Indoor Navigation System for Handheld Devices

Total Page:16

File Type:pdf, Size:1020Kb

Indoor Navigation System for Handheld Devices Indoor Navigation System for Handheld Devices A Major Qualifying Project Report Submitted to the faculty of the Worcester Polytechnic Institute Worcester, Massachusetts, USA In partial fulfillment of the requirements of the Degree of Bachelor of Science on this day of October 22, 2009 by __________________________ Manh Hung V. Le __________________________ Dimitris Saragas __________________________ Nathan Webb Advisor __________________________ Advisor __________________________ Professor Alexander Wyglinski Professor Richard Vaz Abstract This report details the development of an indoor navigation system on a web-enabled smartphone. Research of previous work in the field preceded the development of a new approach that uses data from the device’s wireless adapter, accelerometer, and compass to determine user position. A routing algorithm calculates the optimal path from user position to destination. Testing verified that two meter accuracy, sufficient for navigation, was achieved. This technique shows promise for future handheld indoor navigation systems that can be used in malls, museums, hospitals, and college campuses. i Acknowledgements We would like to sincerely thank the individuals who guided us through our Major Qualifying Project and who made our experience a memorable one. We would like to thank our project sponsors, Dr. Sean Mcgrath and Dr. Michael Barry, for providing us with the necessary information and resources to complete our project. We would also like to thank our advisors, Professor Richard Vaz and Professor Alexander Wyglinski for their continuous help and support throughout the project. ii Executive Summary Dashboard mounted GPS receivers and online mapping services have replaced paper maps and atlases in modern society. Contrasting these advances in automobile navigation, wall mounted maps and signs continue to be the primary reference for indoor navigation in hospitals, universities, shopping malls, and other large structures. In this project the development, implementation, and testing of a smartphone- based indoor navigation system are described. The HTC Hero was selected as the development platform for this project. Reasons for its selection include the open-source nature of the Google Android operating system, the large number of sensors built in to the phone, and the high computational power of the device. Apple iPhone OS was also considered. Three primary objectives were identified that summarize the challenges faced in this project. First, the device must be capable of determining its location in the building. Second, it must be capable of determining the optimal route to a destination. Third, an intuitive user interface must provide the user with access to these features. Numerous candidate positioning techniques and technologies were considered for meeting the first objective. The decision was made to implement an integrated positioning system making use of multiple sources of information common to modern smartphones. Signal strength measurements from the device’s wireless adapter are used to estimate position based on the known locations of wireless access points. The method used is similar to the calibration-heavy technique of location fingerprinting, but a pre-generated wireless propagation model is used to alleviate the calibration requirement. Measurements of acceleration and orientation from the device’s accelerometer and magnetic compass are used to repeatedly approximate the device’s motion. These sources of information are combined with information from past sample periods to continually estimate the user location. To overcome the challenge of determining an optimal path to the user’s destination, the rooms and hallways of the building were represented as graphical nodes and branches. Many common routing algorithms were considered for use in determining the best path to the user’s destination in the defined graph. Dijkstra’s algorithm was chosen for its low computational complexity, its guarantee of determining the optimal path, and its potential for efficient handling of sparse graphs. iii The user interface was developed using the Google Android software development kit and provides the user with the ability to determine their location, select a destination from a database of people and places, and follow the route that the phone determines. Device testing showed that the three primary objectives were accomplished. The integrated positioning techniques achieved an average deviation between estimated positions and the user’s path of less than two meters. Matching these position estimates to known paths and locations in the building further increased the accuracy. Additionally, the location database and routing algorithm accomplished the objective of optimal routing. A user interface was constructed that allowed access to these functions. Contributions made through the completion of this project include the use of an integrated propagation model to simulate wireless propagation and hence negate the need for data collection in a WiFi- fingerprinting like system. Also, a statistical method was developed for estimating position based on successive, unreliable, measurements from WiFi positioning and inertial navigation sensors. The development of these techniques made possible an innovative approach to the challenge of indoor positioning and navigation that is less difficult to implement and is compatible with existing handheld devices. Future directions for research in this area were identified. These include development of an application that automates conversion of map