08 .74 .04 .15 .06 .01 .02 5.7 ,03 .09 <.01 .01 <.01 .04 BC 69- 85 4.5 5.8 .11 17 .09 .86 .03 .16 .04 .01 .01 6.7 .02 .06 <.01 <.01 <.01 .02 C 85-100 4.2 5.3 .53 26 .08 .74 .04 .14 .04 .00 .01 8.2 .01 .05 <.01 <.01 <.01 .01

GMC-8 Soviet Union ( Jrthic Podzol Typic Haplorthod Ah 0- 17 5.2 6.1 1.71 8 .12 .30 .14 .26 .86 .11 .10 8.7 .21 1.07 .03 .13 .12 .50 E 17- 30 5.1 6.2 .17 4 .01 .02 .02 .03 .12 .03 .01 1.7 .04 .16 .01 .04 .04 1.33 BE 30- 38 4.4 5.6 .42 7 .07 .11 .08 .06 .40 .07 .05 4.4 .12 .52 .02 .07 .07 .67 Bhml 38- 53 3.8 4.7 1.95 4 .35 .63 .36 .63 1.60 .42 .47 11.5 .89 2.49 .22 .62 .51 .91 Bhm2 53- 64 4.0 4.5 1.38 1 .34 .30 .39 .28 1.32 .50 .29 7.8 .79 2.11 .79 2.11 1.82 1.23 Bs 64- 80 4.2 4.6 .86 1 .32 .26 .33 .23 .87 .41 .22 5.6 .63 1.50 .63 1.50 1.28 1.09 BC 80- 93 4.3 4.6 .50 2 .21 .15 .26 .13 .52 .27 .13 3.2 .40 .92 .20 .46 .40 1.11 2C 93-100 4.3 4.7 .51 3 .22 .15 .28 .14 .22 .25 .13 4.1 .38 .60 .13 .20 .16 1.03

GMC-13 Soviet Uni on Gleyic Aqui c Hapl udalf Ah 0- 10 3.0 3.9 1.44 6 .06 .04 .06 .03 .55 .07 .04 6.1 .11 .66 .02 .11 .10 1.10 E 10- 19 3.8 4.7 .25 10 .02 .04 .03 .02 .03 .02 .02 2.0 .04 .07 .01 .01 .01 .67 B 19- 32 4.2 5.2 .35 7 .14 .19 .20 .11 .27 .15 .07 3.3 .22 .49 .03 .07 .06 .67 E 32- 46 4.4 5.6 .15 6 .11 .34 .11 .16 .10 .07 .03 2.8 .10 .20 .02 .03 .03 .22 2Btl 46- 68 3.6 4.4 .24 19 .12 .89 .12 .29 .10 .08 .06 8.8 .14 .24 .01 .01 .01 .13 2bt2 68- 96 3.8 4.5 .19 18 .08 .67 .08 .15 .09 .05 .05 6.3 .10 .19 .01 .01 .01 .13 97

Atomic Ratios CEC/Ct V V

pH pH A, Fe s A Fe Ses . Fe S"o Al Fe S 7 8.2 p p "p 'd d d *'. o P p "P

GMC-4 Soviet Union Gleyic Podzol Typic Cryaquod 32.0 •- 32.0 69.8 723 63.6 87.2 723 77.8 69.8 69.7 5.4 19.5 - 19.5 39.9 579 37.3 39.9 39.9 31.0 - 31.0 5.4 23.6 - 23.6 21.9 170 19.4 23.5 - 23.5 23.5 - 23.5 5.5 12.9 1153 12.8 16.1 1204 15.9 15.3 1204 - 15.1 13.5 1204- 13.4 5.7 8.2 234 7.9 11.7 77.7 10.1 10.5 362 10.2 9.5 272 9.2 5.9 6.4 39.7 5.5 7.5 12.2 4.6 5.9 70.0 5.4 7.5 46.7 6.5 6.5 11.8 8.9 5.1 8.1 1.1 1.0 6.8 2.4 1.8 10.0 7.6 4.4 39.0 - 20.9 20.9 18.0 1.9 1.7 18.0 3.6 3.0 - 56.0 56.0 14.2 - 46.5 46.5 7.9 0.9 0.8 7.9 1.6 1.4 - 32.7 32.7 31.4 GHC-6 Soviet Union Orthic Luvisol Typic Glossoboralf 87.0 38.6 26.7 63.0 8.2 7.2 69.3 20.0 15.6 231 103 71.1 7.0 33.0 29.3 15.5 7.0 1.2 1.0 8.8 3.5 2.5 58.5 52.0 27.5 22.2 18.0 21.3 9.8 5.4 0.9 0.8 5.4 2.0 1.5 28.1 33.3 15.3 41.0 8.2 14.6 5.3 4.8 0.8 0.7 4.8 2.1 1.4 12.8 22.7 8.2 64.7 3.8 8.4 2.6 3.9 0.7 0.6 4.6 2.0 1.4 4.9 10.9 3.4 59.7 5.3 10.1 3.5 3.9 0.7 0.6 6.9 2.6 1.9 8.2 15.6 5.4 41.5 6.3 8.3 3.6 4.8 0.5 0.5 12.3 3.3 2.6 15.0 20.0 8.6 20.0 1.1 3.1 .8 5.8 1.0 0.9 6.5 2.9 2.0 4.3 11.9 3.2 40.0 15.8 9.3 5.9 6.4 1.2 1.0 11.3 3.5 2.6 22.5 13.3 8.4 27.0

GMC-7 Soviet Union Orthic Luvisol Aquic Cryoboralf 7.8 14.9 5.1 11.8 8.3 4.9 11.3 17.5 6.9 12.3 23.5 8.1 16.8 7.1 11.4 4.4 6.3 2.3 1.7 8.7 6.6 3.7 10.0 16.1 6.2 16.1 13.5 14.0 6.9 4.5 1.0 0.8 7.5 3.2 2.3 22.5 23.3 11.5 39.5 13.5 14.0 6.9 3.7 0.8 0.7 7.3 4.0 2.6 29.2 30.3 14.9 43.9 9.0 18.6 6.1 2.8 0.6 0.5 8.3 3.2 2.3 24.8 51.3 16.7 60.9 - 18.6 18.6 14.9 3.3 2.7 29.8 17.7 11.1 - 247 247 15.5 GMC-8 Soviet Union Orthic Podzol Typic Haplorthod 17.6 40.0 12.2 32.1 26.6 14.5 27.5 30.7 14.5 35.0 79.8 24.3 5.1 9.0 55.9 7.8 38.3 39.7 19.5 19.1 26.4 11.1 12.8 79.3 11.0 10.0 12.9 37.2 9.6 13.5 17.8 7.7 11.8 32.7 8.7 13.5 39.2 10.0 10.5 8.6 15.8 5.6 12.5 14.4 6.7 12.2 14.4 6.6 10.4 19.4 6.8 5.9 5.9 21.2 4.6 9.1 21.5 6.4 8.0 23.0 5.9 6.2 22.2 4.9 5.7 4.8 18.5 3.8 6.0 15.4 4.3 5.9 17.4 4.4 4.7 18.2 3.7 6.5 4.3 18.6 3.5 5.4 15.6 4.0 4.3 17.9 3.5 4.2 17.9 3.4 6.4 2.0 7.9 1.6 5.2 15.9 3.9 4.1 17.0 3.3 4.6 18.3 3.7 8.0 GMC-13 Soviet Union Gl eyic Acrisol Aquic Hapludalf 17.7 64.0 13.9 54.0 168 40.9 54.0 224 43.5 46.3 168 36.3 4.2 3.4 7.0 2.3 28.1 29.2 14.3 18.8 58.3 14.5 28.1 58.3 19.0 8.0 4.1 18.0 3.3 5.6 8.6 3.4 3.9 14.8 3.1 5.3 23.3 4.3 9.4 3.2 15.5 2.7 3.1 2.1 1.2 3.1 4.4 1.8 4.8 23.3 4.0 18.7 2.8 7.8 2.1 3.6 1.0 0.8 3.6 3.1 1.6 5.3 14.8 3.9 46.3 4.1 8.4 2.7 5.3 1.3 1.1 5.3 5.9 2.8 8.5 17.7 5.8 33.2 98

Appendix 4B (ctd). Selected chemical properties and carbon/sesquioxides atomic ratios of profiles in the ISM collection

pH clay Amorphous Hatter Extractions Pyrophosphate Extract

Ses AM AHC Ses„

oH pH Hori­ Depth KCl H 0 C c A, Fe Al e C Al 7 8.2 Ses AM clay clay clay Ses 2 d d " o p p Fep d (cm) 0 zon * •I % % * % * %

S-2 Sweden Oystric Cambisol Typic Dystrochrept Ah 0- 6 3.2 3.9 2.1 5 .06 .25 .06 .11 2 20 .06 .12 22.5 .18 2.53 .04 .51 .48 .58 E 6- 10 3.5 4.0 2.2 4 .04 .21 .05 .11 83 .05 .13 9.2 .18 1.01 .05 .25 .22 .72 Bh 10- 16 3.7 4.1 2.8 7 .17 1.05 .19 .76 2 13 .20 .77 19.2 .97 3.10 .14 .44 .33 .80 Bsl 16- 26 4.5 4.5 2.0 7 .44 .74 .59 .51 1 60 .39 .29 14.8 .68 2.28 .10 .33 .28 .58 Bs2 26- 55 4.6 4.6 .9 6 .22 .37 .37 .21 62 .14 .07 7.3 .21 .83 .04 .14 .13 .36 C 55+ 4.7 4.7 .5 6 .18 .34 .25 .19 44 .15 .12 5.5 .27 .71 .05 .12 .10 .52 S-9 Sweden Orthic Podzol Typic Cryorthod E 0- 7 3.2 4.4 .4 0 .01 .02 .02 .02 20 .00 .01 2.6 .01 .21 .33 Bh 7- 17 3.6 4.5 1.5 2 .09 .81 .20 .70 1 48 .15 .39 14.3 .54 2.02 -.27 1.0- 1 -.82 .60 Bs 17- 27 4.0 5.0 .6 1 .21 .39 .43 .32 42 .11 .03 3.1 .14 .56 .14 .56 .53 .23 BC 27- 38 4.0 4.7 .2 1 .16 .42 .28 .40 14 .07 .02 1.6 .09 .23 .09 .23 .21 .16 2C1 45- 60 4.0 5.3 .3 3 .17 .35 .30 .25 18 .09 .03 3.1 .12 .30 .04 .10 .09 .23 2C2 60- 70 4.6 5.5 .1 1 .08 .17 .11 .11 12 .07 .05 1.4 .12 .24 .12 .24 .19 .48 2C3 72-105 4.5 5.8 .2 3 .13 .43 .18 .28 19 .10 .08 2.5 .18 .37 .06 .12 .10 .32 S-10 Sweden Orthic Podzol Typic Cryohumod E 1- 12 3.5 4.6 .9 1 .03 .01 .03 .00 36 .04 .00 3.2 .04 .40 .04 .40 .40 1.00 Bhl 15- 20 4.0 4.8 5.3 2 .85 .23 1.05 .10 4 43 .97 .13 35.2 1.10 5.53 .55 2.77 2.70 1.02 Bh2 20- 30 4.4 5.2 1.2 1 .44 .69 .69 .37 1 11 .35 .21 7.4 .56 1.67 .56 1.67 1.46 .50 2C1 25- 40 4.5 5.2 .4 0 .16 .66 .24 .37 37 .12 .16 2.6 .28 .65 .34 2C2 40- 60 4.5 5.2 .2 1 .11 .60 .16 .26 20 .08 .07 1.4 .15 .35 -.15 -.35 -.28 .21 2C3 60- 70 4.5 5.3 .2 1 .10 .54 .16 .33 16 .07 .08 1.5 .15 .31 .15 .31 .23 .23 S-14 Sweden Cambic Arenoso Typic Cryopsamment E 0- 3 3.4 4.6 .9 1 .02 .07 .02 .03 29 .02 .03 6.3 .05 .34 .05 .34 .31 .56 Bs 3- 10 4.5 5.3 .6 2 .19 .52 .41 .30 44 .15 .04 6.6 .19 .63 .10 .32 .30 .27 B 10- 20 4.6 5.4 .4 1 .12 .31 .25 .16 19 .07 .01 3.7 .08 .27 .08 .27 .26 .19 B 20- 30 4.6 5.4 .2 1 .06 .18- .15 .07 08 .04 .01 2.0 .05 .13 .05 .13 .12 .21 B 30- 45 4.6 5.7 .1 1 .04 .13 .09 .06 05 .02 .00 1.3 .02 .07 .02 .07 .07 .12 C 48- 70 5.2 6.3 0 0 .01 .06 .02 .03 03 .01 .00 .6 .01 .04 - - - .14 S-15 Sweden Humic Podzol Typic Cryohumod E 0- 10 3.4 4.5 2.1 3 .02 .02 .02 .02 55 .02 .02 6.7 .04 .59 .01 .20 .19 1.00 Bhl 10- 25 3.8 4.5 2.4 4 .17 .06 .15 .05 1 79 .19 .06 13.8 .25 2.04 .06 .51 .50 1.09 Bh2 25- 40 4.0 4.9 4.6 4 .71 .85 .72 .87 4 69 .81 .83 41.7 1.64 6.33 .41 1.58 1.38 1.05 Bh3 40- 55 4.1 5.1 2.8 3 .53 .80 .53 .76 2 91 .66 .72 30.1 1.38 4.29 .46 1.43 1.19 1.04 BC 58- 65 4.3 5.2 1.1 5 .32 .32 .33 .24 46 .34 .21 12.0 .55 1.01 .11 .20 .18 .86 S-16 Sweden Dystrie Cambisc 1 Dyst ric Cryochrept E 0- 6 3.3 4.3 .5 2 .02 .12 .03 .01 18 .01 .01 4.6 .02 .20 .01 .10 .10 .14 Bsl 7- 16 5.0 5.9 1.7 2 .68 1.81 2.52 .15 91 .35 .04 21.8 .39 1.30 .20 .65 .63 .16 Bs2 15- 30 5.1 6.0 .3 2 .13 .48 .50 .27 20 .05 .00 4.0 .05 .25 .03 .13 .13 .08 C 70- 80 4.8 5.9 .1 2 .06 .26 .20 .17 06 .04 .01 2.2 .05 .11 .03 .06 .05 .16 SF-4 Finland Orthic Podzol/Cambic Arenosol Typi c Cryo rthod/Spod c Udipsamnent E 0- 10 3.5 4.3 .7 0 .01 .02 .01 .01 24 .01 .01 4.4 .02 .26 .67 Bhs 10- 20 4.4 4.8 3.0 0 .34 1.73 1.44 .29 2 38 .55 .41 23.9 .96 3.34 - - - .46 Bs 20- 35 6.2 5.5 .7 1 .15 .28 1.11 .20 28 .13 .01 8.0 .14 .42 -.14 -.42 -.41 .33 C 35- 70 5.1 5.7 .2 2 .03 .05 .39 .05 05 .06 .00 2.8 .06 .11 .03 .06 .06 .75

