Nematode Guidelines for SC (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nematode Management for Bedding Plants1 William T
ENY-052 Nematode Management for Bedding Plants1 William T. Crow2 Florida is the “land of flowers.” Surely, one of the things that Florida is known for is the beauty of its vegetation. Due to the tropical and subtropical environment, color can abound in Florida landscapes year-round. Unfortunately, plants are not the only organisms that enjoy the mild climate. Due to warm temperatures, sandy soil, and humidity, Florida has more than its fair share of pests and pathogens that attack bedding plants. Plant-parasitic nematodes (Figure 1) can be among the most damaging and hard-to-control of these organisms. What are nematodes? Nematodes are unsegmented roundworms, different from earthworms and other familiar worms that are segmented (annelids) or in some cases flattened and slimy (flatworms). Many kinds of nematodes may be found in the soil of any landscape. Most are beneficial, feeding on bacteria, fungi, or other microscopic organisms, and some may be used as biological control organisms to help manage important insect pests. Plant-parasitic nematodes are nematodes that Figure 1. Diagram of a generic plant-parasitic nematode. feed on live plants (Figure 1). Credits: R. P. Esser, Florida Department of Agriculture and Consumer Services, Division of Plant Industry; used with permission. Plant-parasitic nematodes are very small and most can only be seen using a microscope (Figure 2). All plant-parasitic nematodes have a stylet or mouth-spear that is similar in structure and function to a hypodermic needle (Figure 3). 1. This document is ENY-052, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. -
Description and Identification of Four Species of Plant-Parasitic Nematodes Associated with Forage Legumes
5 Egypt. J. Agronematol., Vol. 17, No.1, PP. 51-64 (2018) Description and Identification of Four Species of Plant-parasitic Nematodes Associated with Forage Legumes * * Mahfouz M. M. Abd-Elgawad ; Mohamed F.M. Eissa ; Abd-Elmoneim Y. ** *** **** El-Gindi ; Grover C. Smart ; and Ahmed El-bahrawy . * Plant Pathology Department, National Research Centre. ** Department of Agricultural Zoology and Nematology, Faculty of Agriculture, University of Cairo, Giza, Egypt. *** Department of Entomology and Nematology, IFAS, University of Florida, USA. **** Institute for Sustainable Plant Protection, National Council of Research, Bari, Italy. Abstract Four species of plant parasitic nematodes were present in soil samples planted with forage legumes at Alachua County, Florida, USA. The detected species Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, and Paratrichodorus minor were described in the present study. They belong to orders Rhabditida (Belonolaimus longicaudatus, Criconemella ornate, and Hoplolaimus galeatus) and Triplonchida (Paratrichodorus minor) and to taxonomical families Dolichodoridae (Belonolaimus longicaudatus), Hoplolaimidae (Hoplolaimus galeatus) Criconematidae (Criconemella ornate), and Trichodoridae (Paratrichodorus minor). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys. Keywords: Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, Paratrichodorus minor, morphology, -
Nematicidal Properties of Some Algal Aqueous Extracts Against Root-Knot Nematode, Meloidogyne Incognita in Vitro
6 Egypt. J. Agronematol., Vol. 15, No.1, PP. 67-78 (2016) Nematicidal properties of some algal aqueous extracts against root-knot nematode, Meloidogyne incognita in vitro Ahmed H. Nour El-Deen(*,***)and Ahmed A. Issa(**,***) * Nematology Research Unit, Agricultural Zoology Dept., Faculty of Agriculture, Mansoura University, Egypt. ** Department of Botany, Faculty of Science, Assiut University, Assiut , Egypt. *** Biology Dept., Faculty of Science, Taif University, Saudi Arabia. Corresponding author: [email protected] Abstract The effectiveness of aqueous extracts derived from nine algal species at different concentrations on egg hatching and mortality of Meloidogyne incognita (Kofoid and White) Chitwood juveniles after various exposure times were determined in vitro. Results indicated that Enteromorpha flexuosa at the concentration of 80% was the best treatment for suppressing the egg hatching with value of 2 % after 5 days of exposure, followed by Dilsea carnosa extract (3%) and Codium fragile (4%) at the same concentration and exposure time. Likewise, application of C. fragile, D. carnosa , E. flexuosa and Cystoseira myrica extracts at the concentrations of 80 and 60% were highly toxic to the nematodes, killing more than 90 % of nematode larva after 72 hours of exposure while the others gave quite low mortalities. The characteristic appearances in shape of the nematodes killed by C. fragile, D. carnosa , C. myrica, E. flexuosa and Sargassum muticum was sigmoid (∑-shape) with some curved shape; whereas, the nematodes killed by other algal species mostly followed straight or bent shapes. The present study proved that four species of algae C. fragile, D. carnosa, C. myrica and E. flexuosa could be used for the bio-control of root-knot nematodes. -