images into wireless propagation information, incorporation of a more robust propagation model, and automated accessing of map files hosted on local or remote servers. Progress in these three areas is deemed necessary for a handheld device application to greatly improve upon current techniques for indoor navigation. iv Table of Contents Abstract ................................................................................................................................................... i Acknowledgements ................................................................................................................................ ii Executive Summary ............................................................................................................................... iii Table of Contents.................................................................................................................................... v Table of Figures...................................................................................................................................... ix Table of Tables ....................................................................................................................................... xi 1 Introduction .................................................................................................................................... 1 2 Background Research ...................................................................................................................... 4 2.1 Potential Technologies ................................................................................................................ 4 2.1.1 Satellites............................................................................................................................. 4 2.1.2 Cellular Communication Network ....................................................................................... 5 2.1.3 WiFi .................................................................................................................................... 5 2.1.4 Bluetooth ........................................................................................................................... 6 2.1.5 Infrared .............................................................................................................................. 7 2.1.6 Ultra Wide Band ................................................................................................................. 7 2.1.7 Potential Technology Summary .......................................................................................... 9 2.2 Positioning Techniques ............................................................................................................. 10 2.2.1 Cell of Origin ..................................................................................................................... 10 2.2.2 Angle of Arrival ................................................................................................................. 10 2.2.3 Angle Difference of Arrival ................................................................................................ 11 2.2.4 Time of Arrival .................................................................................................................. 12 2.2.5 Time Difference of Arrival ................................................................................................. 13 2.2.6 Triangulation .................................................................................................................... 14 2.2.7 Location Fingerprinting ..................................................................................................... 14 2.2.8 Positioning Technique Summary ....................................................................................... 15 2.3 Indoor Propagation Models .....................................................................................................
Recommended publications
  • D5.2: Process Map for Autonomous Navigation
    Grant Agreement number: 314286 Project acronym: MUNIN Project title: Maritime Unmanned Navigation through Intelligence in Networks Funding Scheme: SST.2012.5.2‐5: E‐guided vessels: the 'autonomous' ship D5.2: Process map for autonomous navigation Due date of deliverable: 2013‐07‐31 Actual submission date: Start date of project: 2012‐09‐01 Project Duration: 36 months Lead partner for deliverable: Fraunhofer CML Distribution date: 2013‐09‐27 Document revision: 1.0 Project co‐funded by the European Commission within the Seventh Framework Programme (2007‐2013) Dissemination Level PU Public Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) MUNIN – FP7 GA‐No 314286 D5.2 ‐ Print date: 14/01/07 Document summary information Deliverable D5.2: Process map for autonomous navigation Classification PU (public) Initials Author Organization Role WB Wilko Bruhn CML Editor HCB Hans‐Christoph Burmeister CML Editor LW Laura Walther CML Contributor JM Jonas Moræus APT Contributor ML Matt Long APT Contributor MS Michèle Schaub HSW Contributor EF Enrico Fentzahn MsoftContributor Rev. Who Date Comment 0.1 WB 2013‐08‐01 First draft 0.2 ØJR 2013‐08‐12 Partner review 0.3 AV 2013‐08‐13 Partner review 0.4 BS 2013‐08‐13 Partner review 0.5 WB 2013‐08‐30 Second draft after comments 1.0 HCB 2013‐08‐27 Formating Internal review needed: [ X ] yes [ ] no Initials Reviewer Approved Not approved FS Fariborz Safari X AV Ari Vésteinsson X Disclaimer The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services.
    [Show full text]
  • Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
    FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help.