SK-3 Sarawak Cambic Arenosol Typi c Tropopsamment Ah 0- 2 4.2 4.6 1.3 1 .02 .37 .01 .02 26 .00 .01 5.0 .01 .27 .01 .27 .26 .02 E 10- 25 4.0 4.6 .2 1 .02 .43 .00 .01 .15 .00 .02 .6 .02 .17 .02 .17 .15 .04 EB 30- 38 4.1 5.5 .2 2 .07 .95 .01 .07 .17 .02 .19 1.0 .21 .38 .11 .19. .10 .21 Bhsl 38- 46 4.2 4.5 .6 4 .20 2.12 .06 .35 .29 .09 .59 3.7 .68 .97 .17 .24 .10 .29 Bhs2 46- 58 4.7 5.3 .5 3 .48 3.85 .18 .62 .52 .27 1.22 2.8 1.49 2.01 .50 .67 .26 .34 Bs 58- 66 4.9 5.3 .3 3 .46 4.88 .08 .43 .29 .13 .51 1.9 .70 .99 .23 .33 .14 .13 Bw 75- 90 5.0 5.2 .2 3 .32 3.72 .05 .22 .05 .07 .42 1.0 .49 .54 .16 .18 .04 .12 SK-4 Sarawak Cambic Arenosol Typi c Tropopsamment Ah 0- 10 4.0 4.3 .7 4 .20 2.12 .04 .08 .38 .04 .21 3.9 .25 .63 .06 .16 .11 .11 AB 16- 25 4.0 4.5 .5 4 .21 2.18 .03 .07 .29 .04 .25 4.2 .29 .58 .07 .15 .08 .12 Bwl 40- 55 4.1 5.3 .3 4 .13 1.73 .02 .10 14 .03 .24 2.8 .27 .41 .07 .10 .04 .15 Bw2 75- 95 4.6 5.4 .1 4 .22 2.40 .03 .10 00 .04 .23 1.8 .27 .27 .07 .07 .01 .10 BC 110-120 4.8 5.5 .1 3 .20 2.30 .02 .07 14 .01 .08 1.1 .09 .23 .03 .08 .05 .04 99

Atomic Ratios CEC/C, v pH pH Fe„ Ses Al. feA <•„ Al Fe„ Ses„ Al Fen Sesn 7 8.2 p Pod H oo o p p p

S-2 Sweden Dystric Cambisol Typic Oystroc hrep t 88.1 91.1 44.8 78.8 39.1 26.1 78.8 88.9 41.7 78.8 81.4 40.0 10.7 37.4 29.7 16.5 124 48.8 35.0 99.0 93.1 48.0 99.0 78.8 43.9 4.2 24.0 12.9 8.4 37.1 12.4 9.3 33.2 17.1 11.3 31.5 16.9 11.0 6.9 9.2 25.7 6.8 10.2 12.6 5.6 7.6 18.3 5.4 11.5 32.1 8.5 7.4 10.0 41.2 8.0 9.2 11.3 5.1 5.5 19.9 4.3 14.5 59.8 11.6 8.1 6.6 17.1 4.8 6.3 6.8 3.3 4.5 12.2 3.3 7.5 19.4 5.4 11.0 S-9 Sweden Orthic Podzol Typic Cryorthod 93.1 93.1 90.0 93.1 45.8 45.0 93.1 30.3 186 186 6.5 22.-2 17.7 9.8 37.5 8.6 7.0 16.9 10.0 6.3 22.-5 17.9 10.0 9.5 8.6 65.2 7.6 6.4 7.2 3.4 3.1 8.7 2.3 12.3 93.1 10.8 5.2 4.5 32.6 4.0 2.8 2.2 1.2 1.6 2.3 1.0 6.4 46.5 5.6 8.0 4.5 27.9 3.9 4.0 4.0 2.0 2.3 5.6 1.6 7.5 46.5 6.5 10.3 3.9 11.2 2.9 2.8 2.7 1.4 2.0 4.2 1.4 3.2 9.3 2.4 14.0 4.3 11.1 3.1 3.5 2.2 1.3 2.5 3.3 1.4 4.5 11.6 3.2 12.5 S-10 Sweden Orthic Podzol Typic Cryohumod 20.3 20.3 67.5 419 58.1 67.5 67.5 50.6 50.6 3.6 10.3 159 - 9.7 14.0 107 12.4 11.4 247 - 10.9 12.3 190 - 11.5 6.6 7.1 24.6 5.5 6.1 8.1 3.5 3.9 15.1 3.1 7.7 26.6 6.0 6.2 6.9 10.8 4.2 5.6 2.8 1.9 3.8 5.0 2.1 7.5 11.6 4.6 6.5 5.6 13.3 4.0 4.1 1.6 1.1 2.8 3.6 1.6 5.6 13.3 4.0 7.0 5.1 9.3 3.3 4.5 1.7 1.2 2.8 2.8 1.4 6.4 11.6 4.1 7.5

S-14 Sweden Cambic Arenosol Typic Cryopsamment 32.6 45.0 18.9 101 59.8 37.6 101 140 58.7 101 140 58.7 7.0 6.6 51.2 5.8 7.1 5.4 3.1 3.3 9.3 2.4 9.0 69.8 8.0 11.0 6.1 88.4 5.7 7.5 6.0 3.3 3.6 11.6 2.7 12.9 186 12.0 9.3 4.5 37.2 4.0 7.5 5.2 3.1 3.0 13.3 2.4 11.3 93.1 10.0 10.0 5.6 - 5.6 5.6 3.6 2.2 2.5 7.8 1.9 11.3 - 11.2 13.0 6.7 - 6.7 0 0 0 0 0 0 0 0 0 - S-15 Sweden Humic Podzol Typic Cryohumod 61.9 128 41.7 236 489 159 236 489 159 236 489 159 3.2 21.2 139 18.4 31.8 186 27.1 36.0 223 31.0 28.4 196 24.7 5.8 13.0 26.4 8.7 14.6 25.2 9.2 14.4 24.6 9.1 12.8 25.8 8.5 9.1 9.9 18.9 6.5 11.9 16.3 6.9 11.9 17.1 7.0 9.5 18.1 6.2 10.8 3.0 10.2 2.3 7.7 16.0 5.2 7.5 21.3 5.5 7.3 24.4 5.6 10.9 S-16 Sweden Dystric Cambisol Dyst rie Cryochrept 40.5 83.8 27.3 22.5 7.8 5.8 15.0 93.1 12.9 45.0 93.1 30.3 23.0 5.8 106.2 5.5 5.6 4.4 2.5 1.5 6.9 1.2 10.9 198 10.4 12.8 9.0 9.0 5.2 2.9 1.9 1.4 5.2 1.1 13.5 13.5 13.3 3.4 27.-9 3.0 3.8 1.8 1.2 1.1 2.7 .8 5.6 46.-5 5.0 22.0 SF-4 Finland Orthic Podzol/Cambic Arenosol Typi c Cryorthod/Spodic Ud ipsamment 54.0 112 36.4 158 163 80.1 158 325 106 158 326 106 * 6.3 9.7 27.0 7.2 19.9 8.1 5.7 4.7 10.8 3.3 12.3 34.1 9.0 8.0 4.8 130 4.7 10.5 11.6 5.5 1.4 16.3 1.3 12.1 326 11.7 11.4 1.9 - 1.9 15.0 18.6 8.3 1.2 18.6 1.1 7.5 - 7.5 14.0 SK-3 Sarawak Cambic Arenosol Typic Tropopsamment 121 121 146 16.4 14.7 293 303 149 605 605 3.8 _ 34.9 34.9 22.5 2.2 2.0 93.1 92.9 - 46.5 46.5 3.0 19.-1 4.2 3.4 6.4 1.0 .9 45.-0 13.3 10.3 22.-5 4.9 4.0 5.0 7.2 2.3 1.7 6.8 1.3 1.1 22.5 8.0 5.9 15.0 4.7 3.6 6.2 4.3 2.0 1.4 2.3 .6 .5 6.3 3.8 2.3 4.2 1.9 1.3 5.6 5.0 2.4 1.6 1.5 .3 .2 8.4 3.2 2.3 5.2 2.4 1.7 6.3 1.6 .6 .4 1.4 .3 .2 9.0 4.2 2.9 6.4 2.2 1.6 5.0 SK-4 Sarawak I -ambic Arenosol Typi.: Tropopsamment 21.4 8.4 6.0 7.9 1.5 1.3 39.4 40.7 20.0 39.4 15.5 11.1 5.6 16.3 5.4 4.1 5.4 1.1 .9 37.5 33.2 17.6 28.1 9.3 7.0 8.4 10.5 2.7 2.2 5.2 .8 .7 33.8 14.0 9.9 22.5 5.8 4.6 9.3 0 0 0 1.0 .2 .2 7.5 4.7 2.9 5.6 2.0 1.5 18.0 31.5 8.1 6.5 1.1 .2 .2 11.3 6.6 4.2 22.5 5.8 4.6 11.0 100

APPENDIX 5.SELECTE D CHEMICAL DATA FROM LITERATURE ANDCARBON/SESQUIOXID E ATOMIC RATIOS

clay Amorphous Matter Extractions Pyrophosphate Extract

Ses AH Al+C Ses„

Hori­ Depth Fe, Al Ses AM clay clay clay clay Al d o Fe. Al Fe„ zon (cm)

Countesswells England Brown Podzolic Ap 0- 25 6.6 11 4.1 .47 1.31 1.78 5.88 .16 .53 Bs 25- 33 3.2 12 3.0 .72 .55 1.27 4.27 .11 .36 BCx 33-4 3 12 .6 .25 .17 0.42 1.02 .04 .09 Brownrigg England Brown Podzolic Ap 0- 16 2.1 5 .6 .09 .24 .33 .93 .07 .19 Bs 16- 31 1.0 6 .4 .12 .24 .36 .76 .06 .13 BC 31-8 0 - 4 .2 .09 .09 .18 .38 .05 .10 Bowden England Brown Podzolic Ap 0-2 5 5.4 29 2.1 .85 .56 1.41 3.51 .05 .12 Bs 25- 38 1.9 19 1.0 .78 .50 1.28 2.28 .07 .12 BC 38- 76 .9 16 .4 .34 .14 .48 .88 .03 .06 England Brown Podzolic Ap 0-2 4 4.2 24 .8 .21 .46 .67 1.47 .03 .06 Bs 24-4 5 2.0 14 .6 .45 .60 1.05 1.65 .08 .12 England Brown Podzolic Ap 0- 26 3.3 16 .6 .12 .42 .54 1.14 .03 .07 Bs 26- 40 1.2 17 .5 .23 .79 1.02 1.52 .06 .09 Bx(g) 40-6 5 17 .1 .09 .05 .14 .24 .01 .01 Moor Gate England Brown Podzolic Ah/Ea 0-1 2 12. 12 3.3 .25 .60 .85 4.15 .07 .35 Ah/Bh 12-2 5 5.3 10 2.9 .64 1.13 1.77 4.67 .18 .47 Bs 25-4 2 1.6 5 .9 .48 .31 .79 1.69 .16 .34 BCx 42- 95-4 .4 .34 .05 .39 .79 .10 .20

Bowden England Brown Podzolic H 4 -0 26. 15 6.7 .11 1.06 1.17 7.87 .08 .52 Ah 0 -2. 513 . 16 3.9 .25 .91 1.16 5.06 .07 .32 Ah/Bh 2.5-16 10. 21 4.7 .46 1.79 2.25 6.95 .11 .33 Bs 16 -32 2.4 8 1.6 .37 .74 1.11 2.71 .14 .34 •BC(x) 32 -63' 8 .4 .49 .52 1.01 1.41 .13 .18 Sourhope England Brown Podzolic Ah 0 -10 6.4 23 2.4 1.00 .90 1.90 4.30 .08 .19 Bsl 10 -18 4.5 13 2.3 .85 .85 1.70 4.00 .13 .31 Bs2 18 -60 4.2 8 2.0 .60 .24 .84 2.84 .11 .36 BCx 60 -90 - 11 1.0 .50 .08 .58 1.58 .05 .14 Linhope England Brown Podzolic Ah/Ea' 0 -15 5.5 22 1.9 .50 .43 .93 2.83 .04 .13 Bs 15 -50 2.5 16 1.2 .63 .63 1.26 2.46 .08 .15 Cx 50 -70 5 <.05 .17 <.01 .17 .22 .03 .04

Manod England Brown Podzolic Ah/Ea 0 -4 15. 30 2.0 .26 1.16 1.42 3.42 .05 .11 AB 4 -15 5.2 31 1.6 .50 1.39 1.89 3.49 .06 .11 Bsl 15 -29 2.2 25 .9 .45 1.14 1.59 2.49 .06 .10 Bs2 29 -47 1.8 17 .7 .50 .89 1.39 2.09 .08 .12 Bs3 47 -70 1.8 14 .8 .46 .68 1.14 1.94 .08 .14

