Retrosynthesis

Total Page:16

File Type:pdf, Size:1020Kb

Retrosynthesis Designing Organic Syntheses Starting material Syntheseplanung Target molecule 1 Can the Computer do the retrosynthetic analysis for me? Computer-generated Retrosynthesis Programme LHASA (http://lhasa.harvard.edu): E.J. Corey Based on known reactions; interactive search for the best route. 2 Computer-generated Retrosynthesis Programme LHASA (http://lhasa.harvard.edu) Based on known reactions; interactive search for the best route. Computer-generated Retrosynthesis Programme LHASA (http://lhasa.harvard.edu) Based on known reactions; interactive search for the best route. 3 Computer-generated Retrosynthesis WODCA; logic-oriented programme; Gasteiger, Erlangen Computer-generated Retrosynthesis WODCA; logic-oriented programme; Gasteiger, Erlangen 4 Computer-generated Retrosynthesis SYNGEN: http://syngen2.chem.brandeis.edu/syngen.html Claim: SynGen generates only the shortest and most efficient syntheses. SynGen generates the syntheses without user intervention, freeing it from user bias and allowing it to explore all possibilities. All the generated syntheses have commercially-available starting materials. Free Mac Version for Download; no Windows Version available Computer-generated Retrosynthesis SYNGEN: http://syngen2.chem.brandeis.edu/syngen.html 5 Computer-generated Retrosynthesis SYNGEN: http://syngen2.chem.brandeis.edu/syngen.html Computer-generated Retrosynthesis SYNGEN: http://syngen2.chem.brandeis.edu/syngen.html 6 Functional Group Interconversions Functional group interconversions (FGIs) Change carbon oxidation level 7 Functional group interconversions (FGIs) Same carbon oxidation level Amines ! 8 Amines ! Removal of functional groups – Hydrocarbon synthesis 9 Disconnections Strategic disconnection approach 10 Strategic structure approach 11 Strategic structure approach C-C Bond Formation 12 No functional group present One group disconnection based on normal carbonyl reactivity 13 One group disconnection based on normal carbonyl reactivity One group disconnection based on normal carbonyl reactivity 14 Two group disconnection based on normal carbonyl reactivity 15 Retrosynthesis with classic carbonyl reactions - overview 16 17 d) Two-group Disconnections: “Unlogical” disconnections, “unnatural” reactivity patterns Synthetic strategies for 1,2-difunctionalysed compounds Synthon required 18 Use of 1,2-difunctionalysed starting materials Difunctionalisation of alkenes and epoxide opening 19 α- Functionalisation of carbonyl compounds α- Functionalisation of carbonyl compounds 20 α- Functionalisation of carbonyl compounds Radical coupling Pinacol reaction 21 Acyloin condensation Umpolung strategies CN- 22 Dithioacetals 23 Nitroalkanes Imidoyl 24 Alkyne Synthetic strategies for 1,4-difunctionalysed compounds Commercially available starting materials Acyl equivalent + Michael acceptor Acyl anion synthons 25 Homoenolate + electrophilic carbonyl resonance 26 Additional Umpolung strategies 27 Enolate + α-functionalised carbonyl compound Enolate + α,β-unsaturated nitro compound (Michael type acceptors) 28 Enolate + α,β-unsaturated nitro compound (Michael type acceptors) Epoxide based transformations 29 Epoxide based transformations Epoxide based transformations 30 Functional group addition 31 Reconnection strategies for 1,6-difunctionalysed compounds Ozonolysis of cycloalkenes Baeyer-Villiger rearrangement 32 Beckmann rearrangement 33 Synthesis of carbocyclic compounds Diels-Alder disconnections 34 Synthesis of carbocyclic compounds Cyclisation reactions Synthesis of carbocyclic compounds Other methods of carbocycle synthesis 35 Synthesis of heterocyclic compounds Synthesis of oxiranes, thiirans and azirans 36 Synthesis of oxiranes, thiirans and azirans Synthesis of oxiranes, thiirans and azirans 37 Synthesis of furans Paal-Knoor Synthesis of furans Feist-Benary Addition to alkyne 38 Thiophen Pyrrol: Paal-Knorr: Knorr 39 Hantzsch Fischer-Indole 40 