Crash-Course on Equilibrium Thermodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermodynamics and Phase Diagrams
Thermodynamics and Phase Diagrams Arthur D. Pelton Centre de Recherche en Calcul Thermodynamique (CRCT) École Polytechnique de Montréal C.P. 6079, succursale Centre-ville Montréal QC Canada H3C 3A7 Tél : 1-514-340-4711 (ext. 4531) Fax : 1-514-340-5840 E-mail : [email protected] (revised Aug. 10, 2011) 2 1 Introduction An understanding of phase diagrams is fundamental and essential to the study of materials science, and an understanding of thermodynamics is fundamental to an understanding of phase diagrams. A knowledge of the equilibrium state of a system under a given set of conditions is the starting point in the description of many phenomena and processes. A phase diagram is a graphical representation of the values of the thermodynamic variables when equilibrium is established among the phases of a system. Materials scientists are most familiar with phase diagrams which involve temperature, T, and composition as variables. Examples are T-composition phase diagrams for binary systems such as Fig. 1 for the Fe-Mo system, isothermal phase diagram sections of ternary systems such as Fig. 2 for the Zn-Mg-Al system, and isoplethal (constant composition) sections of ternary and higher-order systems such as Fig. 3a and Fig. 4. However, many useful phase diagrams can be drawn which involve variables other than T and composition. The diagram in Fig. 5 shows the phases present at equilibrium o in the Fe-Ni-O2 system at 1200 C as the equilibrium oxygen partial pressure (i.e. chemical potential) is varied. The x-axis of this diagram is the overall molar metal ratio in the system. -
Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems
Entropy 2015, 17, 2853-2861; doi:10.3390/e17052853 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems Constantino Tsallis 1;2 1 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro - RJ, Brazil; E-Mail: [email protected] 2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, NM, USA Academic Editor: Antonio M. Scarfone Received: 9 April 2015 / Accepted: 4 May 2015 / Published: 5 May 2015 Abstract: It is by now well known that the Boltzmann-Gibbs-von Neumann-Shannon logarithmic entropic functional (SBG) is inadequate for wide classes of strongly correlated systems: see for instance the 2001 Brukner and Zeilinger’s Conceptual inadequacy of the Shannon information in quantum measurements, among many other systems exhibiting various forms of complexity. On the other hand, the Shannon and Khinchin axioms uniquely P mandate the BG form SBG = −k i pi ln pi; the Shore and Johnson axioms follow the same path. Many natural, artificial and social systems have been satisfactorily approached P q 1− i pi with nonadditive entropies such as the Sq = k q−1 one (q 2 R; S1 = SBG), basis of nonextensive statistical mechanics. Consistently, the Shannon 1948 and Khinchine 1953 uniqueness theorems have already been generalized in the literature, by Santos 1997 and Abe 2000 respectively, in order to uniquely mandate Sq. We argue here that the same remains to be done with the Shore and Johnson 1980 axioms. -
Nanothermodynamics – a Generic Approach to Material Properties at Nanoscale
Nanothermodynamics – A generic approach to material properties at nanoscale A. K. Rajagopal (1) , C. S. Pande (1) , and Sumiyoshi Abe (2) (1) Naval Research Laboratory, Washington D.C., 20375, USA (2) Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan ABSTRACT Granular and nanoscale materials containing a relatively small number of constituents have been studied to discover how their properties differ from their macroscopic counterparts. These studies are designed to test how far the known macroscopic approaches such as thermodynamics may be applicable in these cases. A brief review of the recent literature on these topics is given as a motivation to introduce a generic approach called “Nanothermodynamics”. An important feature that must be incorporated into the theory is the non-additive property because of the importance of ‘surface’ contributions to the Physics of these systems. This is achieved by incorporating fluctuations into the theory right from the start. There are currently two approaches to incorporate this property: Hill (and further elaborated more recently with Chamberlin) initiated an approach by modifying the thermodynamic relations by taking into account the surface effects; the other generalizes Boltzmann-Gibbs statistical mechanics by relaxing the additivity properties of thermodynamic quantities to include nonextensive features of such systems. An outline of this generalization of the macroscopic thermodynamics to nano-systems will be given here. Invited presentation at the Indo-US Workshop on “Nanoscale -