Hiraetho g England Ironpan Stagnopodzol Oh 12-0 35. Ah/Eag 0 -14 5.6 19 2.3 .2 .3 .5 2.80 .03 .15 Bf 14 -14.58. 2 5.7 .5 5.9 6.4 12.1 - - Bs 14.5-34 2.9 10 1.6 .8 3.0 3.80 5.40 .38 .54 BC 34 -52 1.0 22 .3 .2 .3 .50 .8 .02 .04 101

Atomic Ratios

y v Reference

A1n Fe Sesn A1H FeH s« A1„ Fe„ Sesn Al Fe_ Ses. p p pod H 00 0

Countes swells England BrownPodzoli c 19.6 14.6 8.4 31.6 23.5 13.5 Avery et al., 1977 9.4 25.5 6.9 10.0 27.2 7.3 5.4 16.5 4.1

Brownri gg England BrownPodzoli c 15.0 11.7 6.6 52.5 40.8 23.0 7.5 7.8 3.8 18.7 19.4 9.6 5.0 10.4 3.4

Bowden England Brown Podzolic 5.6 17.5 4.2 14.3 45.0 10.9 2.9 9.3 2.2 5.5 17.7 4.2 2.7 13.3 2.2 6.0 30.0 5.0

England BrownPodzoli c 8.6 8.1 4.2 45.0 42.6 21.9 3.0 4.7 1.8 10.0 15.6 6.1

England Brown Podzolic 11.3 6.7 4.2 61.9 36.7 23.0 4.9 3.0 1.8 11.7 7.1 4.4 2.5 9.3 2.0

MoorGat e England Brown Podzolic 29.7 25.7 13.8 108 93.3 50.1 10.2 12.0 5.5 18.6 21.9 10.1 4.2 13.6 3.2 7.5 24.1 5.7 2.7 37.3 2.5

Bowden England BrownPodzoli c 137 29.5 24.3 532 114 94.2 35.1 20.0 12.7 117 66.7 42.5 23.0 12.3 8.0 48.9 26.1 17.0 9.7 10.1 4.95 14.6 15.1 7.4 1.8 3.6 1.2

Sourhope England Brown Podzolic 5.4 12.4 3.8 14.4 33.2 10.0 6.1 12.6 4.1 11.9 24.7 8.0 7.5 38.9 6.3 15.8 81.7 13.2 4.5 538 4.2

Linhope England BrownPodzoli c 8.6 20.6 6.0 24.8 59.7 17.5 4.3 8.9 2.9 8.9 18.5 6.0

Mano d England ! îrownPodzoli c 17.3 8.1 5.5 129 60.3 41.2 7.2 5.4 3.1 23.4 17.5 10.0 4.5 3.7 2.0 11.0 9.0 4.9 3.2 3.7 1.7 8.1 9.4 4.4 3.9 5.5 2.3 8.8 12.4 5.1

Hiraethog England IronpanStagnopodz i

25.9 35.8 15.0 63.0 87.1 36.6 25.7 4.5 3.8 36.9 6.5 5.5 4.5 2.5 1.6 8.2 4.5 2.9 3.4 4.7 2.0 11.3 15.6 6.5 102

Appendix b (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Matter Extractions Pyrophosphate Extract

Ses AM Al+C Ses„

Hori­ Depth Al Fe, Al Fe. A1 Fe Ses AM clay clay clay clay „P P„ zon (cm)

Hexworthy England Ironpan Stagnopodzol Oh 10 - 0 15.0 Ah/Eag 0 -18 3.1 2.2 .3 .03 .33 2.53 .05 .36 Bf 18 -18 8.0 5.5 .7 5.9 6.6 12.1 - - Bs 18. 5-30 3.1 1.6 .3 .9 1.2 2.8 .15 .35 BC 30 -61 .7 .2 .1 .3 1.0 .04 .13

Belmont England Ironpan Stagnopodzol 0h2 7-0 23.0 Ea(g) 0 - 6 3.7 11 2.0 .3 .1 .4 2.4 .04 .22 Bf 6 - 6 4.9 3.4 .3 2.9 3.2 6.6 - - Bsl 6.3-23 1.5 10 .8 .3 .6 .9 1.7 .09 .17 Bs2 23 -38 3.7 4 2.6 .6 2.5 3.1 5.7 .78 1.43 Dod .England Ironpan Stagnopodzol 0m/0h 18-0 50.0 Ah/Eag 0-7 8.5 34 3.9 .5 .4 .9 4.8 .03 .14 Bf 7 -7. 3 7.1 4.5 .4 5.6 6.0 10.5 - - Bs 7.3-35 3.0 28 1.5 .9 2.0 2.9 4.4 .10 .16 BCx 35 -45 .4 15 .4 .4 .5 .9 1.3 .06 .09 Ebberston England Ironpan Stagnopodzol Oh 8 - 0 26.0 Eag 0 -10 4.0 1.5 .1 .04 .14 1.64 .01 .13 Bf/Bs 10 -11 5.4 2.9 .3 1.1 1.4 4.3 - - Bw/E'b 11 -36 .6 .3 .2 .2 .4 .7 .01 .02 B't 36 -62 .2 .2 .04 .24 .44 .01 .01 BC 62 -93 .8 .1 .03 .13 .93 .01 .04

Hafren England Ferric Stagnopodzol Ah 0 - 6 13.0 17 Eg 6 -15 1.5 17 .6 .05 .2 .25 .85 .01 .05 Bsg 15 -26 2.2 34 1.2 .3 2.1 2.4 3.6 .07 .11 Bs 26 -34 2.4 32 1.2 .4 2.3 2.7 3.9 .08 .12

Rough Tor England Ferric Stagnopodzol Ap -14 5.2 16 1.9 .3 .8 1.1 3.0 .07 .19 Eg -25 1.7 14 .6 .1 .6 .7 1.3 .05 .09 Bs(g) -50 1.6 18 .9 .4 1.3 1.7 1.6 .09 .14 BC -77 - 9 .2 .1 .3 .4 .6 .04 .07

Daletown England Humus-Ironpan Stagnopodzol Oh 10 - 0 34.0 Ah/Ea 0 - 8 7.0 12 2.6 .2 .4 .6 3.2 .05 .27 Bh 8 -13 6.2 15 2.4 .2 .8 1.0 3.4 .07 .23 Eag 13 -19 3.7 15 1.4 .3 .4 .7 2.1 .05 .14 Bf 19 -20 3.3 2.3 .4 3.4 3.8 6.1 - _ Bs 20 -32 2.1 1.2 .3 .8 1.1 2.3 .07 .14 E'b/Bw 32 -51 .3 .2 .2 .4 .7 .04 .06 B't/Bw 51 .2 .2 .1 .3 .5 .02 .03

Maw England Humus-Ironpan Stagnopodzol Oh 10-0 14.0 Ah/Ea 0 -15 3.6 3 1.1 .1 .1 .2 1.3 .07 .43 Bh 15 -17.5 4.1 12 2.5 .3 .3 .6 3.1 .05 .26 Bf 17.5-18 4.1 2.8 .5 4.7 5.2 8.0 - - Bsl 18 -26 1.7 1.2 .4 2.1 2.5 3.7 .36 .53 Bs2 26 -43 .9 .6 .2 .5 .7 1.2 .12 .20 BC 43 -53 .2 .1 .1 .2 .4 .04 .08 103

Atomic Ratios

V V Reference

AI Fe Sesn AI, Fe. <-oc AI Fe Ses„ Al Fe. Ses„ p p Pad Ses^ oo o

Hexworthy England Ironpan Stagnopodzol

16.5 342 157 23.3 482 22.2 Avery et al., 1977 17.7 4.4 3.5 25.7 6.3 5.1 12.0 8.3 4.9 23.3 16.1 9.5 7.9 32.7 6.4

Belmont England Ironpan Stagnopodzol

15 93 12.9 27.8 173 23.9 25.5 5.5 4.5 36.8 7.9 6.5 6.0 6.2 3.1 11.3 11.7 5.7 9.8 4.9 3.2 13.9 6.9 4.6

Dod England Ironpan Stagnopodzol

17.6 45.5 12.7 38.3 99.2 27.6 25.3 3.8 3.3 39.9 5.9 5.2 3.8 3.5 1.8 7.5 7.0 3.6 2.3 3.7 1.4 2.3 3.7 1.4

Ebberston Englani Ironpan Stagnopodzol

33.8 175 28.3 90.0 467 75.5 21.8 12.3 7.9 40.5 22.9 14.6 3.4 7.0 2.3 6.8 14.0 4.6 2.3 23.3 2.1 18.0 124 15.8

Hafren England FerricStagnopodzo l 27.0 14.0 9.2 67.5 35.0 23.1 9.0 2.7 2.1 16.5 4.9 3.8 6.8 2.4 1.8 13.5 4.9 3.6

Rough Tor Englani 14.3 11.1 6.2 39.0 30.3 17.1 13.5 4.7 3.5 38.3 13.2 9.8 5.1 3.2 2.0 9.0 5.7 3.5 4.5 3.1 1.8

Daletown England Humus-Ironpan Stagnopodzol

29.3 3.3 14.9 78.8 81.7 40.1 27.0 14.0 9.2 70.0 36.2 23.8 10.5 16.3 .6.4 27.8 43.2 16.9 12.9 3.2 2.5 18.6 4.5 3.6 9.0 7.0 3.9 15.8 12.3 6.9 3.4 7.0 2.3 2.3 9.3 1.8 Maw England Humus-Ironpan Stagnopodzol

24.8 51.3 16.7 81 168 54.7 18.8 38.9 12.7 30.8 63.8 20.8 12.6 2.8 2.3 18.5 4.1 3.3 6.8 2.7 1.9 9.6 3.8 2.7 5.6 4.7 2.6 10.1 8.4 4.6 4.5 9.3 3.0 104

Appendix 5 (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Hatter Extractions Pyrophosphate Extract

Ses All Al+C Ses„

Hori- Depth C c A1 Fe Al Ses AM clay clay clay clay t d d Feo C A1 Fe 0 p P p zon (cm) * % % % * % % % *

Dartington England+Wales Brown Podzolic Ah 0 - 5 36 .37 3.17 1.17 1.74 2.44 .38 1.28 1.66 4.10 .05 .11 .08 .47 Bsl 5 -18 39 .57 3.63 1.80 2.00 1.01 .67 1.38 2.05 3.06 .05 .08 .04 .49 Bs2 18 -38 34 .56 3.39 1.85 1.74 .72 .65 1.11 1.76 2.48 .05 .07 .04 .45 Bs3 38 -51 21 .52 2.89 1.36 1.38 .63 .47 .73 1.20 1.83 .06 .09 .05 .35 BC 51 -64 9 .31 3.08 .69 .40 .25 .20 .19 .39 .64 .04 .07 .05 .12

Highweek England+Wal es Brown Earth Ap 32 .37 2.90 1.30 1.60 .69 .17 .29 .46 1.15 .01 .04 .03 .14 Bwl 27 .37 2.96 1.12 1.24 .36 .13 .13 .16 .62 .01 .02 .02 .08 Bw2 27 .40 2.79 1.09 .92 .30 .14 .15 .29 .59 .01 .02 .02 .09

Moretonhampstead England+Wales Brown Pod zolic Ah 0 -12 19 .13 .68 .29 .64 3.45 .34 .52 .86 4.31 .05 .23 .20 1.06 Ah/Bh 12 -20 15 .27 .95 .44 .74 2.91 .39 .80 1.19 4.10 .08 .27 .22 .98 Bsl 20 -32 14 .60 1.38 .62 .86 2.40 .57 1.04 1.61 4.01 .12 .29 .21' .81 Bs2 32 -85 12 .60 .89 .66 .36 1.02 .43 .37 .80 1.82 .07 .15 .12 .54

Lustleigh England+Wales Brown Earth Ap 28 .16 1.90 .91 .90 .74 .11 .20 .31 1.05 .01 .04 .03 .15 Bw 27 .42 1.17 .75 .70 .24 .21 .25 .46 .80 .02 .03 .02 .29 BC 19 .09 .85 .31 .19 .20 .09 .04 .13 .33 .01 .02 .02 .14

Bowden England+Wales Brown Podzolic Ah 29 .92 2.58 5.62 2.02 2.13 .85 .56 1.42 3.54 .05 .12 .10 .40 Bs 19 1.12 2.18 5.28 .44 1.01 .78 .50 1.28 2.29 .07 .12 .09 .39 BC 16 .62 1.53 2.78 .12 .37 .34 .14 .48 .85 .03 .05 .04 .22

Trusham England+Wales Brown Earth Ah 19 .57 5.64 1.33 .46 .47 .26 .16 .42 .89 .02 .05 .04 .07 Bw 11 .48 5.52 .64 .64 .10 .15 .06 .21 .31 .02 .03 .02 .04 BC 13 .43 4.20 .66 .58 .04 .02 .04 .06 .10 <.01 .01 <.01 .01

Manod England+Wales Brown Podzolic Ah 30 .19 1.18 1.00 .64 2.04 .26 1.16 1.42 3.46 .05 .12 .08 1.04 AB 31 .53 2.26 1.74 .30 1.65 .50 1.39 1.89 3.54 .06 .11 .07 .68 Bsl 25 .80 2.10 2.81 .48 .87 .45 1.14 1.59 2.46 .06 .10 .05 .55 Bs2 17 1.16 2.51 .92 1.76 .70 .43 .89 1.31 2.02 .08 .12 .07 .36 Bs3 14 .96 1.60 1.16 .94 .81 .46 .68 1.14 1.95 .08 .14 .09 .45 BC 10 .47 .84 .45 .30 .38 .28 .18 .46 .84 .05 .08 .07 .35