Hantzsch pyridine Quinolines (Deutsch: Chinoline!) Quinoline Isoquinoline Skraupsch synthesis 41 Birschler-Napieralski Pictet-Spengler Oxazole Isoxazole 42 Thiazole Pyrazole 1,4-Dioxane 43 Assessment of Syntheses and Strategies The assessment of a synthesis depends on the aim of the synthesis. • shortest synthesis (time required) • cheapest synthesis (material needed) • a new synthesis (to get a patent) • environmental benign synthesis (minimize waste) • synthesis without toxic risk (no toxic reagents and intermediates) • reliable synthesis (no risk of failure) • ……… Assessment of a chemical reaction • High chemical yield • Good chemo-, regio- and stereochemistry • Catalytic reagents, not stoichiometric • Minimal energy input; efficient energy intake and perfect control of reaction (microwave, irradiation, microreactor) • Use of renewable resources (natural products) • No use of mutagenic and teratogenic compounds; consideration of oeco- and human toxcicity of all chemicals involved 1 Assessment of a chemical reaction The ideal synthesis is, • safe • simple • 100 % yield • one step • resource efficient • environmentally acceptable • uses available, if possible renewable, starting materials Assessment of a chemical compound The assessment of a chemical compound depends on its use, but there are also general considerations particular important large scale commodities • No oeco- or human toxicity • Distribution and persistence in the environment should be limited • Complete degradation and mineralization possible • Lifetime of the compound adjusted to its use • Highly effective in its properties; minimal amount needed to perform the desired task • Not mutagenic, teratogenic or carcinogenic 2 Assessment of a chemical compound The ideal chemical compound (material, drug, dye, polymer etc.) is • safe and non-toxic • cheap • shows high performance during its life cycle • then completely degrades to minerals • can be recycled to safe energy and material resources´ • does not accumulate in the environment • … Assessment of a chemical compound Materials and compounds that later turned out not to be good: Cl - DDT Cl Cl Cl Cl - Asbestos - PCB Cln Cln 3 Assessment of a synthesis Number of steps as indicator “The ideal synthesis creates a complex molecule .. in a sequence of only construction reactions involving no intermediary refunctionalizations, leading directly to the target, not only its skeleton but also its correctly placed functionality.” Hendrickson, J. Am. Chem. Soc. 1975, 97, 5784 Generation of complexity - Complexity generating reactions, e.g. cycloaddition yielding tricycles - Late increase of complexity in the synthesis is advantageous Linear vs convergent strategies - Higher overall yield achievable by convergent strategies Risk of failure -Unknown or hypothetical key step increases risk of failure - Good syntheses has at least on safe alternative - Change in sequence of steps increases flexibility “Get the most done in the fewest steps and the highest yield!” 4 5 Protecting groups for alcohols Silyl ether Silyl ether 6 Silyl ether Silyl ether 7 Carbonate Carbonate Ester 8 Ether Photolabile protecting groups 9 Orthogonal protecting groups Key steps of the synthesis Weinreb Amide 10 Corey-Bakshi-Shibata Reduction Itsuno-Corey Reduction Practical enantioselective reduction of ketones using oxazaborolidine catalyst generated in situ from chiral lactam alcohol and borane Y. Kawanami, S. Murao, T. Ohga, N. Kobayashi, Tetrahedron, 2003, 59, 8411-8414. An Efficient and Catalytically Enantioselective Route to (S)-(-)-Phenyloxirane E. J. Corey, S. Shibata, R. K. Bakshi, J. Org, Chem., 1988, 53, 2861-2863. 11 Alder Ene Reaction 12 Asymmetric allylic alkylation BF3 OEt2, -78oC, 94% 13 Homologous Aldol addition 14 Dess Martin Periodinane Corey Fuchs 15 Cyclopropane synthesis Radical chlorination of cyclopropane 16 Corey-Fuchs reaction 17 Metathese Takai Olefination Stille Coupling reaction 18 19 Schmidt glycosydation 20.