    [Show full text]
  • Global Navigation Satellite Systems and Their Applications Dr
    ISSN (Print): 2279-0063 International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Online): 2279-0071 International Journal of Software and Web Sciences (IJSWS) www.iasir.net Global Navigation Satellite Systems and Their Applications Dr. G. Manoj Someswar1, T. P. Surya Chandra Rao2, Dhanunjaya Rao. Chigurukota3 1Principal and Professor, Department of CSE, AUCET, Vikarabad, A.P. 2Associate Professor in Department of CSE 3Associate Professor in Nasimhareddy Engineering Collge ABSTRACT: Global Navigation Satellite System (GNSS) plays a significant role in high precision navigation, positioning, timing, and scientific questions related to precise positioning. Ofcourse in the widest sense, this is a highly precise, continuous, all-weather and a real-time technique. This Research Article is devoted to presenting recent results and developments in GNSS theory, system, signal, receiver, method and errors sources such as multipath effects and atmospheric delays. To make it more elaborative, this varied GNSS applications are demonstrated and evaluated in hybrid positioning, multi- sensor integration, height system, Network Real Time Kinematic (NRTK), wheeled robots, status and engineering surveying. This research paper provides a good reference for GNSS designers, engineers, and scientists as well as the user market. I. USE AND APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS In the year 2001, pursuant to the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE-III), the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) established the Action Team on Global Navigation Satellite Systems (GNSS) under the leadership of the United States and Italy and with the voluntary participation of 38 Member States and 15 organizations.
    [Show full text]
  • EMERGENCY NAVIGATION SYSTEM Swati R
    G.J. E.D.T., Vol. 2(4): 23-28 (July-August, 2013) ISSN: 2319 – 7293 EMERGENCY NAVIGATION SYSTEM Swati R. Dhabarde Department of Information Technology Priyadarshini Indira Gandhi College of Engineering , Nagpur, India 1 Abstract In my project I am developing a computer program that will simulate and explain the need of technology and advance system for any person moving or navigating in a car (or any vehicle). Every person in day to day life requires some navigation for the proper working of his work .it is the human nature that ever man takes some guidance about some or another work without guidance the job taken by a human being will be completed properly or not is not known. So, for a proper working of your decided schedule you should know everything about the place where you live. You do know and if you ought to know then you can use “Emergency Navigation System”. ‘Emergency Navigation System’ is specialized software which is able to track the current position (of any person driving vehicles) and tell the path and other detailed information about your destination. If there are occurrences of multiple paths to the same destination then it can show the shortest one among them. 1.1 Keywords SAPI,GPS,GSM,SMS SDK,NAVIGATION 2. Introduction The project is an application to facilitate the car drivers with some artificial intelligence and other helping features/guidance. This will be used or implemented in the near future by various car companies. So our project is mainly a navigation system for car drivers along with a map of the city with some intelligent helping and guidance features i.e.
    [Show full text]
  • The Global Positioning System
    The Global Positioning System Assessing National Policies Scott Pace • Gerald Frost • Irving Lachow David Frelinger • Donna Fossum Donald K. Wassem • Monica Pinto Prepared for the Executive Office of the President Office of Science and Technology Policy CRITICAL TECHNOLOGIES INSTITUTE R The research described in this report was supported by RAND’s Critical Technologies Institute. Library of Congress Cataloging in Publication Data The global positioning system : assessing national policies / Scott Pace ... [et al.]. p cm. “MR-614-OSTP.” “Critical Technologies Institute.” “Prepared for the Office of Science and Technology Policy.” Includes bibliographical references. ISBN 0-8330-2349-7 (alk. paper) 1. Global Positioning System. I. Pace, Scott. II. United States. Office of Science and Technology Policy. III. Critical Technologies Institute (RAND Corporation). IV. RAND (Firm) G109.5.G57 1995 623.89´3—dc20 95-51394 CIP © Copyright 1995 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. RAND is a nonprofit institution that helps improve public policy through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. Cover Design: Peter Soriano Published 1995 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] PREFACE The Global Positioning System (GPS) is a constellation of orbiting satellites op- erated by the U.S.