Vyrnwy England+Wales Podzol Ea 0 -15 20 .07 .16 .12 .08 1.57 .06 .13 .19 1.76 .01 .09 .08 .83 Bh 15 -20 37 1.21 3.61 1.22 3.40 10.39 1.05 3.02 4.07 14.46 .11 .39 .31 .84 Bsl 20 -30 29 1.85 4.71 1.41 3.74 5.47 1.02 3.83 4.85 10.32 .17 .36 .22 .74 Bs2 30 -40 21 1.87 3.90 2.32 3.22 5.41 .99 3.06 4.05 9.46 .19 .45 .30 .70 BC 40 -60 15 1.94 2.63 1.70 1.50 2.55 .18 .43 .61 3.16 .04 .21 .18 .13

Japan Andept B 9 1.42 3.70 5.38 2.90 .41 •4 2 .45 .87 1.28 .10 .14 .09 .17

Charr England Histic Placaquept H 10 - 3 AF 3 -10 6.1 8 .32 2.75 .38 .39 .77 3.52 .10 .44 .39 R?s 10 -18 2.3 9 1.04 1.15 .46 .81 1.27 2.42 .14 .27 .18 R3x 28 -36 .9 15 .52 .60 .30 .25 .55 1.15 .04 .08 .üb R3x 48 -56 .3 17 .42 .11 .25 .18 .43 .54 .03 .03 .02 Cx 70 -80 .3 15 .31 .64 .27 .24 .51 1.15 .03 .08 .06 105

Atomic Ratios

V V Reference

AI Fe Ses AI. Fe. <•„ Al Fen Ses AI Fe Ses pp Pod iesH oo o p p p

Partington England+Wales; Brown Podzo lic 14.4 8..9 5.5 Loveland and 3.4 3.,4 1.7 Bullock, 1976 2.5 3.0 1.4 3.0 4,. 0 1..7 2.8 6..1 1.9 Highwet: k England+Wales Brown Earth 9.1 11.. 1 5.0 6.2 12.. 9 4.2 4.8 9.,3 3.2

Moretonhampstead England+Wales Brown Podzolic 22.8 31., 0 13.1 16.8 17.. 0 8.4 9.5 10., 8 5.0 5.3 12.. 9 3.8

Lustlei[g h England+Wales Brown Earth 15.1 17.. 3 8.1 3.6 6., 3 2.3 5.0 23., 3 4.1 ßowden f:n qland+Wale s Brown Podzolic 5.6 17.8 4.3 2.9 9.4 2.2 2.4 12.3 2.0

Trushann England+Wales Brown Earth 4.1 13.7 3.1 1.5 7.8 1.3 4.5 4.7 2.3

Manod Engl and+Wales Brown Podzolic 17.7 8.2 5.6 7.4 5.5 3.2 4.3 3.6 2.0 3.7 3.7 1.8 4.0 5.6 2.3 3.1 9.9 2.3

Vyrnwy EngTand+Wales Podzol 58.9 56.4 28.8 22.3 16.1 9.3 12.1 6.7 '4.3 12.3 8.3 4.9 31.9 27.7 14.8

Japan Andept 2.2 4.3 1.4

Charr England Histic Placaquept Raggan d 16.3 32.9 10.9 36.1 73.0 24.2 Clayden,197 3 5.6 6.6 3.0 11.3 13.3 6.1 4.5 11.2 3.2 6.8 16.8 4.8 .99 2.9 .73 2.7 7.8 2.0 5.3 12.4 3.7 2.5 5.8 1.8 106

Appendix 5 (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Matter Extractions Pyrophosphate Extract

Ses All Al+C Ses„

Hori­ Depth AL Fe . Al Fe. Al. Fe. Ses AM clay clay clay clay zon (cm)

Insch England TypicCryochrep t Ap 10 -1 8 4.7 24 2.49 1.24 . 58 .16 .74 1.98 .03 .08 .08 Bs 28 -3 3 1.0 15 1.58 .47 . 37 .04 .41 .88 .03 .06 .06 BC 36 -4 3 11 1.86 .16 . 24 .04 .28 .44 .03 .04 .04 C 60 -6 5 7 1.54 .66 . 20 .06 .26 .92 .04 .13 .12 C 95 -102 5 1.74 .30 . 05 .04 .09 .39 .02 .08 .07

Linhope England DystrieCryochrep t A 10 -2 0 4.1 33 1.99 1.84 . 42 .20 .62 2.46 .02 .07 .07 Bis 40 -5 0 3.1 20 3.46 1.76 . 26 1.00 1.26 3.02 .06 .15 .10 B2s 60 -7 0 .9 17 2.24 .50 . 35 .87 1.22 1.72 .07 .10 .05 C 80 -9 5 .6 12 2.03 .30 . 25 .11 .36 .66 .03 .06 .05

Dunsfor d England TypicFragiochre p A 0 - 8 9.5 28 2.71 . 30 .91 1.21 3.92 .04 .14 .11 Bis 8 -2 3 1.8 27 4.3 .72 . 39 .73 1.12 1.84 .04 .07 .04 B2s 23 -4 0 - 23 4.0 .57 . 36 .70 1.06 1.63 .05 .07 .04 BCltgx5 3 -7 5 - 17 .06 . 16 .10 .26 .32 .02 .02 .01

Tarves England TypicFragiochrep t A 3 -1 2 7.2 10 2.79 . 47 .30 .77 3.6 .08 .36 .33 Bs 20 -3 3 1.6 12 .81 . 47 .17 .64 1.45 .05 .12 .11 Bx 35 -5 0 - 17 .17 24 .06 .30 .47 .02 .03 .02 C 58 -7 0 - 12 .34 37 .16 .53 .87 .04 .07 .06 C 85 -9 5 6 .36 31 .10 .41 .77 .07 .13 .11

Denbigh Englanc AndicDystrochrep t AB 0 - 7 10.7 27 2.59 2.89 31 1.26 1.57 4.43 .06 .16 .12 AB 7 -1 5 - 29 3.01 2.09 61 1.55 2.16 4.25 .07 .16 .09 Bis 15 -2 7 1.9 29 3.29 .98 66 1.17 1.83 2.81 .06 .10 .06 B2s 27 -4 5 3.3 18 4.41 1.63 53 .70 1.23 2.86 .07 .16 .12 C 45 -65 ' - 11 1.12 .30 33 .23 .56 .86 .05 .08 .06 Dod-Minchmoor England TypicPlaca q . _ H 13 - 3 18.5 4.98 46 .17 .63 5.61 AE 3 -1 3 8.8 6 4.21 80 .25 1.05 5.26 .18 .88 .84 B2hs 15 -2 3 9.5 4 4.82 58 .26 .84 5.66 .21 1.42 1.35 B3sx 28 -3 8 1.7 8 .94 44 .08 .52 1.46 .07 .18 .17 Clx 50 -6 0 .4 7 .21 23 .02 .25 .46 .04 .07 .06 C2x 80 -9 0 .3 2 <.05 18 .01 .19 .24 .10 .12 .12

Telegraph England TypicPlacaquo d A 0 -1 3 7.2 2 .19 1.68 08 .05 .13 1.81 .07 .91 .88 Ela 13 -3 0 .3 5 .15 .34 .04 .03 .07 .41 .01 .08 .08 Bin 30 -4 1 1.0 10 .09 .51 06 .10 .16 .67 .02 .07 .06 B3s 46 -6 4 .4 9 .52 .31 08 .24 .32 .63 .04 .07 .04 B3s 64 -8 0 9 .76 .29 .08 .11 .19 .48 .02 .05 .04 C 80 -127 5 .80 .20 .05 .02 .07 .27 .01 .05 .05

Holden England Alfic Sideraquod Ea 0-10 1.9 1 Blh 10 -1 4 5.5 15 3.02 2.27 .21 .07 .28 2.55 .02 .17 .17 IIBtg 18 -5 0 .2 38 107

Atomic Ratios

V V Reference

A1 n Fe„ Ses AI, Fe, <-„ Al Fe„ Sesn Al Fe. Ses„ p p P d d ^esH oo o

Insch England Typic Cryochrept Raggan d 4.8 36.2 4.3 18.2 137 16.1 Clayden,197 3 2.9 54.9 2.7 6.1 116 5.8 1.5 18.7 1.4 7.4 51.3 6.5 .3.5 35.0 9.7

Linhope England Dystric Cryochrept 9.9 42.9 8.0 22.0 95.7 17.9 15.2 8.2 5.3 26.8 14.5 9.4 3.2 2.7 1.5 5.8 4.8 2.6 2.7 12.7 2.2 5.4 25.5 4.5 Dunsford England Typic Fragiochrept 20.3 13.9 8.3 71.3 48.7 28.9 4.2 4.6 2.2 10.4 11.5 5.5 3.6 3.8 1.8 .8 2.8 .7

Tarves England Typic Fragiochrept 13.4 43.4 10.2 34.5 112 26.4 3.9 22.2 3.3 7.7 43.9 6.5 1.6 13.2 1.4 2.1 9.9 1.7 2.6 16.8 2.3

Denbigh England Andic Dystrochrept 20.7 10.6 7.0 77.7 39.6 26.2 7.7 6.3 3.5 3.3 3.9 1.8 6.5 7.6 3.5 6.9 10.9 4.2 14.0 22.0 8.6 2.0 6.1 1.5

Dod-Hinchmoor England Typic Placaquod 24.4 136.7 20.7 90.5 508 76.8 11.8 78.6 10.3 24.8 164 21.5 18.7 86.5 15.4 36.9 171 30.3 4.8 54.8 4.4 8.7 99.2 8.0 2.1 49.0 2.0 3.9 93.3 3.8 .6 23.3 0.6 3.8 140 3.7

Telegraph England Typic Placaquod 47.3 157 36.3 203 672 156 19.1 52.9 14.0 16.9 46.7 12.4 19.1 23.8 10.6 37.5 46.7 20.8 8.7 6.0 3.6 11.3 7.8 4.6 8.2 12.3 4.9 9.0 46.7 7.5

Holden England Alfic Sideraquod

24.3 151 21.0 58.9 367 50.8 108

Appendix 5 (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Hatter Extractions Pyrophosphate Extract

Ses All Al+C Ses„

Hori- Depth C c AI . Fe, A1 Fe Ses AM clay clay clay clay d d o o CP A1P F6P zon (cm) » % % % % % % %

Hinchmoor England Haplic Cryohumod H 8-0 52.4 AE 1-9 5.7 12 .11 1.42 .16 .03 .19 1.61 .02 .13 .13 Blh 10 - 15 8.7 10 .52 4.13 .48 .06 .54 4.67 .05 .47 .46 B2s 23 - 28 2.9 14 3.11 1.65 .97 .95 1.92 3.57 .14 .26 .19 C 58 - 75' .6 18 1.59 .34 .32 .12 .44 .78 .02 .04 .04

Merrick England (Cryic)Fragiohumo d H 10-2 13.3 A 5-13 21.0 .99 10.72 .46 .66 1.22 11.84 - - - Bh 13 -2 3 11.7 6 1.19 6.12 .79 .81 1.60 7.72 .27 1.29 1.15 BC 43 -5 3 1.9 11 .53 .94 .39 .11 .50 1.44 .05 .13 .12 IICx 60 -7 0 .5 12 .56 .05 .28 .01 .29 .34 .02 .03 .03

Shirrel Heath England Ferrudalfic Haplohumod A 0 - 13 5.2 6 Ela 13 - 25 5 E2a 30 - 40 5 .31 .03 .05 .08 .39 .02 .08 .07 Blh 58 - 74 1.4 10 .21 .61 .10 .08 .18 .79 .02 .08 .07 B2hs 74 - 84 1.7 7 1.40 1.18 .19 .68 .87 2.05 .12 .29 .20 BC 97 -107 .6 10 1.05 .40 .19 .35 .54 .94 .05 .09 .06

Moretonhampstead England Typic Fragiorthod A 0 - 10 12.0 12 1.24 2.69 .25 .53 .78 3.47 .07 .29 .25 ABh 10 - 20 5.3 10 1.47 1.95 .46 .75 1.21 3.16 .12 .32 .24 Bs 20 - 40 1.6 5 1.35 .92 .40 .12 .52 1.44 .10 .29 .26 Cx 40 -100 4 .33 .34 .06 .40 .73 .10 .18 .17

CountesswelIs England Typic Fragiorthod Ap 5 - 15 6.6 13 .87 4.10 .47 1.31 1.78 5.88 .14 .45 .35 Bs 23 - 30 3.2 14 1.26 3.05 .72 .55 1.27 4.32 .09 .31 .27 Bx 33 - 43 - 15 1.44 .60 .25 .17 .42 1.02 .03 .07 .06 Bx 53 - 63 - 17 1.10 .39 .10 .04 .14 .53 .01 .03 .03 C 70 - 80 - 15 1.13 .71 .05 .04 .09 .80 .01 .05 .05

Foudland England CryiCryiic Fragiorthod H 4 - 0 A 0 - 6 11.7 7 .64 3.8 .28 .10 .38 4.18 .05 .60 .58 Blhs 6 - 9 9.0 7 2.77 4.69 .74 .60 1.34 6.03 .19 .86 .78 B2s 14 - 24 3.6 9 2.32 2.74 .90 .59 1.49 4.23 .17 .47 .40 B3x 40 - 50 1.3 7 1.01 .75 .42 .08 .50 1.25 .07 .18 .17 C 80 - 90 .4 4 .94 1.0 .19 .05 .24 1.24 .06 .31 .30 C 110 -118 .2 6 .91 .12 .13 .04 .17 .29 .03 .05 .04

Merrick England Cryic Fragiorthod

A 0 - 18 7.5 7 2.6 4.0 .83 1.34 2.17 6.17 .31 .88 .69 Bh 20 - 30 9.9 6 3.31 7.39 .89 3.07 3.96 11.35 .66 1.89 1.38 IICx 50 - 60 .6 14 .92 .52 .23 .36 .59 1.11 .04 .08 .05