Recommended publications
  • UMPOLUNG in REACTIONS CATALYZED by THIAMINE PYROPHOSPHATE DEPENDENT ENZYMES Umpolung En Reacciones Catalizadas Por Enzimas Dependientes De Pirofosfato De Tiamina
    Ciencia, Ambiente y Clima, Vol. 2, No. 2, julio-diciembre, 2019 • ISSN (impreso): 2636-2317 • ISSN (en línea): 2636-2333 DOI: https://doi.org/10.22206/cac.2019.v2i2.pp27-42 UMPOLUNG IN REACTIONS CATALYZED BY THIAMINE PYROPHOSPHATE DEPENDENT ENZYMES Umpolung en reacciones catalizadas por enzimas dependientes de pirofosfato de tiamina Carlos José Boluda Emily Soto Instituto Tecnológico de Santo Domingo (INTEC), Instituto Tecnológico de Santo Domingo (INTEC), Área de Ciencias Básicas y Ambientales, Av. de Los Área de Ciencias Básicas y Ambientales Próceres 49, Santo Domingo, República Dominicana Correo-e: [email protected] *Corresponding author: Carlos J. Boluda Darah de la Cruz Correo-e: [email protected] Instituto Tecnológico de Santo Domingo (INTEC), Carolina Juncá Área de Ciencias Básicas y Ambientales Instituto Tecnológico de Santo Domingo (INTEC), Correo-e: [email protected] Área de Ciencias Básicas y Ambientales Anny Peña Correo-e: [email protected] Instituto Tecnológico de Santo Domingo (INTEC), Área de Ciencias Básicas y Ambientales Correo-e: [email protected] Recibido: 25/9/2019 • Aprobado: 19/10/2019 Cómo citar: Boluda, C. J., Juncá, C., Soto, E., de la Cruz, D., & Peña, A. (2019). Umpolung in reactions catalyzed by thiamine pyrophos- phate dependent enzymes. Ciencia, Ambiente Y Clima, 2(2), 27-42. Doi: https://doi.org/10.22206/cac.2019.v2i2.pp27-42 Abstract Resumen The temporal exchange of the electrophilic/nucleophilic El intercambio temporal del carácter electrofílico/nucleofí- character of an atom by chemical manipulation is known lico de un átomo mediante manipulación química, es cono- in organic chemistry as umpolung. This inversion of polarity cido con el vocablo alemán de umpolung.
    [Show full text]
  • Synthesis of the Methyl Ester Of
    Master’s Thesis 2019 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Synthesis of the Methyl Ester of MaR2n-3 DPA Jeanne Sønderskov Rasmussen Master’s degree in Chemistry and Biotechnology II Acknowledgements The master’s degree was performed as collaboration between the Faculty of Chemistry, Biotechnology and Food Science at the Norwegian University of Life Sciences and the Department of Pharmacy, University of Oslo. The practical work as part of this thesis was conducted in the LIPCHEM group at the Section of Pharmaceutical Chemistry. First, I would like to thank my two supervisors, Professor Trond Vidar Hansen and Professor Yngve Stenstrøm for excellent guidance, encouragement and especially, for sharing long-time experience. Also, thanks to Dr. Jørn Tungen and Associate professor Anders Vik for solid guidance and teaching, especially during the time in the laboratory. I would also like to thank the rest of the LIPCHEM group. It has been a great experience to be a part of a research group and witness the impressive work that is carried out. Also, I am very grateful for sharing this challenging period with the four master students in pharmaceutical chemistry, Amalie Føreid Reinertsen, Marie Hermansen Mørk, Aina Kristin Pham and Margrethe Kristiansen. It has been nice to get to know you and follow your progress as well. Finally, an enormous thank to my lovely boyfriend, family and friends. Thanks for fantastic support and cheering through my six years of education. Blindern, May 2019 Jeanne Sønderskov Rasmussen III Abstract This master thesis presents the first synthesis of the methyl ester of the specialized pro-resolving mediator named MaR2n-3 DPA.