    [Show full text]
  • GPS) Fixed Wing Z·Set Testing
    DOT/FAA/CT-81 /201 Navigation System Using Time . I .. I . ·. J / .· (~_\_(. and Ranging (NAVSTAR)/Giobal Positioning System (GPS) Fixed Wing Z·Set Testing Jerome T. Connor March 1982 Project Plan I ' 1. US Deportment of TransportatiOn Federal Aviation Administration Technical Center Atlantic City Airport, N.J. 08405 TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1 Objective 1 1.2 Background 1 1.3 Related Documentation/Projects 2 1.4 Critical Issues 2 1.5 System Description 3 1.6 Location of Test 7 1.7 Overall Test Schedule 7 2. TEST PROGRAM 7 2.1 Laboratory Test Program 7 2.2 Airborne Test Program 11 3. EQUIPMENT REQUIREMENTS 16 3.1 Installation Data 17 4. DATA REQUIREMENTS 17 4.1 Data Rate 20 4.2 Data Collecting Philosophy 20 4.3 Data Analysis 22 4.4 Post-Flight Analysis 22 5. COORDINATION AND AREAS OF RESPONSIBILITY 24 iii LIST OF ILLUSTRATIONS Figure Page 1 Z-Set Control/Indicator Panel 4 2 Z-Set Test Schedule 8 3 Rectangular Flightpath Sketch 13 4 Typical Block Diagram of Airborne System 18 5 Aero Commander Airborne Instrumentation System 18 6 Test Log Sheet 21 LIST OF TABLES Table Page 1 Z-Set Control/Indicator Display Parameters 5 2 Physical and Performance Details 6 3 System Parameters and Data Rates 19 4 Organizational Responsibility and Activity 25 l_V 1. INTRODUCTION. 1.1 OBJECTIVE. The overall objective of the Federal Aviation Administration (FAA) Global Positioning System (GPS) test program is to define and determine the potential role of GPS as a civil aviation navigation system.
    [Show full text]
  • Economic Benefits of the Global Positioning System (GPS)
    June 2019 Economic Benefits of the Global Positioning System (GPS) Final Report Sponsored by National Institute of Standards and Technology 100 Bureau Drive Gaithersburg, MD 20899 Prepared by RTI International Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher 3040 E. Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0215471 ECONOMIC BENEFITS OF THE GLOBAL POSITIONING SYSTEM (GPS) FINAL REPORT by Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher Recommended citation: O’Connor, A.C., Gallaher, M.P., Clark-Sutton, K., Lapidus, D., Oliver, Z.T., Scott, T.J., Wood, D.W., Gonzalez, M.A., Brown, E.G., and Fletcher, J. 2019, June. Economic Benefits of the Global Positioning System (GPS). RTI Report Number 0215471. Sponsored by the National Institute of Standards and Technology. Research Triangle Park, NC: RTI International. _________________________________ RTI International is a registered trademark and a trade name of Research Triangle Institute. Contents Section Page Acknowledgments xiii Executive Summary ES-1 ES.1 Background ......................................................................................................................... ES-1 ES.2 Analysis Scope and Overview ............................................................................................ ES-1 ES.3 Economic
    [Show full text]
  • GPS and Galileo Friendly Foes? Brig Gen Kenneth Newton Walker Kenneth Walker Enlisted at Denver, Colorado, on 15 December 1917
    GPS and Galileo Friendly Foes? Brig Gen Kenneth Newton Walker Kenneth Walker enlisted at Denver, Colorado, on 15 December 1917. He took flying training at Mather Field, California, getting his com- mission and wings in November 1918. After a tour in the Philippines, he returned to Langley Field, Virginia, in February 1925 with a subsequent assignment in December 1928 to attend the Air Corps Tactical School. Retained on the faculty as a bombardment in- structor, Walker became the epitome of the strategic thinkers at the school and coined the revolutionary airpower “creed of the bomber”: “A well-planned, well-organized and well-flown air force attack will constitute an offensive that cannot be stopped.” Following attendance at the Command and General Staff School at Fort Leavenworth, Kansas, in 1933 and promotion to major, he served for three years at Hamilton Field, California, and another three years at Luke Field, Ford Island, and Wheeler Field, Hawaii. Walker returned to the United States in January 1941 as assistant chief of the Plans Division for the chief of the Air Corps in Washington, DC. He was promoted to lieutenant colonel in July 1941 and colonel in March 1942. During this time, when he worked in the Operations Division of the War Department General Staff, he coauthored the air-campaign strategy known as Air War Plans Division—Plan 1, the plan for organizing, equipping, deploying, and employing the Army Air Forces to defeat Germany and Japan should the United States become embroiled in war. The authors completed this monumental undertaking in less than one month, just before Japan at- tacked Pearl Harbor—and the United States was, in fact, at war.