Comparative Examination of Nonequilibrium Thermodynamic Models of Thermodiffusion in Liquids †
Proceedings Comparative Examination of Nonequilibrium Thermodynamic Models of Thermodiffusion in Liquids † Semen N. Semenov 1,* and Martin E. Schimpf 2 1 Institute of Biochemical Physics RAS, Moscow 119334, Russia 2 Department of Chemistry, Boise State University, Boise, ID 83725, USA; [email protected] * Correspondence: [email protected] † Presented at the 5th International Electronic Conference on Entropy and Its Applications, 18–30 November 2019; Available online: https://ecea-5.sciforum.net/. Published: 17 November 2019 Abstract: We analyze existing models for material transport in non-isothermal non-electrolyte liquid mixtures that utilize non-equilibrium thermodynamics. Many different sets of equations for material have been derived that, while based on the same fundamental expression of entropy production, utilize different terms of the temperature- and concentration-induced gradients in the chemical potential to express the material flux. We reason that only by establishing a system of transport equations that satisfies the following three requirements can we obtain a valid thermodynamic model of thermodiffusion based on entropy production, and understand the underlying physical mechanism: (1) Maintenance of mechanical equilibrium in a closed steady-state system, expressed by a form of the Gibbs–Duhem equation that accounts for all the relevant gradients in concentration, temperature, and pressure and respective thermodynamic forces; (2) thermodiffusion (thermophoresis) is zero in pure unbounded liquids (i.e., in the absence of wall effects); (3) invariance in the derived concentrations of components in a mixture, regardless of which concentration or material flux is considered to be the dependent versus independent variable in an overdetermined system of material transport equations. The analysis shows that thermodiffusion in liquids is based on the entropic mechanism. -
Thermodynamic Temperature
Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature. -
Equation of State - Wikipedia, the Free Encyclopedia 頁 1 / 8
Equation of state - Wikipedia, the free encyclopedia 頁 1 / 8 Equation of state From Wikipedia, the free encyclopedia In physics and thermodynamics, an equation of state is a relation between state variables.[1] More specifically, an equation of state is a thermodynamic equation describing the state of matter under a given set of physical conditions. It is a constitutive equation which provides a mathematical relationship between two or more state functions associated with the matter, such as its temperature, pressure, volume, or internal energy. Equations of state are useful in describing the properties of fluids, mixtures of fluids, solids, and even the interior of stars. Thermodynamics Contents ■ 1 Overview ■ 2Historical ■ 2.1 Boyle's law (1662) ■ 2.2 Charles's law or Law of Charles and Gay-Lussac (1787) Branches ■ 2.3 Dalton's law of partial pressures (1801) ■ 2.4 The ideal gas law (1834) Classical · Statistical · Chemical ■ 2.5 Van der Waals equation of state (1873) Equilibrium / Non-equilibrium ■ 3 Major equations of state Thermofluids ■ 3.1 Classical ideal gas law Laws ■ 4 Cubic equations of state Zeroth · First · Second · Third ■ 4.1 Van der Waals equation of state ■ 4.2 Redlich–Kwong equation of state Systems ■ 4.3 Soave modification of Redlich-Kwong State: ■ 4.4 Peng–Robinson equation of state Equation of state ■ 4.5 Peng-Robinson-Stryjek-Vera equations of state Ideal gas · Real gas ■ 4.5.1 PRSV1 Phase of matter · Equilibrium ■ 4.5.2 PRSV2 Control volume · Instruments ■ 4.6 Elliott, Suresh, Donohue equation of state Processes: -
[Cond-Mat.Stat-Mech] 3 Sep 2004 H Ee Om Esalte S Tt E H Specific the Get to It Use Then and Shall Tsallis We for Simple Temperature Form