    [Show full text]
  • CHEM 345 Problem Set 18 Key 1.) Write the Mechanism for The
    CHEM 345 Problem Set 18 Key 1.) Write the mechanism for the following reactions. O a.) KCN EtOH O OH racemic 1.) Write the mechanism for the following reactions. b.) KCN AcOH O NC OH racemic O c.) N S R O NEt3 OH racemic 2.) What is the structure of AcOH?Why does changing the solvent from EtOH to AcOH make such a big difference? O OH AcOH acetic acid The pKa of acetic acid is approximately 5. The pKa of ethanol is approximately 15. When you take a proton off of ethanol, you generate ethoxide which is about 1010 times stronger of a base than acetate. 3.) Give two instances when you need to use the thiazolium salt and triethylamine rather than KCN and EtOH. If the aldehydes contain an enolizable proton then you cannot use KCN/EtOH, instead you must use the thiazolium. Also, if the electrophile is a Michael acceptor to give a 1,4 dicarbonyl, then the thiazolium catalyst should be used. 4.) Break the following compound down as far as you can using Aldol, Michael, and Claisen reactions. Above each retrosynthetic arrow, write the name of the reaction. O HO O HO Aldol O Michael HO O O HO O Aldol O O Aldol HO O O HO Michael O O O Aldol There are other possibilities for order. O O HO Aldol O O 5.) Synthesize the following molecules. All carbons in the molecules must come from benzene or compounds with 5C’s or less. a.) O H2SO4 O HNO3 O2N AlCl3 O O SOCl2 HO Cl H2CrO4 1.) BuLi, Et2O + O 2.) H3O HO b.) O O O Cl + H3O NaOEt, EtOH O O O O Cl O AlCl3 Cl Cl AlCl3 Cl2 c.) O OMe NaOMe MeOH O O 1.) POCl3, DMF 2.) H2O OMe OMe O AlCl3 MeI Cl ONa HCl NaOH ZnHg 1.) NaOH + mcpba O 2.) H3O O OH O O AlCl3 Cl 6.) Write the mechanism for the following reactions.
    [Show full text]
  • Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes— a Literature Review
    Molecules 2013, 18, 11873-11903; doi:10.3390/molecules181011873 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes— A Literature Review Sowmini Kumaran 1, Mulchand S. Patel 2 and Frank Jordan 1,* 1 Department of Chemistry, Rutgers University, Newark, NJ 07102, USA 2 Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-973-353-5470; Fax: +1-973-353-1264. Received: 30 July 2013; in revised form: 14 September 2013 / Accepted: 16 September 2013 / Published: 26 September 2013 Abstract: The 2-oxoacid dehydrogenase complexes (ODHc) consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP), coenzyme A 2+ + (CoA), Mg and NAD , to generate CO2, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc), 2-oxoglutarate dehydrogenase (OGDHc) and branched-chain 2-oxo acid dehydrogenase (BCKDHc). In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components.
    [Show full text]
  • Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester
    pubs.acs.org/joc Stereoselective Total Synthesis of Etnangien and Etnangien Methyl Ester Pengfei Li,† Jun Li,‡,§ Fatih Arikan,‡, ) Wiebke Ahlbrecht,† Michael Dieckmann,† and Dirk Menche*,†,‡ †Institut fur€ Organische Chemie, Ruprecht-Karls-Universitat€ Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany, and ‡Helmholtz-Zentrum fur€ Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. §Present address: Institut fur€ Pharmazeutische Wissenschaften, ETH Zurich..€ Present) address: ABX GmbH, Radeberg. [email protected] Received February 5, 2010 A highly stereoselective joint total synthesis of the potent polyketide macrolide antibiotics etnangien and etnangien methyl ester was accomplished by a convergent strategy and proceeds in 23 steps (longest linear sequence). Notable synthetic features include a sequence of highly stereoselective substrate-controlled aldol reactions to set the characteristic assembly of methyl- and hydroxyl- bearing stereogenic centers of the propionate portions, an efficient diastereoselective Heck macro- cyclization of a deliberately conformationally biased precursor, and a late-stage introduction of the labile side chain by means of a high-yielding Stille coupling of protective-group-free precursors. Along the way, an improved, reliable protocol for a Z-selective Stork-Zhao-Wittig olefination of aldehydes was developed, and an effective protocol for a 1,3-syn reduction of sterically particularly hindered β-hydroxy ketones was devised. Within the synthetic campaign, a more detailed under- standing of the intrinsic isomerization pathways of these labile natural products was elaborated. The expedient and flexible strategy of the etnangiens should be amenable to designed analogues of these RNA-polymerase inhibitors, thus enabling further exploration of the promising biological potential of these macrolide antibiotics.