    [Show full text]
  • Integrated Navigation System Using Sigma-Point Kalman Filter and Particle Filter
    UNCLASSIFIED/UNLIMITED Integrated Navigation System Using Sigma-Point Kalman Filter and Particle Filter Dr. Milos Sotak and Dr. Milan Sopata and Dr. Stefan Berezny Academy of Armed Forces, Demanova 393, 03101 Liptovsky Mikulas, Slovak Republic Honeywell CZ, Aerospace, Turanka 96/126, 62700 Brno, Czech Republic Faculty of Electrical Engineering and Informatics TUKE, Letna 9, 04200 Kosice, Slovak Republic [email protected] / [email protected] / [email protected] ABSTRACT The paper describes integration of Inertial Navigation System (INS) and Global Positioning System (GPS) navigation systems using new approaches for navigation information processing based on efficient Sigma- Point Kalman filtering and Particle filtering. The paper points out the inherent shortcomings in using the linearization techniques in standard Kalman filters (like Linearized Kalman filter or Extended Kalman filter) and presents, as an alternative, a family of improved derivativeless nonlinear filters. The integrated system was created in a simulation environment. An original contribution of the work consists in creation of models in the simulation environment to confirm the algorithms. The work results are represented in a chart and supported by statistical data to confirm the rightness of the algorithms developed. 1.0 INTRODUCTION Accurate and reliable navigation systems will have an important role for enhanced military capabilities in the coming years. The INS and GPS are widely used navigation systems in several applications. The main reason for their usage is their dimensions and weight, and their relatively simple implementation in the navigation system. Integrated navigation means that the outputs from two or more navigation sensors are blended to increase the overall accuracy and reliability of the navigation system.
    [Show full text]
  • Global Navigation Satellite System (GNSS)
    Global Navigation Satellite System (GNSS) OUTLINE: ABSTRATC ………………………….……………………………………………1 1- INTRODUCTION………………….……………………………………………..2 2- GNSS COMPONENTS.………………………………………………………………..3 3- GNSS SIGNALS ………………………………………...……………………… 13 4- SIGNAL PROCESSING AND RECEIVER DESIGN ……………………………….14 5- REFERENCE SYSTEMS ….….…………………………………………...……….. 16 6- OBSERVATION TECHNIQUES………….…………………………………….….. 19 7- WIRELESS SYSTEMS AND GNSS APPLICATIONS………………………………29 8- CONCLUSION …………………………………………………………………….33 9- Glossary ……………………………………………………………………………… 34 REFERENCES…………………………………………………………………………… 36 ABSTRACT Recently, there is an increase interest in positioning techniques based on Global Navigation Satellite Systems (GNSS) such as Global Positioning System (GPS), cellular network infrastructure or on the integration of the two technologies for a wide spread of applications such as Automatic Vehicle Location (AVL), tracking systems, navigation, Pedestrian Navigation Systems (PNSs), intelligent transportation Systems, precise positioning and emergency callers. During the last 15 years there are many important events in the field of satellite navigation systems such as: (a)the full operational GPS in 1993, when 24 GPS satellites were operating in their assigned orbits, available for navigation use and providing Standard Positioning Services 1 (SPS), (b) the new European satellite system Galileo, (c) the modernized of US satellite system GPS, and (d) the reconstruction of Russian satellite system Glonass. The increasing demand for commercial location-based services