Crannytnoor Engl and Typic Hapl orthod A 0 - 20 7.1 3 Ea 20 - 33 .8 2 .21 .34 .05 .02 .07 .41 .04 .21 .20 Blh 33 - 40 2.5 10 .49 1.73 .28 .29 .57 2.30 .06 .23 .20 B2hs 40 - 65 1.6 13 .77 1.21 .31 .57 .88 2.09 .07 .16 .12 BC 65 - 75 4 5 .28 .37 .18 .10 .18 .65 .06 .13 .11 109

Atomic Ratios

V V Reference

A1 Fe SeS A1 Fe fll Fe SeS Al Fe. Ses„ p p p d d Sesd o o o

Minchmoor England HaplicCryohumo d Raggan d Clàyden,197 3 20.0 221 18.3 80.2 887 73.5 19.4 321 18.3 40.8 677 38.5 3.8 8.1 2.6 6.7 14.2 4.6 2.4 13.2 2.0 4.2 23.3 3.6

Merrick England (Cryic) Fragiohumod

52.4 75.8 31.0 103 149 60.7 17.4 35.3 11.7 33.3 67.4 22.3 5.4 39.9 4.8 11.0 80.6 9.6 0.4 23.3 0.4 4.0 233 3.9

Shirre ] Heath Eni Ferrudalfic Haplohumod

23.3 28.9 12.9 13.7 35.6 9.9 31.5 81.7 22.7 14.0 8.1 5.1 20.1 11.7 7.4 4.7 5.3 2.5 7.1 8.0 3.8

Moretonhampsteia d England Typic Fragiorthod 24.2 23.7 12.0 108 106 53.4 9.5 12.1 5.3 25.9 33.0 14.5 5.2 35.8 4.5 9.0 62.2 7.9 2.2 25.7 2.0

Countesswells En; Typic Fragiorthod 19.6 14.6 8.4 31.6 23.5 13.5 9.5 25.9 7.0 10.0 27.2 7.3 5.4 16.5 4.1 8.8 45.5 7.4 32.0 82.8 23.1

Foudland Er igland Cryic Fragiorthod

30.5 177.3 26.1 94.0 546.0 80.2 14.3 36.5 10.3 27.4 70.0 19.7 6.9 21.7 5.2 9.0 28.5 6.8 4.0 43.7 3.7 7.0 75.8 6.4 11.8 93.3 10.5 4.7 37.3 4.2 2.1 14.0 1.8 3.5 23.3 3.0

Merrick England Cryic Fragiorthod

10.8 13.9 6.1 20.3 26.1 11.4 18.7 11.2 7.0 25.0 15.0 9.4 5.1 6.7 2.9 5.4 7.1 3.4 Crannymoor Englai Typic Haplorthod

15.3 79.3 12.8 36.0 186.7 30.2 13.9 27.8 9.3 20.1 40.2 13.4 8.8 9.9 4.7 11.6 13.1 6.2 4.6 17.3 3.6 5.0 18.7 3.9 110

Appendix 5 (ctd). Selected Chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Matter Extractions Pyrophosphate Extract

Ses AM Al+C Ses„

Hori­ Depth C c A1 Fe A1 Fe C Ses AH clay clay clay clay t d d o o p A1P Fep zon (cm) % % * Ï * % % % %

Crannymoor England Typic Haplorthod A 10 - 15 12.8 16 ------Ea 28 - 35 .6 4 ------Blh 35 - 43 .7 6 .13 .65 .05 .07 .12 .77 .02 .13 .12 B2h 45-50 1.1 8 .14 1.47 .11 .07 .18 1.65 .02 .21 .20 B3h 55 - 6Û .7 6 .16 .88 .11 .07 .18 1.06 .03 .18 .17 B4 64 - 70 .6 4 .17 .41 .08 .07 .15 .56 .04 .14 .12 Clg 73 - 75 6.5 10 ------C2g 84 - 90 .7 4 ------C3g 102 -117 .4 5 ------Manod England Brown Podzol ic Ah 0-4 15.2 30 .05 1.89 .72 3.55 2.04 .26 1.16 1.42 3.46 .05 .12 .73 A/B 4-15 5.2 31 .53 6.50 .40 3.55 1.65 .50 1.39 1.89 3.54 .06 .11 .27 Bsl 15 - 29 2.2 25 1.59 6.92 .49 3.89 .87 .45 1.14 1.59 2.46 .06 .10 .19 Bs2 29 - 47 1.8 17 2.28 7.69 .47 4.63 !70 .43 .89 1.32 2.02 .08 .12 .13 Bs3 47 - 70 1.8 14 2.33 5.17 1.58 3.35 .81 .46 .68 1.14 1.95 .08 .14 .15 BC 70 - 87 1.2 10 1.75 3.50 3.50 2.50 .38 .28 .18 .46 .84 .05 .08 .09

Dartington England Brown Podzolic Ah 0-5 6.7 36 .42 6.08 .74 3.03 2.44 .38 1.28 1.66 4.10 .05 .11 .26 Bsl 5-18 2.1 39 .85 6.50 .78 2.82 1.01 .67- 1.38 2.05 3.06 .05 .08 .28 Bs2 18 - 38 1.2 34 1.01 6.29 1.17 2.82 .72 .65 1.11 1.76 2.48 .05 .07 .24 Bs3 38 - 51 1.1 21 1.06 5.45 1.01 2.72 .63 .47 .73 1.20 1.83 .06 .09 .18 BC 51 - 64 1.0 9 .69 4.97 .91 1.60 .25 .20 .19 .39 .64 .04 .07 .07

Moretonhampstead England Brown Podzolic Ah 0-12 12.5 19 .16 1.26 .22 .65 3.45 .34 .52 .86 4.31 .05 .23 .61 Ah/Bh 12 - 20 6.7 14 .58 4.76 .77 3.58 2.91 .39 .80 1.19 4.10 .09 .29 .22 Bsl 20 - 32 3.7 14 1.69 7.13 2.26 5.10 2.40 .57 1.04 1.61 4.01 .12 .29 .18 Bs2 32 - 85 1.4 12 2.01 4.34 2.92 2.40 1.02 .45 .37 .82 1.84 .07 .15 .13

Bowden England Brown Podzolic Ah 0 - 25 5.4 29 1.96 5.10 1.72 2.51 2.13 .85 .56 1.41 3.54 .05 .12 .20 Bs 25 - 38 1.9 19 2.06 4.62 3.10 2.03 1.01 .78 .50 1.28 2.29 .08 .12 .19 BC 38 - 76 .9 16 1.38 3.36 2.46 1.30 .37 .34 .14 .48 .85 .03 .05 .10 PI Canada ' Podzol humo-ferrique orthique H 15-0 50.0 2.84 .20 .04 .24 3.08 _ - _ _ Ae 0 - 5 .6 3 .03 .04 .03 .02 .3 .02 .02 .04 .35 .01 .12 .11 .57 Bfh 5 - 10 4.6 5 1.99 2.25 2.64 2.09 3.11 1.36 .92 2.28 5.39 .46 1.08 .89 .54 Bf 10 - 20 1.8 8 .83 .93 2.07 .80 .95 .37 .10 .47 1.42 .06 .18 .17 .27 BC 20 - 50 .6 4 .32 .22 .73 .22 .51 .14 .05 .19 .70 • .05 .18 .16 .35 C 50+ .3 5 .20 .21 .31 .21 .21 .07 .03 .10 .31 .02 .06 .06 .24

P2 Canada Podzol ferro i-humique orthique H 2.5- 0 48.2 4.18 .15 .11 .26 4.44 _ - _ _ Ae 0 - 5 .9 6 .02 .08 .02 .31 .30 .01 .02 .03 .33 .01 .06 .05 .30 Bhf 5-10 9.4 7 1.71 3.68 1.65 3.74 6.75 1.63 3.15 4.78 11.53 .68 1.65 1.20 .89 Bfl 10 - 41 1.7 10 1.23 1.29 1.54 1.55 1.22 .72 .43 1.15 2.37 .12 .24 .19 .46 Bf2 41 - 66 1.3 6 1.01 1.18 1.23 1.50 1.08 .64 .37 1.02 2.10 .17 .35 .29 .47 Cx 66+ .4 5 .36 .62 .48 1.00 .23 .11 .04 .15 .38 .03 .08 .07 .15

P3 Canada Podzol ferro -humique orthique H 2.5- 0 51.4 3.52 .10 .03 .13 3.65 _ - _ _ Ae 0-6 .6 2 .02 .10 .03 .40 .23 .01 .09 .10 .33 .05 .17 .12 .83 Bhfl 6-10 18.3 9 1.86 6.35 1.84 6.50 12.41 1.77 5.45 7.22 19.63 .80 2.18 1.58 .88 Bhf2 10 - 15 13.9 9 3.26 5.22 2.45 4.83 9.60 2.39 3.66 6.05 15.65 .67 1.74 1.33 .71 Bhf3 15 - 20 11.8 8 3.43 3.74 4.82 4.60 8.76 3.39 2.80 6.19 14.95 .77 1.87 1.52 .86 Bfh 20 - 41 5.7 9 2.20 2.03 2.33 2.75 3.56 2.12 1.22 3.34 6.90 .37 .77 .63 .79 IIC 41+ .7 2 .50 .79 .57 1.58 .48 .26 .15 .41 .89 .21 .35 .37 .32 Ill

Atomic Ratios

V V Reference

Al„ Fe Sesn Al . Fe, ç„ Al Fe„ Ses„ Al Fe„ Ses„ p p Pad ->es, oo o p p p

Crannymoor England Typic Haplorthod Rangan d Clayden,197 3 29.3 43.3 17.5 31.5 46.7 18.8 30.1 98.0 23.0 22.5 73.3 17.2 18.0 58.7 13.8 14.3 46.7 11.0 11.5 27.3 8.1 16.9 40.0 11.9

Manod Engliîn d Brown Podzolic 17.7 8.2 5.6 64.6 37.5 35.5 131.5 62.3 41.7 Loveland and 7.4 5.5 3.2 22.1 3.7 3.2 23.4 17.5 10.0 Bullock, 1975 4.4 3.6 2.0 9.9 1.5 1.3 11.0 9.0 4.95 3.7 3.7 1.8 1.8 1.1 0.7 9.4 9.4 4.7 4.0 5.6 2.3 1.7 1.6 0.8 8.8 12.4 5.1 3.1 9.9 2.3 1.5 1.6 0.8 9.6 31.1 7.4

Dartin gton England Brown Podzolic 14.4 8.9 5.5 35.6 5.1 4.5 39.7 24.4 15.1 3.4 3.4 1.7 5.6 1.5 1.2 7.1 7.1 3.5 2.5 3.0 1.4 2.7 .9 .7 4.2 5.0 2.3 3.0 4.0 1.7 2.3 .9 .7 5.3 7.0 3.0 2.8 6.1 1.9 3.3 .9 .7 11.3 24.0 7.7

Moretonhampstead England Brown Podzolic 22.8 31.0 13.1 177.1 46.3 36.7 82.7 112.2 47.6 16.8 17.0 8.4 25.9 6.6 5.2 38.7 39.1 19.9 9.5 10.8 5.0 4.9 2.4 1.6 19.6 16.6 7.8 5.1 12.9 3.7 1.6 1.5 .8 7.0 17.7 5.0

Bowden England Brown Podzol ic 5.6 17.8 4.3 6.2 4.9 2.7 14.3 45.0 10.8 2.9 9.4 2.2 2.1 1.9 1.0 5.5 17.7 4.2 2.4 12.3 2.0 1.5 1.3 .7 6.0 30.0 5.0

PI Canada Podzol humo-ferri que orthique 32.0 33.1 29.1 - . - - 563 5833 513 Hubert and 34.9 72.3 23.5 45.0 70.0 27.4 45, .0 140 34, .1 67.5 140 45.5 Gonzalez, 1970 5.1 15.8 3.9 5.2 9.5 3.4 3, .9 10. ,3 2, .8 7.6 23.3 5.7 5.8 44.3 5.1 4.9 9.0 3.2 2., 0 10.. 5 1,. 6 10.9 84.0 9.7 8.2 47.6 7.0 4.2 12.7 3.2 1,. 8 12. .7 1,. 6 9.6 56.0 8.2 6.7 32.7 5.6 3.4 6.7 2.2 2.. 2 6., 7 1.. 6 9.6 46.7 8.0

P2 Canada Podzol ferro-humi que orth ique 62.7 177 46.3 - . 723 2045 534 67.5 70.0 34.4 101 52.5 34.6 101 13,. 5 11, .9 202 210 103 9.3 10.0 4.8 12.4 11.9 6.1 12., 8 11. ,7 6.. 1 13.0 13.9 6.7 3.8 13.2 3.0 3.1 6.1 2.1 2., 5 5. ,1 1.. 7 5.3 18.4 4.1 3.7 13.6 2.9 2.9 5.1 1.9 2., 4 4. ,0 1. .5 4.5 16.4 3.5 4.7 26.8 4.0 2.5 3.0 1.4 1. ,9 1. ,9 0,. 9 8.2 46.7 7.0 P3 Canada Podzol ferro-humi que orth ique 79.2 548 69.2 - . 1157 8000 1010 51.8 11.9 9.7 67.5 28.0 19.8 45. .0 7. ,0 6,. 1 135 31.1 25.3 15.8 10.6 6.3 22.1 13.4 8.4 22. ,4 13. 1 8., 3 23.3 15.7 9.4 9.0 12.2 5.2 9.6 12.4 5.4 12. 8 13. 4 6., 5 13.1 17.7 7.5 5.8 14.6 4.2 7.7 14.7 5.1 5. .5 12. .0 3, .8 7.8 19.7 5.6 3.8 13.6 3.0 5.8 13.1 4.0 5. ,5 9., 7 3, .5 6.0 21.8 4.7 4.2 14.9 3.2 3.2 4.1 1.8 2, ,8 2. ,1 1, .2 6.1 21.8 4.7 112