A Preview to This Years Potato Field Day and Seed
Potato Progress Research & Extension for the Potato Industry of Idaho, Oregon, & Washington Andrew Jensen, Editor. [email protected]; 509-760-4859 www.nwpotatoresearch.com Volume XIX, Number 1 13 February 2019 Stubby root nematodes and associated corky ringspot disease Zhen (Daisy) Fu Washington State University Sam Chavoshi, Hassan Mojtahedi AGNEMA, The Phytopathology Lab Sagar Sathuvalli Oregon State University Kylie Swisher Grimm, Inga Zasada USDA-ARS Zhiqiang Cheng University of Hawaii at Manoa Abbreviations used throughout this article: SRN – Stubby Root Nematode TRV – Tobacco Rattle Virus Stubby root nematodes (SRNs) damage plant roots, and more devastatingly, vector tobacco rattle virus (TRV), the causal agent of corky ringspot disease (cover photo) of potato. Corky ringspot is a major factor in the devaluation and culling of potato tubers in the Northwest USA. A Cover photo: corky ringspot symptom recent field survey showed that SRNs were third in prevalence of plant- on potato tubers parasitic nematodes following root lesion and root-knot nematodes (Zasada et al. in review). There is little current data on the prevalence of TRV, as the last field survey was conducted over two decades ago (Mojtahedi et al. 2000). Past research has shed light on the distribution and ecology of the nematode, plant-nematode interactions (Mojtahedi and Santo 1999; 1 Mojtahedi et al. 2001; Mojtahedi et al. 2003), and chemical and cultural control methods of corky ringspot (Brown et al. 2000; Ingham et al. 2000; Ingham et al. 2007; Charlton et al. 2010). However, more research is warranted to obtain an updated status of TRV in the Northwest and to determine whether populations of the virus and nematode are genetically different throughout the Northwest potato growing region. -
Control Root-Knot Nematodes in Your Garden
Agriculture and Natural Resources FSA7529 Control Root-Knot Nematodes in Your Garden Stephen Vann Introduction plants to any extent. A female Assistant Professor root-knot nematode (Figure 2) can lay Urban Plant Pathologist Root-knot nematodes are up to 500 eggs at a time, and root microscopic worms that live in soil damage results from the sheer T.L. Kirkpatrick and feed on the roots of many common number of nematodes feeding on roots Professor - garden crops (Figures 1 and 2). The by the end of the summer. Root-knot Plant Pathologist nematode gets its name because its nematodes tend to be more of a feeding causes galls (swellings or problem in sandy soils. Rick Cartwright “knots”) to form on the roots of infected Professor plants (Figure 3). Root-knot nematodes Symptoms Plant Pathologist are scientifically classified in the genus Meloidogyne. There are several species So how do you tell if root-knot of Meloidogyne, but M. incognita, also nematodes are a problem in your known as the southern root-knot garden? nematode, is the most common one in gardens in Arkansas. First, look for plants that are not performing well. Usually, not all of Some of the crops that may be your plants will be affected to the severely damaged are tomato, pepper, same degree, and some will be “more okra, watermelon, cantaloupe, onion, sick” than others. Symptoms can pumpkin, squash, sweet potato, sweet include stunting, yellowing, wilting corn, carrot, eggplant, bean and pea. during the heat of the day with recov Root-knot nematodes also feed and ery at night, fewer and smaller fruit multiply on many garden weeds, and general decline – usually during although they may not injure these the summer as the plants get bigger. -
Evaluation of an Antibiotic-Producing Strain of Pseudomonas Fluorescens
Journal of Nematology 41(3):234–240. 2009. Ó The Society of Nematologists 2009. Evaluation of an Antibiotic-Producing Strain of Pseudomonas fluorescens for Suppression of Plant-Parasitic Nematodes 1 2 2 2 3 PATRICIA TIMPER, DAOUDA KONE´, JINGFANG YIN, PINGSHENG JI, BRIAN B. MCSPADDEN GARDENER Abstract: The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in sup- pression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant- parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor,orH. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. -