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • 4.2. FG Strategies. Part II.Pdf
    Master Course 2018-19 in Organic Chemistry methods and design in organic synthesis Pere Romea Rubik’s cube 4.2. Single & Double Bonds Non functional group R R disconnection Carbon-a Carbon-d R R ¿"? Alkyl%d Alkyl%a Li Potential precursors X Alkyl lithium Alkyl halide, X: Cl, Br, I MgBr RSO3 Alkyl magnesium halide Alkyl sulfonates M + Y M: Li, MgX M: halide, sulfonate The reaction is plagued by many side reactions due to high pKa of Alkyl-d (pKa 45–50) OH OMe O N O MeO H N O (–) Hennoxazole A ?antiviral Smith, T. E. JOC 2008, 73, 142 Polyfibrospongia OH OMe O N O MeO H N O ¿ FGA ? OPG OMe TBS O N O MeO H N O OPG OMe TBS O N O Li Br MeO H N O Oxazole alkylation studies O Ph N two potential reacting sites Oxazole alkylation studies Li Li O base O O –78 °C Ph N Ph N Ph N MeI MeI ratio 1:2 O Me Me O BuLi LDA LiNEt2 (14:86) (37:63) (99:1) Ph N Ph N 1 2 This reversal of regioselectivity is thought to arise from the ability of Et2NH to mediate the low-temperature equilibration of a kinetic mixture of otherwise noninterconverting lithiated intermediates However, such a situation was dramatically modified in a model close to the TGT structure TAKE-HOME MESSAGE: the model should be as similar as possible to the real system Oxazole alkylation studies single product Chelation could be the reason O Li O Li O MeO OMe MeO OMe MeO OMe N base N N H N N N –78 °C H H O O O three potential base: BuLi, LDA, LiNEt2 reacting sites These results suggest that deprotonation at the heterocycle is thermodynamically as well as kinetically favored SOLUTION: BLOCKING THAT
    [Show full text]
  • THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10) Patent No
    THAT ARE NOT LOUILLOTTIUS009850268B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,850 , 268 B2 Hoveyda et al. ( 45 ) Date of Patent: Dec . 26 , 2017 ( 54 ) METATHESIS CATALYSTS AND METHODS 17/ 269 (2013 . 01 ) ; C07C 17 /275 ( 2013. 01 ) ; THEREOF C07C 17 / 278 ( 2013 . 01 ) ; C07C 17361 ( 2013 .01 ) ; C07C 37 /62 ( 2013 .01 ) ; C07C 41/ 30 (71 ) Applicants :Massachusetts Institute of ( 2013 . 01 ) ; C07C 45 /63 ( 2013 . 01 ) ; C07C Technology , Cambridge , MA (US ) ; 67 /307 ( 2013 .01 ) ; C07C 67 /333 (2013 .01 ) ; Trustees of Boston College, Chestnut C07D 209 / 10 ( 2013 . 01 ) ; C07D 209 /48 Hill , MA (US ) ( 2013 .01 ) ; C070 333 /54 ( 2013 . 01) ; COFF 5 / 025 ( 2013 .01 ) ; CO7F 7 / 1844 ( 2013 .01 ) ; (72 ) Inventors : Amir H . Hoveyda , Lincoln , MA (US ) ; CO7F 7 / 1852 ( 2013 .01 ) ; C07 ) 9 /00 ( 2013 .01 ) ; Hanmo Zhang , Chestnut Hill, MA C07 ) 51/ 00 ( 2013 .01 ) ; B01J 2231/ 543 (US ) ; Ming Joo Koh , Chestnut Hill , ( 2013 . 01 ) ; B01 ) 2531 / 64 ( 2013 .01 ) ; B01J MA (US ) ; Richard Royce Schrock , 2531/ 66 ( 2013. 01 ); C07C 2601/ 14 ( 2017 .05 ) ; Winchester , MA (US ) C07C 2603/ 26 ( 2017 .05 ) (58 ) Field of Classification Search (73 ) Assignees : Trustees of Boston College , Chestnut CPC .. C07C 17 / 275 ; C07C 45/ 63 ; C07C 37 /62 ; Hill , MA (US ) ; Massachusetts B01J 2231/ 543 ; B01J 2531 /64 ; B01J Institute of Technology , Cambridge, 2531/ 66 ; B01J 31/ 2265 MA (US ) USPC .. .. 548 /402 ; 514 / 408 , 184 ( * ) Notice: Subject to any disclaimer , the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C .