Appendix 5 (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

clay Amorphous Hatter Extractions Pyrophosphate Extract

Ses ATI Al+C Ses„

Hori­ Depth C c Ald Fe A1 Fe Ses AM clay clay clay clay t d o o Cp A1P Fep zon (cm) % % % % % % % % %

P4 Canada Podzol humo-ferriq ue minimal H 1.3- 0 17.2 2.72 .09 .14 .23 2.95 _ _ , _ Ae 0 - 1. 3 1.9 13 .08 .74 .11 .55 .52 .05 .44 .49 1.01 .04 .08 .04 .60 Bhf 1.3- 5 6.4 19 .74 3.80 .77 2 .08 3.53 .66 2.79 3.45 6.98 .18 .37 .22 .76 Bfhl 5-25 4.3 21 .96 3.29 1.02 3 .00 2.57 .83 2.36 3.19 5.76 .15 .27 .16 .75 Bfhj 25 - 46 3.4 21 1.06 2.33 1.05 1 .66 2.23 1.01 1.38 2.39 4.62 .11 .22 .15 .71 Cx 46+ 1.9 19 1.12 1.55 1.02 .91 1.30 .82 .50 1.32 2.62 .07 .14 .11 .49 Leon United States Aerie Haplaquod Al 0-18 5.4 1.3 .03 <.01 .03 <.0 1 1.6 .02 <.01 .02 1.62 .02 1.25 1.25 .67 A21 18 - 25 .4 .8 tr <.01 tr <.0 1 tr tr <.01 0 0 •0 0 0 - A22 25 - 41 .2 1.1 tr <.01 tr <.0 1 tr tr <.01 0 0 0 0 0 - B21h 41 - 48 1.4 3.6 .15 <.01 .16 <.0 1 .9 .10 <.01 .10 1.00 .03 .28 .28 .67 B22h 48 - 56 1.1 3.8 .12 <.01 .14 <.0 1 1.0 .12 <.01 .12 1.12 .03 .30 .30 1.0 Leon United States Aerie Haplaquod Al 0-15 1.5 1.0 .01 <.01 .01 <.0 1 .3 tr <.01 0 .3 0 .3 .3 - A21 15 - 36 .1 1.0 tr <.01 tr <.0 1 .1 tr <.01 0 .1 0 .1 .1 - A22 36 - 43 .2 1.1 tr <.01 tr <.0 1 .2 tr <.01 0 .2 0 .18 .18 - B21h 43 - 51 .8 3.3 .06 <.01 .07 <.0 1 .7 .08 <.01 .08 .78 .02 .24 .24 1.67 B22h 51 - 81 1.5 2.8 .11 <.01 .11 <.0 1 1.3 .14 <.01 .14 1.44 .05 .51 .51 1.27 Leon United States Aerie Haplaquod Al 0-10 1.0 1.0 .01 <.01 tr <.0 1 .4 tr <.01 0 .4 0 .4 .4 _ A21 10 - 23 .3 1.0 .01 <.01 tr <.0 1 tr tr <.01 0 0 0 0 o' - A22 23 - 53 .1 1.2 tr <.01 tr <.0 1 tr tr <.01 0 0 0 0 0 - B21h 53 - 61 1.0 1.6 .04 <.01 .07 <.0 1 .5 .03 <.01 .03 .53 .02 .33 .33 .75 B22h 61 - 68 .8 3.8 .23 <.01 .19 <.0 1 .4 .16 <.01 .16 .56 .04 .15 .15 .70 United States Humic Hap lorthod A2 0-5 1.5 3.1 .17 .63 .01 .20 .21 .84 .07 .27 .21 B21h 5-9 7.0 4.36 .18 1.24 1.42 5.78 .20 .83 .65 B22ir 9-15 5.-8 4.8 2.7- 3 4.20 .42 1.52 1.94 6.14 .40 1.28 .96 B22ir 15 - 20 8.6 3.8 1.77 5.66 1.18 1.52 2.70 8.36 .71 2.20 1.80 B22i r 20 - 25 8.0 3.7 1.48 5.45 1.11 1.48 2.59 8.04 .70 2.17 1.77 B22ir 25 - 30 6.2 1.6 1.47 4.95 1.05 1.42 2.47 7.42 1.54 4.64 3.75 B22ir 30 - 36 5.7 2.4 1.20 4.20 1,11 1.04 2.15 6.35 .90 2.65 2.21 B22ir 36 - 38 5.1 2.1 1.11 3.44 .82 1.02 1.84 5.28 .88 2.51 2.03 B23 38 - 43 3.9 1.7 1.00 3.15 .82 .90 1.72 4.87 1.01 2.86 2.34

United States Typic Sideraquod A2 0 - 5 .1 1.2 .02 .21 .01 .02 .03 .24 .03 .20 .18 B21h 5-10 2.1 1.9 .22 2.44 .05 .24 .29 2.73 .10 .94 .86 B22ir 10 - 17 2.4 2.5 1.32 1.89 .18 1.10 1.28 3.17 .51 1.27 .83 B22ir 17 - 19 2.4 2.1 .88 1.60 .28 .80 1.08 2.68 .51 1.28 .90 B22ir 19 - 24 1.6 2.1 .53 1.26 .29 .52 .81 2.07 .39 .99 .74 B22ir 24 - 29 1.2 2.4 .47 .76 .19 .58 .77 1.53 .32 .64 .40 B23 29 - 35 .5 tr .27 .21 .02 .24 .26 .47 - - - United States (Cryic) Fragihumod A2 0-4 1.5 2.8 .11 .63 .89 .14 1.03 1.66 .37 .59 .54 B21h 4 - 10 8.9 6.2 2.30 5.46 1.11 1.28 2.39 7.85 .39 1.27 1.06 B22h 10 - 15 8.1 5.7 2.10 6.02 .45 1.34 1.79 7.81 .31 1.37 1.14 B22h 15 - 20 9.4 4.5 1.86 6.42 1.60 .94 2.54 8.96 .56 1.99 1.78 B22h 20 - 25 6.4 6.8 1.43 5.46 1.05 1.22 2.27 7.73 .33 1.14 .96 B22h 25 - 30 7.3 7.2 .95 4.95 .02 .92 .94 5.89 .13 .82 .69 B22h 30 - 36 6.3 5.2 .68 4.75 .28 .72 1.00 5.75 .19 1.11 .97 B22h 36 - 41 4.9 5.7 .65 3.99 1.11 .60 1.71 5.70 .34 1.12 1.00 B22h 41 - 46 4.4 4.5 .56 3.99 1.00 .52 1.52 5.51 .34 1.22 1.11 B22h 46 - 48 4.9 4.0 .51 3.70 1.18 .58 1.76 5.46 .44 1.37 1.22 IIA'2x ; 48 - 53 2.3 3.0 .30 1.68 .58 .44 1.02 2.70 .34 .90 .75 113

Atonie Ratios

V V Reference

A1n Fe Sesn MA Fe. c„ Al Fe Ses„ Al Fe. Ses. p p P d d ieSj oo o p

P4 Canada Podzol humo- -fern' que mini imal Hubert and 68.0 90.7 38.9 430 573 246 Gonzalez, 1970 23.4 5.5 4.5 53.4 12.0 9.8 38.9 16.1 11.4 85.5 20.2 16.3 12.0 5.9 4.0 19.5 7.9 5.6 18.7 9.7 6.4 21.8 10.7 7.2 7.0 5.1 2.9 10.1 6.1 3.8 9.5 6.7 3.9 11.7 8.5 4.9 5.0 7.5 3.0 7.2 6.8 3.5 7.3 9.6 4.1 7.6 11.5 4.6 3.6 12.1 2.8 3.8 5.7 2.3 4.2 9.7 2.9 5.2 17.7 4.0

Leon United States Aeiri e Haplaquod 180.0 405.0 405.0 607.5 Brandon et al., - - - - 1977 20.2 21.0 19.7 31.5 18.8 20.6 17.7 20.6

Leon United States Aeric Haplaquod 337.5 337.5

19.7 30.0 25.7 22.5 20.9 42.2 42.2 24.1

Leon United States, Aeric Haplaquod 225.0 67.5

37.5 56.2 32.1 75.0 5.6 7.8 9.5 11.2 United States Humic Haplorthod 142 14.7 13.3 337 35.0 31.7 Coen and Arnold 54.5 16.4 12.6 1972 22.5 12.9 8.2 31.1 17.8 11.3 10.8 17.4 6.7 16.4 26.4 10.1 11.1 17.2 6.7 16.2 25.2 9.9 10.6 16.3 6.4 13.3 20.4 8.0 8.5 18.9 5.9 11.6 25.6 7.9 9.4 15.7 5.9 14.0 23.3 8.8 8.6 16.3 5.7 10.7 20.2 7.0 United States Typic Sideraquod 47.3 49.0 24.1 22.5 23.3 11.5 109 47.4 33.1 94.5 40.8 28.5 23.6 8.0 6.0 30.0 10.2 7.6 12.9 9.3 5.4 19.3 14.0 8.1 9.8 11.3 5.2 12.4 14.4 6.7 9.0 6.1 3.6 14.2 9.7 5.8 23.6 4.1 3.5 56.3 9.7 8.3 United States (Cryic)Fragihumod 1.6 21.0 1.5 3.8 50.0 3.5 11.1 19.9 7.1 18.0 32.5 11.6 30.1 20.9 12.4 40.5 28.2 16.6 9.0 31.9 7.04 13.2 46.7 10,3 11.7 20.9 7.5 13.7 24.5 8.8 557 25.1 24.0 821 37.0 35.4 38.2 30.8 17.0 50.6 40.8 22.6 8.1 31.0 6.4 9.9 38.1 7.9 9.0 35.8 7.2 9.9 39.5 7.9 7.1 29.8 5.7 9.3 39.4 7.6 6.5 17.8 4.8 8.9 24.4 6.5 114

Appendix 5 (ctd). Selected chemical data from literature and carbon/sesquioxide atomic ratios

Clay Amorphous Matter Extractions Pyrophosphate Extract

Ses AM Al+C Ses„

Hori­ Depth C c , Fe A1 Fe C Ses AH clay clay clay clay t "d aA „O „0 D„ A1P Fep zon (cm) % t % % % ' % %

Uniite dState s Typi cHaplaquo d Al 0 -1 8 4.0 2 .04 0 .20 tr tr 0 .20 0 .10 - A2 18 -3 8 .6 1 .02 0 .20 tr tr 0 .20 0 .20 - B21h 38 -5 0 1.0 1 .02 0 .33 tr tr 0 .33 0 .33 - B22h 50 -7 7 1.5 3 .16 0 1.20 .10 tr .10 1.30 .03 .43 .62 B22h 77 -90 ' 1.3 5 .12 0 .74 .10 tr .10 .84 .02 .17 .85 B22h 90 -114 1.4 7 .21 0 .80 .30 tr .30 1.10 .04 .16 .70 B22h 114 -147 1.5 6 .22 0 .89 .20 tr .20 1.09 .03 .18 .91 B22h 147 -220 1.5 5 .18 0 .84 .20 tr .20 1.04 .04 .21 1.11 B22h 220 -260 1.3 6 .18 0 .76 .10 tr .10 .86 .02 .14 .56 B22h 260 -286 .5 2 .06 0 .37 tr tr 0 .37 0 .19 - B22h 286 -306 .3 1 .04 0 .18 .10 tr .10 .28 .10 .28 2.50 B23h 306 -359 1.8 2 .23 0 1.39 .30 tr .30 1.69 .15 .85 1.30 B24h 359 -396 2.5 1 .36 0 2.16 .50 tr .50 2.66 .50 2.66 1.39 B24h 396 -426 2.5 1 .42 0 2.29 .50 tr .50 2.79 .50 2.79 1.1* B24h 426 -457 2.5 1 .30 0 1.92 .50 tr .50 2.42 .50 2.42 1.67 B24h 457 -487 1.9 1 .28 0 1.74 .30 tr .30 2.04 .30 2.04 1.01 B25h 487 -518 2.0 1 .22 0 1.37 .30 tr .30 1.67 .30 1.67 1.36 B25h 518 -548 1.5 1 .22 0 1.14 .30 tr .30 1.44 .30 1.44 1.36 B25h 548 -579 1.7 1 .23 0 1.57 .30 tr .30 1.87 .30 1.87 1.30 B26h 579 -609 1.7 1 .26 0 1.51 .30 tr .30 1.81 .30 1.81 1.15 B26h 609 -640 1.0 1 .14 0 .77 .30 tr .30 1.07 .30 1.07 2.14 B26h 640 -670 1.1 1 .16 0 .71 .30 tr .30 1.01 .30 1.01 1.88 B26h 670 -701 .9 2 .14 0 .85 .30 tr .30 1.15 .15 1.15 2.14 CI 701 -731 .3 .4 .06 0 .15 .10 tr .10 .25 .25 .25 1.67 CI 731 -762 .6 1 .26 0 .54 .10 tr .10 .64 .10 .64 .38 IIC2 762 •-100 6 .4 4 .12 0 .09 .30 tr .30 .39 .08 .39 2.50

Un ited States Cryandept A2 0 -1 1 2.4 30 .1 2 .8 .1 .1 .2 1.0 .01 .03 .03 .7 IIB2h ir1 1 -3 1 6.9 20 1.6 7 5.4 1.9 .7 2.6 8.0 .13 .40 .36 1.1 IIIB31 31 -5 3 9.7 28 2.9 L .0 6.4 3.2 .7 3.9 10.3 .14 .37 .34 1.0 IVB32 53 -100 18.3 49 5.3 2. 1 8.4 3.3 .2 4.5 11.9 .09 .24 .24 .6

Unite dState s AericHaplaquo d Al 0 - 8 1.1 .5 0 tr tr tr A2 8 -4 1 .03 .4 0 tr tr tr A3 41 -4 3 1.1 2.7 .06 .1 tr tr B21h 43 -4 6 2.5 1.7 .54 .1 2.20 .91 tr .91 3.11 .54 1.83 1.83 1.42 B22h 46 -5 1 1.0 2.2 .34 tr .93 .51 tr .51 1.44 .23 .65 .65 1.50 B3 51 -6 9 .1 1.7 .05 tr tr tr CI 69 -9 9 .02 .7 .02 tr tr tr IIC2 99 -110 .1 4.7 .07 .1 .10 tr