    [Show full text]
  • Global Navigation Satellite System Overview and Support for PBN Implementation
    International Civil Aviation Organization Global Navigation Satellite System Overview and Support for PBN Implementation Julio Siu Communications, Navigation and Surveillance Regional Officer ICAO NACC Regional Office ICAO Workshop on PBN Airspace Redesign and GNSS Implementation supporting PBN 27‐30 August, 2012 Outline 1. Air Navigation Evolution 2. What is GNSS? ‐ ICAO Concept for GNSS ‐ GNSS Concept development in ICAO ‐ GNSS Elements 3. GNSS SARPS and General considerations ‐ Reference documentation and GNSS related Standards ‐ GNSS Policy Issues ‐ Performance requirements 2 Air Navigation Evolution Radio Global Navigation Navigation Visual Estimated Astronomic Satellite Navigation Navigation Navigation ( Ground Based – System Conventional) (GNSS) Air Navigation Evolution Navigation ‐ The Beginning VFR • Visual Flight Rule! • And Rivers • And Railroads • And Buildings • And Telephone Lines • And Whatever Else I Can See Air Navigation Evolution TheNight Early and Days Weather! 1910s • First Bonfires and Beacons Early 1920s •Lighted airport boundaries •Spot‐lit windsocks •Rotating lighted beacons on towers •Lighted Airways • 1923 Dayton to Columbus, Ohio (USA) –72 km Air Navigation Evolution Radio! Late 1920s ‐ 1930s • Weather •Radio Marker Updates Beacons • Request Help •4‐Course Radio With Navigation Range System Radio for Two‐ Radio for Way Navigation Communications Pilots Listen for Navigation Signals Air Navigation Evolution 1930s ‐ 1940s VOR! Static‐Free VHF Omni‐ directional Radio Range • Pilots Navigate by Instrument VOR (with
    [Show full text]
  • Direct Kalman Filtering of GPS/INS for Aerospace Applications
    Direct Kalman Filtering of GPS/INS for Aerospace Applications J. Wendel, C. Schlaile, Gert F. Trommer University of Karlsruhe, Germany [email protected] BIOGRAPHY This contribution investigates the influence of these two different approaches of Kalman filtering on the overall Jan Wendel received the Dipl.-Ing. (M.S.E.E.) from the system performance of a loosely coupled GPS/INS sys- Technical University of Karlsruhe in 1998. He is cur- tem for aerospace applications. Both filter formulations rently a Ph.D. candidate at the University of Karlsruhe, were implemented and compared via Monte Carlo sim- where his research interests are focused on data fusion ulation runs with focus on the accuracy of the estimated algorithms in integrated navigation systems. inertial sensor biases and on GPS drop out situations. Christian Schlaile received the Dipl.-Ing. (M.S.E.E.) We found a comparable performance of both navigation from the Technical University of Karlsruhe in 2000. algorithms concerning attitude and position errors as He is currently a Ph.D. candidate at the University of well as inertial sensor bias estimation as long as GPS Karlsruhe, where his research interests are focused on aiding was available. However, the simulation results data fusion algorithms in automotive driver assistant indicate a superior performance of the direct Kalman systems. filter formulation in GPS drop out situations, which can by explained by the way the inertial measurements are Gert F. Trommer received the Dipl.-Ing. (M.S.E.E.) and processed. the Dr.-Ing. (Ph.D.) degrees from the TU Munich, Ger- many in 1978 and 1982, respectively.
    [Show full text]