Generalized Entropies and Statistical Mechanics Fariel Shafee Department of Physics Princeton University Princeton, NJ 08540 USA.∗ We consider the problem of defining free energy and other thermodynamic functions when the entropy is given as a general function of the probability distribution, including that for nonextensive forms. We find that the free energy, which is central to the determination of all other quantities, can be obtained uniquely numerically even when it is the root of a transcendental equation. In particular we study the cases of the Tsallis form and a new form proposed by us recently. We compare the free energy, the internal energy and the specific heat of a simple system of two energy states for each of these forms. PACS numbers: 05.70.-a, 05.90 +m, 89.90.+n Keywords: entropy, nonextensive, probability distribution function, free energy, specific heat I. INTRODUCTION heat in both cases and see how it changes with the change of the parameter at different temperatures. We have recently [1] proposed a new form of nonex- tensive entropy which depends on a parameter similar II. ENTROPY AND PDF to Tsallis entropy [2, 3, 4], and in a similar limit ap- proaches Shannon’s classical extensive entropy. We have shown how the definition for this new form of entropy can The pdf is found by optimizing the function arise naturally in terms of mixing of states in a phase cell when the cell is re-scaled, the parameter being a measure L = S + α(1 − pi)+ β(U − piEi) (1) of the rescaling, and how Shannon’s coding theorem [5] Xi Xi elucidates such an approach. -
Finite Size Analysis of a Two-Dimensional Ising Model Within
Finite size analysis of a two-dimensional Ising model within a nonextensive approach N. Crokidakis,1, ∗ D.O. Soares-Pinto,2, † M.S. Reis,3 A.M. Souza,4 R.S. Sarthour,2 and I.S. Oliveira2 1Instituto de F´ısica - Universidade Federal Fluminense, Av. Litorˆanea s/n, 24210-340 Niter´oi - RJ, Brazil. 2Centro Brasileiro de Pesquisas F´ısicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro - RJ, Brazil. 3CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal. 4Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. (Dated: June 26, 2018) In this work we present a thorough analysis of the phase transitions that occur in a ferromagnetic 2D Ising model, with only nearest-neighbors interactions, in the framework of the Tsallis nonextensive statistics. We performed Monte Carlo simulations on square lattices with linear sizes L ranging from 32 up to 512. The statistical weight of the Metropolis algorithm was changed according to the nonextensive statistics. Discontinuities in the m(T) curve are observed for q ≤ 0.5. However, we have verified only one peak on the energy histograms at the critical temperatures, indicating the occurrence of continuous phase transitions. For the 0.5 < q ≤ 1.0 regime, we have found continuous phase transitions between the ordered and the disordered phases, and determined the critical exponents via finite-size scaling. We verified that the critical exponents α, β and γ depend 2 on the entropic index q in the range 0.5 < q ≤ 1.0 in the form α(q) = (10 q − 33 q + 23)/20, β(q) = (2 q − 1)/8 and γ(q)=(q2 − q + 7)/4. -
A Maximum Entropy Framework for Nonexponential Distributions
A maximum entropy framework for nonexponential distributions Jack Petersona,b, Purushottam D. Dixitc, and Ken A. Dillb,1 aDepartment of Mathematics, Oregon State University, Corvallis, OR 97331; bLaufer Center for Physical and Quantitative Biology, Departments of Physics and Chemistry, State University of New York, Stony Brook, NY 11794; and cDepartment of Systems Biology, Columbia University, New York, NY 10032 Contributed by Ken A. Dill, November 7, 2013 (sent for review June 26, 2013) P Probability distributions having power-law tails are observed in functional S½fpkg = − kpklog pk subject to constraints, such as a broad range of social, economic, and biological systems. We the known value of the average energy hEi. This procedure gives −βE describe here a potentially useful common framework. We derive the exponential (Boltzmann) distribution, pk ∝ e k ,whereβ distribution functions {pk} for situations in which a “joiner particle” is the Lagrange multiplier that enforces the constraint. This var- k pays some form of price to enter a community of size k − 1, where iational principle has been the subject of various historical justifi- costs are subject to economies of scale. Maximizing the Boltzmann– cations. It is now commonly understood as the approach that Gibbs–Shannon entropy subject to this energy-like constraint chooses the least-biased model that is consistent with the known predicts a distribution having a power-law tail; it reduces to the constraint(s) (39). Boltzmann distribution in the absence of economies of scale. We Is there an equally compelling principle that would select fat- show that the predicted function gives excellent fits to 13 different tailed distributions, given limited information? There is a large distribution functions, ranging from friendship links in social net- literature that explores this. -