76 Belg ium TypicHaplaquo d B21h 10 -2 0 1.44 1.3 .18 .004 1.09 .18 .004 .18 1.27 .14 1.00 .98 1.00 B22h 20 -4 0 .97 .8 .18 .004 .85 .18 .004 .18 1.03 .22 1.29 1.29 1.00 B3h 40 -7 5 .61 1.3 .19 .027 .58 .20 .010 .21 .79 .16 .61 .60 .95

78 Belgium AquicHaplohumo d B21h 5 -1 0 1.79 1.8 .12 .07 1.25 .12 .015 .14 1.39 .08 .77 .76 .74 B22h 10 -2 0 1.74 1.5 .44 .09 1.39 .44 .04 .48 1.87 .32 1.25 1.22 .91 B31h 20 -3 5 .71 1.8 .35 .12 .58 .33 .06 .39 .97 .22 .54 .51 .83 B32h 45 -8 0 .91 1.3 .29 .03 .75 .24 .02 .26 1.01 .20 .78 .76 .81

74 Belg ium AquicHaplohumo d B21h 14 -2 4 2.06 2.1 .24 .02 1.44 .24 .02 .26 1.70 .12 .06 .80 1.00 B22h 24 -4 5 1.09 1.2 .30 .04 .95 .32 .02 .34 1.39 .28 1.08 1.06 1.00 B3h 45 -6 0 .31 1.0 .12 .07 .26 .13 .05 .18 .44 .18 .44 .39 .95 eg 150 + 75 Bel!giu m TypicPlacohumo d B21h 10 -1 5 2.39 1.0 .29 .04 1.74 .30 .03 .33 2.07 .33 2.07 2.04 1.00 Placic 1.58 .40 3.98 1.07 .27 1.39 1.66 2.73 - - - .38 B22hi r1 5 -2 5 .35 1.5 .12 .14 .29 .11 .06 .17 .46 .11 .31 .27 .65 B22ir .36 2.1 .24 .76 .19 .12 .10 .22 .41 .10 .20 .15 .22 115

Atomic Ratios

V V Reference

Al Fe Sesn Al, Fe, ,„ Al Fe„ Ses. Fe_ Ses. pp Pod ses , o o

United States Typic Haplaquod - 225.0 Holzheye tal. , 1975 67.5 - 112.5 27.-0 21.1 33.8 16.6 24.4 29.2 6.0 15.0 10.5 10.0 15.3 16.9 9.4 18.8 16.9 17.1 16.2 29.2 18.8 4.-1 16.9 6.8 10.4 17.6 13.5 9.7 15.6 11.2 10.3 13.4 11.2 8.6 18.8 11.2 13.1 15.3 14.2 10.3 20.5 15.0 8.6 15.3 11.2 11.8 16.6 17.4 11.3 14.7 12.8 5.6 16.1 7.5 5.3 15.5 8.2 6.4 14.5 6.8 3.4 11.2 6.8 12.2 5.2 13.5 .7 7.5 3.0 United States ; Cryandept 18.0 37.3 12.1 54.0 56.0 27.5 54.0 112.0 36.4 Singer et al., 1978 6.4 36.0 5.4 9.7 46.0 8.0 8.2 46.0 6.9 4.5 42.7 4.1 7.5 45.3 6.5 6.8 64.7 6.2 5.7 196.0 5.6 7.8 40.7 6.5 12.5 427.0 12.0

United States Aerie Haplaquod Soil Survey Staff, 1975 41.2 51.3 22.9 6.2 6.2 5.4 5.4 10.4 116.7 9.6 4.9 4.9 4.1 - 4.1 7.3 4.5 2.2 3.2 4.7 1.9 2.2 '6 Belgium Typic Haplaquod 14.0 1271. 13.9 18.0 1680. 17.8 18.5 1680. 18.3 Higashi et al 10.6 992. 10.4 12.1 1132. 12.0 12.1 1132. 11.9 1981 6.5 270. 6.3 7.2 105. 6.7 6.8 285. 6.6 '8 Belgium Aquic Haplohumod 23.4 389. 22.1 33.6 119. 26.2 33.6 557. 31.6 7.1 162. 6.8 8.9 90. 8.1 8.9 203. 8.5 3.9 46. 3.6 4.6 27. 3.9 4.8 56. 4.4 7.1 206. 6.9 7.1 142. 6.7 8.6 250. 8.3 '4 Belgium Aquic Haplohumod 13.6 395. 13.1 19.3 481. 18.6 19.3 565. 18.7 6.6 202. 6.4 8.2 127. 7.7 7.6 231. 7.3 4.6 24.8 3.9 5.8 20.7 4.6 5.5 29.6 4.6

'5 Belgium Typic Placohumod 13.1 271. 12.5 18.6 279. 17.4 18.0 372. 17.2 8.9 3.6 2.6 8.9 1.8 1.5 11.6 1.6 1.4 5.9 21.8 4.6 6.6 11.7 4.2 7.1 26. 5.6 3.8 7.1 2.5 3.4 2.2 1.3 6.6 16. 4.6 116

APPENDIX6 . DETERMINATIONO FCARBO N INSOIL SAN DSOI LEXTRACTS 1

A.J.M,va nOostrum 2 andD.L .Mokma 3

The content of carboni nsoil sma yb edetermine db yeithe rdr yo rwe t combustion. Inbot hmethod s soilC i sconverte d toC O .Th eamoun to fevol ­ vedC0 _ isestimate db ydirec tmethod s asmeasurin gth evolum eo fCO .o ra s weighingth eC0 _ adsorbedo na soli do rb ybac ktitratio no fexces shydroxi ­ deafte rabsorptio ni naqueou so rnon-aqueou salkalin emedium .Th edr ycom ­ bustionmetho dha slon gbee nregarde d asth emos taccurat emetho d fordeter ­ miningC i nsoil sbu tth eapparatu si sexpensive .

Differentmixture so fK-Cr ?0_ andH-SO .an dlate rwit hH_PO .hav ebee n used inwe t combustionmethods .Rapi dmethod s aremostl ybase do nwe tcom ­ bustion inwhic h excessoxidan ti sdetermine d forestimatio no forgani cC . Thesemethod sd ono tgiv ecomplet e oxidationo fal l formso forgani cmatte r andtherefor erequir ea conversio n factor.Th eus eo fa facto rma yintroduc e an error as organicmatte ri ndifferen tsoil san di ndifferen thorizon so f the sameprofil e isno t always oxidized toth esam edegree .Thes emethod s are also affected by thepresenc e of readily oxidizable substancesothe r thanC i nth esoil . When directlymeasurin g theevolve dCO- ,a purifyin gtrai ni suse dt o remove the co-evolved gases, such as SO .Alliso n (1960)use d powdered K-Cr-O- and a 3 :2 mixtur e ofH_S0 .an dH,P0 .an da simplifie dpurifyin g train to determine soil C, including C from calcareous andsalin esoils . Later, Anderson andHarri s (1967)dissolve d theLC r O.i nth eH SO.-HPO . mixture.Althoug hsevera lresearcher shav epropose dmodifications ,Allison' s methodha sbee ngenerall y accepted asbein gth emos treliable . Evolved C0_ canb e absorbed quantitatively accordingt oth ereactio n CO-+ 20H ~+ B a+ •*BaCO _ 4-+ H-O . Both the amounto fconsume dOH ~an dth e amounto fBaCO - formedar ea measur eo fth eamoun to fC .Th eamoun to fBaC0 3 formed was determined bymeasurin gth ep H afterdissolvin gth eprecipitat e withEDT A (Begheijn, 1976).Th e amounto f0H ~consume d isdetermine d

Theappendi x6 i sa preliminar y accounto fth ewor kdon eo nth edetermina ­ tiono fcarbo nundertake n forth eresearc ho npodzols ,bu tapplicabl eunde r non-podzol conditions aswell .Th e finalizationo fth epape r isawaitin g the results of further studyo non eo fth ethre edescribe dmethods .How ­ ever, in itspresen tfor mth epape ri sconsidere d asa usefu lcomplemen t toth emai npape ran dha stherefor ebee nattached . International SoilMuseum ,P.O .Bo x353 ,670 0A JWageningen ,Netherlands . 3 Department of Crop and Soil Sciences,Michiga n State University, East Lansing,M I48824 ,U.S.A . 117

by back titration of excess hydroxide (Duursma,1961 ;Römer ,1975 ;Sixta , 1977). Duursma (1961)an d Sixta (1977)titrate dth esolutio nusin ga con ­ tinuouscoulometri ctechniqu ewherea sRöme r (1975)titrate dwit hNaO Husin g anautomati c titratorreactin go nth elowerin go fth ep Ha sCO ,i sabsorbe d inth eBa(OH)_ ,p H10. 2solution .Thes etitrimetri cmethod shav elo wdetec ­ tionlimit san dar eeas yt operform . Todetermin eorgani cC i ncalcareou s soilsth ecarbonate smus tb edeter ­ mined separately ordestroye dbefor ecombustio no fth esample .Variou s acids havebee nuse d successfully inth edeterminatio no finorgani cC i nsoil san d

rocks. To determine inorganic CAlliso n (1960)use d H?SO. towhic hFeSO . had been added topreven t oxidation oforgani cmatter .Nömmi k (1971)use d hot, meta-phosphoric acid to remove inorganic C from soils beforedeter ­ mining organic C. Sixta (1977)use d hotH_PO . to determinecarbonate si n rocksan dfoun di tsuperio rt odilut eH-SO .i nreleasin g inorganicC becaus e diluteH_S O hassligh toxidizin gpropertie s andoxidize s someo fth eorgan ­ icC i nsample scontainin gorgani cmatter . To determine organic C in soil extracts,Alliso n (1960)recommende d the extractb e evaporated to dryness andthe nhandle d ina simila rwa ya s a soil sample.However ,evaporatio nt odrynes sma ycaus e alos so fC .Sha w (1959)determine dorgani cC i nplan textract swithou tevaporatin g todryness . Hedouble dth equantitie so fK-Cr_0 _ andH_SO.-H_PO .mixtur ewhe nth evolum e of extract being analyzed was greater than 6ml .Duursm a (1961)use dhi s wetcombustio nmetho dt odetermin eorgani cC i nse awater . The objective of thisstud ywa st odevelo p simple,accurat ean drapi d methods to determine organic C in soilsan dsoi lextract s andinorgani cC in soils and rocks.Th e organic Cmetho d isbase d on thewe tcombustio n method ofAlliso n (1960)whil eth einorgani cC metho d isbase do nth eH,PO .

combustion of Sixta (1977). Inbot hmethod s the evolved CO? ismeasure d usingth esensitiv edetectio nmetho d ofRöme r (1975).

Methods

Apparatus The apparatus is shown in figure1 , thecomponent sbein ga sfollows : A, flow valve (Rotaflo TF/13); B, absorption tower filled with ascarite (sodiumhydroxide-coate d asbestos),4- 8mesh ;C ,250-m lDrechse lga swashin g bottle filled with water, serving asbubbl e counter;D , 50-mlseparatin g funnel (R.B.Radle y FSO/50);E ,Liebi gcondensor ,2 0c mlon g (QuickfitCl/13 ) withDrechse lbottl ehea d (jointsN S 29), theinflo wtub ewa scu tof fan da 2-mlgraduate dpipette ,connecte dwit hrubbe rtubing ,wa sadde ds oth ebotto m ofth epipett ewa s2 c mabov eth ebotto m ofth edigestio ntube ;F ,digestio n tube (Duran 50 glass), 11.5c mlon gan d3 0m moutsid ediameter ,wit hjoin t NS29 ;G ,microscal ega sburner ,preferabl y shielded (Monastère);H ,threewa y 118

) a^=oMis 119 stopcock,plai n (Vestale); I, 100-ml test tube filledwit habou t2 0m lo f concentrated H-SO. (95-97%), inflowtub emad efro ma 5 m lpipett eextende d 1.5 cmint oth eacid ;J ,absorptio nchambe ro fplexiglass ,1 6c mhig han d5 cm inside diameter,close db yrubbe rstoppe rwit ha fritted-glas sga sdis ­ persion tube in thecente r (35m m indiameter ,2 0c mlong ,porosit yP2 ,n o lipo n rim), adeliver yti p (RadiometerD 4346 )fo rth etitran tan da nelec ­ trode;K ,magneti cstirre r (TOYOMS-16B )wit h3 5m m stirringba rcoate dwit h PTFE in the absorption chamber; L,Autoburett e (RadiometerAB U 13e)wit h 2.500-ml burette assembly (Radiometer B220 ) with maximum speed seta t 0.250ml/min. ;M , titrator (Radiometer TTT 60c); N,p H meter (Radiometer PHM64b , research pH meter) with combined electrode, internal reference electrode systemssaturate dAg/AgC l (RadiometerG K2402C) ;O ,titran treser ­ voir, 500-mlplasti c bottlestore d inglas sbotte rwit ha tub efille dwit h ascarite on the air inlet.Connection s betweenglas scomponent s shouldb e madewit hpolyethylen etubin gan dkep tt oa minima llength .Fo rroutin eana ­ lyses a second set of components Athroug hH wer emounte d adjacentt oth e firstset .Whil e one analysis wasbein gmade ,th eCO ,ca nb eflushe dfro m theothe rhal fo fth esystem .

Reagents

Digestion mixture A. Dissolve 10.00g K_Cr ?07,reagen tgrade ,powdere di na mixture of 120m lHH S 2OS0 (95-97%4 (95-97%)an )an d8 d 8 0m lo fH 3P04 (85%)wit hheating .D o notallo wtemperatur et oexcee d125°C .

Digestion mixture B. Dissolve 10.00g K_Cr ?07,reagen tgrade ,powdere di n 120m lH,S O (95-97%)wit hheating .D ono tallo wtemperatur et oexcee d125°C .