TIMING of NEMATICIDE APPLICATIONS for CONTROL of Belenolaimus Longicaudatus on GOLF COURSE FAIRWAYS
TIMING OF NEMATICIDE APPLICATIONS FOR CONTROL OF Belenolaimus longicaudatus ON GOLF COURSE FAIRWAYS By PAURIC C. MC GROARY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Pauric C. Mc Groary 2 ACKNOWLEDGMENTS I would like to thank Dr. William Crow for his scientific expertise, persistence, and support. I am also indebted to my other committee supervisors members, Dr. Robert McSorley and Dr. Robin Giblin-Davis, who were always available to answer questions and to provide guidance throughout. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................3 LIST OF TABLES...........................................................................................................................6 LIST OF FIGURES .........................................................................................................................7 ABSTRACT.....................................................................................................................................8 CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW ..............................................................10 Introduction.............................................................................................................................10 Belonolaimus longicaudatus...................................................................................................11 -
Rhynchus Claytoni Steiner 1) by Lr
INVESTIGATIONS ON THE LIFE CYCLE, REPRODUCTION, FEEDING HABITS AND HOST RANGE OF TYLENCHO- RHYNCHUS CLAYTONI STEINER 1) BY L. R. KRUSBERG N. C. State College, Raleigh, North Carolina, U.S.A. The tobacco stunt nematode, Tylenchorhynchus claytoni., is one of the more serious plant-parasitic nematodes in North Carolina. It was first described from specimens collected around and in roots of stunted to- bacco plants (Nicotiana tabacum L.) (STEINER, 1937). This nematode was found in soil from 6/% of 175 tobacco fields sampled in South Carolina (GRAHAM, 1954). Besides reproducing on cotton and tobacco it also reduced the root systems and caused stunting of these plants in the greenhouse. T. claytoni severely reduced the root systems of hybrid corn breeding lines in greenhouse tests (NELSON, 1956). Several in- breds were resistant resulting in reduction of the nematode populations. This species has been causing considerable damage to tobacco in North Carolina (DROLSOM & MOORE, 1955), and a recently developed variety (Dixie Bright 101) is reported to support larger nematode populations than old line varieties (NUSBAUM, 1954). T. claytoni has been found in golf green turfs (TROLL & TARJAN, 1954), in the soil around roots of sugar cane, strawberry, camellia, sweet potato and rice (MARTIN & BIRCHFIELD, 1955), and in the rhizospheres of chlorotic and stunted peanut plants (BOYLE, 1950). Host-parasite relations have been studied with two other Tylencho- rhynchus species. The relations of T. dubius Biltschli to cotton and Te- pary bean (Phaseolits acutifolius, Gray, var. latifolius, Freem.) were investigated in Arizona (REYNOLDS & EVANS, 1953). Nematodes ap- peared to feed on the epidermal tissues of young roots and larvae were found inside some small secondary roots. -
Worms, Nematoda
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium. -
JOURNAL of NEMATOLOGY First Report of Stubby-Root Nematode, Paratrichodorus Minor, on Onion in Georgia, U.S.A
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2018-038 Issue 3 | Vol. 50 (2018) First Report of Stubby-Root Nematode, Paratrichodorus minor, on Onion in Georgia, U.S.A Abolfazl Hajihassani,1* Negin Hamidi,1 Bhabesh Dutta,1 and Chris Tyson2 Abstract 1Department of Plant Pathology, Onions (Allium cepa L.) are the leading vegetable crop in Georgia University of Georgia, Tifton, accounting for 13.7% of total state vegetable production (Wolfe and Georgia, 31794. Stubbs, 2017). In November 2017, two samples each of onion (var. Candy Ann) seedlings and soil were received from the University of 2 University of Georgia Cooperative Georgia Cooperative Extension office in Tattnall County, GA. The Extension Office, Tattnall County, samples were collected from a nursery fumigated with metam sodium