    [Show full text]
  • Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids
    International Journal of Molecular Sciences Article Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids Stefan R. Marsden, Duncan G. G. McMillan and Ulf Hanefeld * Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629HZ Delft, The Netherlands; [email protected] (S.R.M.); [email protected] (D.G.G.M.) * Correspondence: [email protected] Received: 12 October 2020; Accepted: 12 November 2020; Published: 16 November 2020 Abstract: The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180–250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates. Keywords: Thiamine diphosphate; transketolase; C-C bond formation; kinetic control; acyloins 1.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 0521770971 - Modern Methods of Organic Synthesis W. Carruthers and Iain Coldham Index More information Index acidity 1 from alkynes 125–32 acyl anion equivalents 56 from diols 123 acyloin reaction 425 from hydrazones 120 Adams’ catalyst 407 reaction of AD-mix ␣ 352 with carbenes 303–9 AD-mix ␤ 352 with dienes in Diels–Alder reaction 162 agelastatin A 376 with radicals 280–98 AIBN 268 reduction of 322, 408–13, 459 alane 437, 444 alkenyllithium species 57, 59 alcohols alkylation 1–19 deoxygenation 270 asymmetric 37 from alkenes 323, 349 with enamines 1, 17 from carbonyl compounds 416, 421, 423, 434–56 with enolates 1–16 oxidation 378–93 with metalloenamines 16 aldehydes alkyl halides alkylation of 17 oxidation to carbonyl compounds 384 as dienophiles in Diels–Alder reaction 169 reductive cleavage to hydrocarbons 269, 406, 442 decarbonylation of 419 alkyllithium species 46 from alcohols 380 alkynes from alkenes 325, 360, 364 conversion to alkenes 125–32, 414 oxidation of 392 deprotonation of 58 reduction of 435, 439, 443 hydrometallation 128 reductive dimerization of 148, 425 preparation of 137 Alder–ene reaction 231 reduction of 125 aldol reaction 27–36 allopumiliotoxin 58 diastereoselective 32 allosamidin disaccharides 272 enantioselective 41 allylic organometallics 71–4 aldosterone 276 allylic oxidation 374 alkenes allylic 1,3-strain 26, 73, 351 allylic oxidation of 374 ␲-allylpalladium complexes 98 conversion to alcohols 323 amabiline 220 conversion to ketones (Wacker reaction) 365 ambruticin S 308 epoxidation
    [Show full text]
  • A Acetophenones, 10 Horner–Emmons Olefination, 7 Acrylonitrile