Absorption solution. Dissolve122.1 4g BaCl 2.2H_0i nabou t80 0m lo fwater , add10 0m ltertiar ybuty lalcoho l (99%)an ddilut et o1 1 .

Titrant. Add an analyticalconcentrat e froma nampoul e (Baker)containin g 0.4mo lNaO H to about 800m lo fCO_-fre ewate raccordin gt oth edirection s providedwit hth eampoule ,ad d10 0m ltertiar ybuty lalcoho l (99%an ddilut e to1 1 wit hCO--fre ewater .

Procedure Total C in non-calcareous soil. Weigh 25 to30 0m go ffinel ygroun dsoi l intoa digestio ntub ean drecor dweigh tt oneares t0. 1mg .Ad d1. 0m lwater . Puttub eo ndistillatio ncolumn .Begi nflo wo fN _ gasa trat eo f6- 8bubbles / sec to remove CO withstopcoc k (H)ope nt oatmosphere .Ad d 5m lo fdiges ­ tionmixtur eA wit h5-m lgraduate d cylindert o50-m lseparatin gfunne l(D) . Whensyste mi sfre eo fCO_ ,sto pH _ flowan dad ddigestio nmixtur eA t odi ­ gestion tube by opening stopcock on separating funnel (D).Begi nheatin g and change stopcock (H)s oC0 _ willente rabsorptio nchamber .Brin gdiges - 120 tionmixtur et oboilin gi n3 t o4 minute swit ha 1-c mflame ,1 c mbelo wbot ­ tom of digestion tube.Begi ntimin gwit hstopwatch .Adjus tN _ flowrat et o 2-3 bubbles/sec. Heat for 10min . Remove flame and increaseN - flowt o 6-8 bubbles/sec.Recor dth etota lamoun to ftitran tadde d aftereac hminut e beginning with 11thminute .Whe nth eamoun to ftitran ti s0.00 1ml/mi nth e absorption of CO_ fromth edigestio no fth esampl ei sconsidere dcomplete . Close stopcock H so air cannot enter thé absorption chamber.Was hsyste m includingth einsid eo fth elowe rpar to fth edistillatio ncolum nwit hwater . Place the next soil sample in adigestio ntub eo nth edistillatio ncolum n andbegi nflushing . Each day ane wprecipitat e mustb e formed.Thi sshoul db edon eprio r to the determination ofa soi lsampl ewit ha smal lamoun to fmateria lcon ­ taining C.A tth esam etim eth ep Ho fth eabsorptio nsolutio ni sraise dt o pH 10.208 to insure absorption of CO_. To testwhethe r allcomponent so f thesyste mwer efunctionin gproperly ,a chemica lo fknow nC conten twa sru n firsteac hday .A blan kwa sals oru neac hday . If a large amounto fCO ,i sproduced ,th ep Hma yg obelo w9.0 .Befor e thishappen sreduc eN _ flowwit h flowvalv e (A),i tma yb enecessar y tosto p theflow .I fno tmuc hC0 „i sbein gproduce dth eflo wma yb eincrease dbefor e theen do fheating .

Inorganic C in calcareous soil. Weigh 25 to30 0m go fpowdere d soili na digestion tube and record weight toneares t0. 1mg .Ad d1. 0m lwater .Pu t tube on distillation column.T odetermin e inorganicC ad d2 m lH_P 0 (85%) with 5m l graduated cylinder through separating funnel to samplewithou t flushing. Set flow ofN , at 2- 3 bubble s per second.Hea tfo r7 minute s witha 1-c m flame1 c mbelo wbotto mo fdigestio ntube .Remov e flamean din ­ crease flow ofN to 6- 8 bubble spe rsecond .Recor dth etota l amounto f titrant added after eachminut ebeginnin g with the 11thminute .Whe nth e amounto ftitran tadde d is0.00 1ml/min .th eabsorptio no fCO .fro mth edi ­ gestiono fth esampl ei scomplete .

Total C in soil extracts. Soil samples were extracted with 0.5N NaOH (Schnitzer et al., 1958;Schnitze r and Skinner, 1968;Che n etal. , 1978) andO.I MNa.P.O - (USDA,1972) .Ad d1. 0m lo fextrac tt odigestio ntube .N o water is added. Repeatprocedur e for totalC i nnon-calcareou s soils.Fo r a blank 1.0 ml of the extractantwa s used. To test the system 1.0m lo f extractantwa sadde dt oth echemicals .

Testing materials To testth eprocedur e ascorbic acid,benzoi c acid,potassiu m hydro- genphthalate,an dcalciu mcarbonat ewer emixe dwit hsan dt ogiv eC content s similart othos efoun di nsoils .Th eprocedur e fororgani cC wa sthe napplie d tofou rsoil s (Table1) . 121

Table1 . Classification of soils accordingt oth eFAO-Unesc oLegen d (FAO, 1974)an dSoi lTaxonom y (SoilSurve y Staff,1975 )

SoilProfil e FAO-Unesco SoilTaxonom y

NL-•102 GleyicPodzo l AerieHaplaquo d NL-•106 DystricRegoso l SpodicUdipsammen t B-103 GleyicPodzo l AerieHaplaquo d USA-1 OrthicPodzo l TypicHaplortho d

Resultsan dDiscussio n

The reagent-grade chemicals used to testth emetho d were completely oxidized (Table 2). Complete oxidationwa s achieved regardless of sample size, 50 to 150mg .Th e reproducibility ofth emetho d isver ygoo dwit ha standard deviationo f0.02 %fo rth echemical s and0.04 %fo rth esoi lsample . Therecover yo fcalciu m carbonate inth einorgani ccarbo ndeterminatio n was alsover y good. The calculated carbonconten twa s1.20% .Th emeasure d carbonconten twa s1.20 %wit ha standar ddeviatio no f0.01 %fo rfiv edeter ­ minations. The addition of 1m l of sodium pyrophosphate or sodiumhydroxid et o thechemical sha dn o interference inth edeterminatio no fC i nth echemical s (Table 3). Neither themea n nor the standard deviationsar esignificantl y different. Themethod swer euse dt odetermin etota lcarbo n (C )an dcarbo ni nso ­ dium pyrophosphate (c )an dsodiu mhydroxid e (C.) extract so fsample sfro m foursoi lprofile s (Table 4). C andC ,wer elowe ro rno tsignificantl ydif ­ ferentfro mC. .I nth eA han dE horizon sC .wa sgreate rtha no rno tsignifi ­ cantlydifferen tfro mC .I nth eB an dC horizon sC andC .wer esimilar . p h Conclusions

The methods described fordeterminin gorgani cC i nsoil san dsoi lex ­ tractsan dinorgani cc i nsoil san drock sgiv ecomplet ecombustio no fth eC andver y accurate measurement of the evolved CO_. The apparatus isbuil t from readily available laboratory equipment or easily constructedparts . The apparatus and procedure are simple to operate and perform.A skille d analystca ncomplet eu pt o3 0analyse si non eday . Thedeterminatio no finorgani c carbonwit hH,PO .i nsoi lsample sneed s further studyan dwil lb ereporte dupo ni na late rpublication . 122

Table2 . Carbonconten to forgani cmaterials .

Weight of CarbonConten t Material Sample Measured Calculated ing %

AscorbicAci d 50- 70 1.01 +0.0 2 1.00 70- 90 1.00+ 0.0 3 90- 11 0 1.00+0.02 >11 0 1.00+ 0.0 2 allsample s 1.00+ 0.0 2 (22)

BenzoicAci d 50- 70 1.19+ 0.0 1 1.19 70- 90 1.19+ 0.0 2 90- 11 0 1.18+ 0.0 3 allsample s 1.18+ 0.0 2 (18)

Potassium 50- 70 1.17+ 0.0 3 1.16 Hydrogenphthalate 70- 90 1.16+ 0.0 2 90- 11 0 1.16+ 0.0 1 allsample s 1.16+ 0.0 2 (21)

BecketB21i r 50- 70 1.90+ 0.0 2 Horizon 70- 90 1.92+ 0.0 5 90- 11 0 1.88+ 0.0 1 allsample s 1.90+ 0.0 4 (15)

Meanan dstandar ddeviation . Numberi nparenthesi si snumbe ro fdeterminations . 123

Table3 . Carbonconten to fchemical swit h 1m lH O (C) ,1 m l0.I MN a PO (C) an d 1m l0.5 NNaO H (C.) . P h

CarbonConten t

Material Determination Measured Calculated

AscorbicAci d 1.00+0.03 1.00 1.01+ 0.0 1 1.00+ 0.0 3

BenzoicAci d 1.19+0.02 1.19 1.18+ 0.0 2 1.19+ 0.0 3

Potassium 1.16+ 0.0 1 1.16 Hydrogenphthalate 1.17+ 0.0 3 1.16+ 0.0 2

BecketB2 1i r 1.90+0.04 Horizon 1.22+ 0.0 6 1.39+ 0.1 1

Meanan dstandar ddeviation . 124

Table4 . Totalcarbo n (C) an dcarbo ni nsodiu mpyrophosphat e (C) an d t p sodiumhydroxid e (C,) extract so fsoils . n

CarbonConten t

C C C Profile Horizon Depth t P h cm % % %

NL-102 El 0- 19 .82 .39 .47 E2 19- 39 .35 .23 .25 Bh 39- 44 .82 .62 .72 BC1 44- 89 .44 .43 .47 BC2 89-150 .32 .27 .31

NL-106 Ahl 0- 6 6.02 1.98 2.45 Ah2 6- 11 2.98 .88 1.68 E 11- 22 .86 .19 .39 Bhsl 22- 29 2.20 1.60 1.49 Bhs2 29- 35 2.11 1.66 1.55 2BC 35- 45 .55 .42 .35 2Cg 45- 65 .19 .1 1 .14

B-103 Ahb 23- 30 3.40 1.99 2.09 Eb 30- 58 .18 .19 .13 EBb 58- 85 .26 .36 .24 Bhlb 85-103 .87 .82 .75 Bh2b 103-125 .86 .79 .81 Bh3b 125-155 .74 .76 .70 Bhmb 155-170 1.54 1.47 1.44

USA-1 E 0- 23 .27 .02 .13 Bh 23- 32 1.44 1.04 .89 Bhs 32- 50 1.41 1.25 1.10 BC 50- 88 .92 .86 .79 C 88-130 .07 .03 .04 125

Literaturecite d

Allison,L.E .1960 . Wet-combustion apparatus andprocedur e fororgani can d inorganic carboni nsoil .Soi l Sei.Soc .Amer .Proc .24:36-40 .

Anderson,J.W . andW .Harris .1967 . Determinationo forgani ccarbo nan dcar ­ bonates insoils .Soi lSei .Soc .Amer .Proc .31:341-343 .

Begheijn, L.Th. 1976. Determination of organic and inorganic carbon in soilb ypotentiometry .Analys t101:710-716 .

Chen,Y. ,N .Senes ian dM .Schnitzer .1978 . Chemical andphysica lcharacte ­ risticso fhumi can d fulvicacid sextracte d fromsoil so fth eMediter ­ raneanRegion .Geoderm a20:87-104 .

Duursma, E.K. 1961. Dissolved organic carbon,nitroge nan dphosphoru si n thesea .Neth .J . SeaRes .1:1-147 .

Food andAgricultur e Organization.1974 . SoilMa po fth eWorld .Volum eI . Legend.Unesco ,Paris ,5 9pp .

Nömmik,H . 1971. Amodifie dprocedur e fordeterminatio no forgani ccarbo n insoil sb ywe tcombustion .Soi lSei .111:330-336 .

Schnitzer,M . andS.I.M .Skinner .1968 .Alkal iversu saci dextractio no fsoi l organicmatter .Soi l Sei.105:392-396 .

Schnitzer,M. , J.R. Wrightan dJ.G .Desjardins .1958 . Acompariso no fth e effectiveness ofvariou sextractant s fororgani cmatte r fromtw ohori ­ zonso fa Podzo lprofile .Can .J . Soil Sei.38:49-53 .

Shaw,K .1959 . Determinationo forgani ccarbo ni nsoi lan dplan tmaterial . J. Soil Sei.10:316-326 .

Sixta,V . 1977. Coulometric determination of carbonates inroc ksamples . Z.Anal .Chem .285:369-372 .

SoilSurve yStaff .1975 . SoilTaxonomy .A basi c systemo fsoi lclassifica ­ tionfo rmakin g andinterpretin g soilsurveys .Agric .Handbk .No .436 . U.S.Gov't .Prtg .Off. ,Washington ,D.C .20402 ,75 4pp .

U.S. Department of Agriculture,SCS .1972 . Soilsurve y laboratorymethod s andprocedure s forcollectin g soilsamples .Soi lSurve y Investigations ReportNo .1 .'Washington ,D.C . 63pp . 126

APPENDIX 7. NOTEO NTH EPLATE :"PODZOL SAN DRELATE DSOILS "

Alarg enumbe ro fsoil suse d inthi sstud yhav ebee nselecte d forrep ­ resentation on a colour plate onpodzol s andrelate dsoils .Thi splat ei s published asa seperat e sheet.I nsom ecase sth eclassificatio n ofth esoi l profiles on theplat edoe sno tcorrespon dwit hth eclassificatio n giveni n thispaper .Thi sconcern s soilswit hdistinc tpodzo lmorphology ,whic hcoul d be classified aspodzol s on thebasi so fth epresenc eo fcracke dcoating s or dark pellets- (micro)morphologiccriteri a forspodi chorizo n- bu tthe y do notmee t thechemica l criteria. Inth econtex to fthi spublicatio nsuc h soils are not classified aspodzol s in order to stressth ediscrepancie s betweenchemica l andmorphologica l criteria.However ,o nth eplat ethe yar e placed with thepodzols ,notabl yth eprofile s IRL-1,F-10 ,NL-106 ,SER-10 , S-16,SF- 4an dSK-3 .