Definition of the Ideal Gas
ON THE DEFINITION OF THE IDEAL GAS. By Edgar Bucidngham. I . Nature and purpose of the definition.—The notion of the ideal gas is that of a gas having particularly simple physical properties to which the properties of the real gases may be considered as approximations; or of a standard to which the real gases may be referred, the properties of the ideal gas being simply defined and the properties of the real gases being then expressible as the prop- erties of the standard plus certain corrections which pertain to the individual gases. The smaller these corrections the more nearly the real gas approaches to being in the "ideal state." This con- ception grew naturally from the fact that the earlier experiments on gases showed that they did not differ much in their physical properties, so that it was possible to define an ideal standard in such a way that the corrections above referred to should in fact all be ''small" in terms of the unavoidable errors of experiment. Such a conception would hardly arise to-day, or if it did, would not be so simple as that which has come down to us from earlier times when the art of experimenting upon gases was less advanced. It is evident that a quantitative definition of the ideal standard gas needs to be more or less complete and precise according to the nature of the problem under immediate consideration. If changes of temperature and of internal energy play no part, all that is usually needed is a standard relation between pressure and volume. -
Evaluation of Thermodynamic Equations of State Across Chemistry and Structure in the Materials Project
Lawrence Berkeley National Laboratory Recent Work Title Evaluation of thermodynamic equations of state across chemistry and structure in the materials project Permalink https://escholarship.org/uc/item/0v70b5jx Journal npj Computational Materials, 4(1) ISSN 2057-3960 Authors Latimer, K Dwaraknath, S Mathew, K et al. Publication Date 2018-12-01 DOI 10.1038/s41524-018-0091-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/npjcompumats ARTICLE OPEN Evaluation of thermodynamic equations of state across chemistry and structure in the materials project Katherine Latimer1, Shyam Dwaraknath2, Kiran Mathew3, Donald Winston2 and Kristin A. Persson2,3 Thermodynamic equations of state (EOS) for crystalline solids describe material behaviors under changes in pressure, volume, entropy and temperature, making them fundamental to scientific research in a wide range of fields including geophysics, energy storage and development of novel materials. Despite over a century of theoretical development and experimental testing of energy–volume (E–V) EOS for solids, there is still a lack of consensus with regard to which equation is indeed optimal, as well as to what metric is most appropriate for making this judgment. In this study, several metrics were used to evaluate quality of fit for 8 different EOS across 87 elements and over 100 compounds which appear in the literature. Our findings do not indicate a clear “best” EOS, but we identify three which consistently perform well relative to the rest of the set. Furthermore, we find that for the aggregate data set, the RMSrD is not strongly correlated with the nature of the compound, e.g., whether it is a metal, insulator, or semiconductor, nor the bulk modulus for any of the EOS, indicating that a single equation can be used across a broad range of classes of materials. -
A Nonequilibrium Thermodynamics Perspective on Nature-Inspired Chemical Engineering Processes Vincent Gerbaud, Nataliya Shcherbakova, Sergio Da Cunha
A nonequilibrium thermodynamics perspective on nature-inspired chemical engineering processes Vincent Gerbaud, Nataliya Shcherbakova, Sergio da Cunha To cite this version: Vincent Gerbaud, Nataliya Shcherbakova, Sergio da Cunha. A nonequilibrium thermodynamics per- spective on nature-inspired chemical engineering processes. Chemical Engineering Research and De- sign, Elsevier, 2019, 154, pp.316-330. 10.1016/j.cherd.2019.10.037. hal-02648825 HAL Id: hal-02648825 https://hal.archives-ouvertes.fr/hal-02648825 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/ 26045 Official URL : https://doi.org/10.1016/j.cherd.2019.10.037 To cite this version: Gerbaud, Vincent and Da Cunha, Sergio and Shcherbakova, Nataliya A nonequilibrium thermodynamics perspective on nature-inspired chemical engineering