    Index A Alkenylmetals, 38 Acetophenones, 10 Alkenylsilanes, 18 Horner–Emmons olefination, 7 Alkenylstannanes, 18 Acrylonitrile, Z-selective cross metathesis, 46 α-Alkoxycyclopentenone, 25 Acylgermanes, 18 (E)-β-Alkoxy divinyl ketones, 25 Acyl phosphonates, olefination, Co(TPP), 160 α-Alkoxyketones, 12 Acylsilanes, 18 Alkyl aryl ketones, 16 Acylstannanes, 18 Alkylidenephosphoranes, olefination, 208 Africanol, 187 Alkynes, conjugated dienes, 98 Aldehydes, 197 Z-alkenes, 40, 43 Fe(II)(TTP), olefination, 151 hydrofluorination, 60 Mo-based catalytic olefination, 149 hydrofunctionalizations, 134 MTO-catalyzed olefination, 149 hydrometalation, 43 olefination, 6 2-Alkynoate, conjugated dienes, 109 diazocarbonyl reagents, 161 Alkynoates, 108 oxygen-substituted phosphorus Alkynyl ketones, 16 ylides, 156 Allenamides, 126 Ph3As, 157 Allenoates, 108 Rh-catalyzed methylenation, 157 one-pot Wittig reaction, 213 Ru-catalyzed olefination, 157 Allylation, 54 Aldimines, olefination, 28 Allyl ethers, chiral, 258 Alkaloids, 171 N-Allylhydrazones, 107 Alkene cross metathesis, 178 Allylic alcohols, trisubstituted, 207 Alkene metathesis, catalytic Allylic carbonates, one-pot Wittig enantioselective, 187 reaction, 213 catalytic Z-selective, 189 Allylic gem-difluorides, 67 selective, 163 Allylic substitution, 54 selective relay, 174 Allylidenetriethylphosphoranes, 205 Alkenes, 197 Allylsulfides, multisubstituted, synthesis, 239 desulfurization, 16 tetrasubstituted, 1 Amino acid, (Z)-fluoroalkenyl moiety, 83 Z-Alkenes, stereoselective synthesis, 33 α-Aminoketones, 14 Alkenylboronic
    [Show full text]
  • Umpolung of Amine Reactivity. Nucleophilic [Alpha]
    11591 S. W. Benson: Thermochemical Kinetics. Wiley, New York, N. Y., [I631 C. M. Shy and J. F. Finklea, Environ. Sci. Technol. 7, 205 (1973). 1968. [I641 R. P. Steer, K. R. Darnall, and J. N. Pifrs, Jr., Tetrahedron Lett. [I601 J. G. Caluert, K. L. Demerjian, and J. A. Kerr, Proc. Int. Symp. 1969. 3765. Air Pollut., Tokyo, Oct. 17-19, 1972, pp. 465ff. 11651 S. Furuyama. R. Atkinson, A. J. Colussi, and R. J. Cvetanouic, Int. [161] A. Q. Eschenroeder and J. R. Marfinez, Advan. Chem. Ser. 113, 101 J. Chem. Kinet. 6, 741 (1974). (1972). [166] J. N. Pitrs, Jr., P. G. Bekowies. G. J. Doyle, J. M. McAfee, and [I621 7: A. Hecht, J. H. Seinfeld. and M. C. Dodge, Environ. Sci. Technol. A. M. Winer, to be oublished. 8, 327 (1974). and references therein. Umpolung of Amine Reactivity. Nucleophilic a-(Secondary Amino)- New synthetic alky lation via Metalated Nitrosaminesr**lr”’l methods 0 By Dieter Seebach and Dieter Ended*] There are basically two kinds of hetero atoms in organic molecules: one kind confers electrophilic character upon the carbon atom to which it is bound, and the other kind turns it into a nucleophilic site. The development of methods permitting transitions between the two resulting categories of reagents has become an important task of modern organic synthesis. The scope of such umpolung of the reactivity of functional groups is discussed for the case of amines as an example. A method of preparing masked u-secondary amino carbanions consists in nitrosation of the secondary amine, followed by metalation of the resulting nitrosamine CL to the nitrogen, reaction with electrophiles, and subsequent denitrosation.
    [Show full text]