Reidsville, Georgia, 30453. and used for sweet onion transplant production. Symptoms of the *E-mail: abolfazl.hajihassani@uga. damaged plants included stunted growth both in the root system edu. and foliage, tip die-back of the leaves (Fig. 1A,B), and slight swelling at the tip of roots. Vermiform life stages from the soil samples were This paper was edited by Eyualem extracted using centrifugal-flotation technique (Jenkins, 1964). On Abebe. an average, 67 stubby-root nematodes per 100 cm3 of soil were Received for publication March 20, obtained. Additional two soil samples were collected from the nursery 2018. in December 2017 to confirm the presence of the nematode. On an average, 1 and 75 nematodes per 100 cm3 of soil were recovered from areas with healthy and infested plants, respectively. Because the male individuals were not found in the soil samples, females were used for species identification. -
Examine Clematis Roots for Nematode Infestation, Vol.4, Issue 3
OREGON H.J. Jensen December 1960 AND Plant Pathology Department ORNAMENTAL Vol. 4, Issue 3 Oregon State College NURSERY DIGEST Pages 1,2 Corvallis, OR EXAMINE CLEMATIS ROOTS FOR NEMATODE INFESTATION Clematis, like many other flowers, has its share of mutilating pests and disfiguring plant diseases. One of the most devastating pests is a root knot nematode. Meloidogyne hapla, which commonly afflicts this choice flowering shrub wherever grown. The first sign of imminent disaster is usually pronounced stunting which during warm weather is accompanied by excessive wilting. Frequently these symptoms are associated with chlorotic foliage. In general, however, foliage symptoms alone are not necessarily specific for root-feeding nematodes, but do indicate the probability of a disorder due to activities of these pests. A much more accurate diagnosis is made by examining the root system. If small, bead-like swellings occur on roots, root knot nematodes are most likely responsible. Verification can be made easily by routine microscopic examination. These swellings, usually called "galls" or "knots," vary somewhat in size depending upon the population density and age of nematodes in root tissues. A recent invasion of nematodes is hardly noticeable because plant tissues have barely had time to react to this penetration. By the time nematodes complete their lifespan, galls are very conspicuous, and may contain several white, pear-shaped objects which are the adult females. Each female may produce 300 eggs from which hatch a new generation of young nematodes. Since these pests complete a life cycle in approximately two months, vast numbers build up rapidly during a single year. -
Summary Paratrichodorus Minor Is a Highly Polyphagous Plant Pest, Generally Found in Tropical Or Subtropical Soils
CSL Pest Risk Analysis for Paratrichodorus minor copyright CSL, 2008 CSL PEST RISK ANALYSIS FOR Paratrichodorus minor Abstract/ Summary Paratrichodorus minor is a highly polyphagous plant pest, generally found in tropical or subtropical soils. It has entered the UK in growing media associated with palm trees and is most likely to establish on ornamental plants grown under protection. There is a moderate likelihood of the pest establishing outdoors in the UK through the planting of imported plants in gardens or amenity areas. However there is a low likelihood of the nematode spreading from such areas to commercial food crops, to which it presents a small risk of economic impact. P. minor is known to vector the Tobacco rattle virus (TRV), which affects potatoes, possibly strains that are not already present in the UK, but the risk of the nematode entering in association with seed potatoes is low. Overall the risk of P. minor to the UK is rated as low. STAGE 1: PRA INITIATION 1. What is the name of the pest? Paratrichodorus minor (Colbran, 1956) Siddiqi, 1974 Nematode: Trichodoridae Synonyms: Paratrichodorus christiei (Allen, 1957) Siddiqi, 1974 Paratrichodorus (Nanidorus) christiei (Allen, 1957) Siddiqi, 1974 Paratrichodorus (Nanidorus) minor (Colbran, 1956) Siddiqi, 1974 Trichodorus minor Colbran, 1956 Trichodorus christiei Allen, 1957 Nanidorus minor (Colbran, 1956) Siddiqi, 1974 Nanidorus christiei (Allen, 1957) Siddiqi, 1974 Trichodorus obesus Razjivin & Penton, 1975 Paratrichodorus obesus (Razjivin & Penton, 1975) Rodriguez-M. & Bell, 1978. Paratrichodorus (Nanidorus) obesus (Razjivin & Penton, 1975) Rodriguez-M. & Bell, 1978. Common names: English: a stubby-root nematode. References: Decraemer, 1995 In Europe there has been some confusion between P.