Global Fissile Material Report 2009: a Path to Nuclear Disarmament

Total Page:16

File Type:pdf, Size:1020Kb

Global Fissile Material Report 2009: a Path to Nuclear Disarmament Global Fissile Material Report 2009 A Path to Nuclear Disarmament Fourth annual report of the International Panel on Fissile Materials Fourth annual report of the International Panel on Fissile Materials Global Fissile Material Report 2009: A Path to Nuclear Disarmament www.fissilematerials.org © 2009 International Panel on Fissile Materials This work is licensed under the Creative Commons Attribution-Noncommercial License To view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 On the cover: the map shows existing and planned uranium enrichment and plutonium separation (reprocessing) facilities in nuclear weapon states. See pages 21–22 and 90–91 of this report for more details. Table of Contents About the IPFM 1 Foreword 2 Overview 4 1 Nuclear Weapon and Fissile Material Stocks and Production 8 2 Fissile Materials and Nuclear Disarmament 24 3 Declarations of Fissile Material Stocks and Production 32 4 Nuclear Archaeology 52 5 Verified Warhead Dismantlement 67 6 Disposition of Plutonium and Highly Enriched Uranium 77 7 Verified Cutoff of Fissile Material Production for Weapons 87 8 Nuclear Power and Nuclear Disarmament 103 9 Societal Verification 114 Appendix A: Fissile Materials and Nuclear Weapons 124 Appendix B: Worldwide Locations of Nuclear Weapons, 2009 132 Endnotes 139 IPFM Members, Other Contributors and Princeton’s Program on Science and Global Security 170 About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006. It is an independent group of arms-control and nonproliferation experts from seventeen countries, including both nuclear weapon and non-nuclear weapon states. The mission of the IPFM is to analyze the technical basis for practical and achievable policy initiatives to secure, consolidate, and reduce stockpiles of highly enriched ura- nium and plutonium. These fissile materials are the key ingredients in nuclear weap- ons, and their control is critical to nuclear disarmament, halting the proliferation of nuclear weapons, and ensuring that terrorists do not acquire nuclear weapons. Both military and civilian stocks of fissile materials have to be addressed. The nuclear weapon states still have enough fissile materials in their weapon stockpiles for tens of thousands of nuclear weapons. On the civilian side, enough plutonium has been sepa- rated to make a similarly large number of weapons. Highly enriched uranium is used in civilian reactor fuel in more than one hundred locations. The total amount used for this purpose is sufficient to make about one thousand Hiroshima-type bombs, a design potentially within the capabilities of terrorist groups. The Panel is co-chaired by Professor R. Rajaraman of Jawaharlal Nehru University in New Delhi and Professor Frank von Hippel of Princeton University. Its members inclu- de nuclear experts from Brazil, China, France, Germany, India, Ireland, Japan, South Korea, Mexico, the Netherlands, Norway, Pakistan, Russia, South Africa, Sweden, the United Kingdom and the United States. Professor José Goldemberg of Brazil stepped down as co-chair of IPFM on July 1, 2007. He continues as a member of IPFM. Short biographies of the panel members can be found at the end of this report. IPFM research and reports are shared with international organizations, national go- vernments and nongovernmental groups. It has full panel meetings twice a year in ca- pitals around the world in addition to specialist workshops. These meetings and work- shops are often in conjunction with international conferences at which IPFM panels and experts are invited to make presentations. Princeton University’s Program on Science and Global Security provides administra- tive and research support for the IPFM. IPFM’s initial support is provided by a five-year grant to Princeton University from the John D. and Catherine T. MacArthur Foundation of Chicago. Global Fissile Material Report 2009 Foreword Over the past year, the importance of charting a new common ground for reducing and eliminating stockpiles of the key nuclear weapon materials—plutonium and highly enriched uranium—has grown. It is not merely that the Fissile Material Cutoff Trea- ty, which would stop all production of fissile materials for weapons, has returned to the top of the international nuclear disarmament agenda, with the United Nations Conference on Disarmament agreeing this year to begin talks on such a treaty. More important, the entire project of nuclear disarmament has undergone a renaissance. Notably, President Barak Obama called in his speech in Prague on April 5, 2009 for a world without nuclear weapons. The idea of not merely reducing the number of nuclear weapons but of eliminating them entirely is getting more serious consideration than at any time since President Truman proposed the Baruch Plan to the UN to achieve this end in 1946. It is in this new context, which is the focus of the present report, that the work of the International Panel on Fissile Materials is playing an indispensable role. Suddenly, people in government, in academia, and in society at large are asking, in more detail than ever before, what a world with very few or no nuclear weapons might actually look like. The difficult and still-important question of how to get to such a world is now accompanied by the perhaps even more difficult and even more important question of what precisely the arrangements in such a world would be and how these would work. The process of getting rid of nuclear weapons (if it really happens), after all, will take only a limited time; but the nuclear-weapon-free world will have to last forever. Harder than getting to zero will be staying there. The number of nuclear weapons in the world has declined from a peak of more than 60,000 at the height of the Cold War to about a third of that today. If current talks between the Obama administration and the Russian government are successful, these numbers will decline further over the next few years, to about ten thousand opera- tional warheads, including short-range and reserve warheads, plus perhaps another thousand in the arsenals of the world’s other seven nuclear powers, with further re- ductions to follow. As the number of weapons declines, the importance of materials increases, especially if governments are taking the new goal of zero weapons seriously. In such a world, the immediate fear of nuclear war wanes, and the fear of the return of nuclear weapons takes its place. Attention turns away from warheads and ballistic mis- siles and toward uranium enrichment and plutonium separation facilities, plutonium and tritium production reactors, highly enriched uranium stockpiles for naval reactors, civilian stockpiles of plutonium and the like. Global Fissile Material Report 2009 The 2009 Global Fissile Material Report, in conjunction with its predecessors, places dis- cussion of these matters, more comprehensively and in greater depth than anywhere else, on a solid technical foundation. It moves the debate out of the realm of slogan and heartfelt wish into the cool light of scientific reality. We come to understand that underlying the weapons systems is the more fundamental fact of nuclear technology and that underlying that is the root of the whole dilemma, the scientific knowledge that makes the weapons and materials alike possible. Since the fundamental knowledge is destined to survive even the abolition of the weapons, it is necessary to ask, as the experts who have written this report do in myriad ways, how, over the long run, we can live with it. The questions that then move to the fore are such matters as: By what exact routes might a cheater on an abolition agreement proceed to rebuild nuclear weapons? What safeguards might the world deploy to protect itself against such a cheater? What measures of verification can give warning of such an attempt? Which nuclear-power technologies lend themselves to cheating, and how might they be circumscribed or eliminated? We are invited to school ourselves in “nuclear archeology” (the history of nuclear production facilities, fathomed through isotopic analysis and other means), in the possible “mining” of nuclear wastes (the danger that a nation will process these wastes to obtain plutonium), and in the “stuffing” or crushing of the plutonium pits at the heart of nuclear weapons to disable them while they await dismantlement. Of course, acquiring control over fissile materials—by stopping their production for military purposes, by producing a detailed inventory (now woefully incomplete) of their existence, by inspecting that inventory—is not useful solely for abolition. It is also immediately useful for nuclear arms reduction and for reining in nuclear prolifera- tion. If the world’s grip on its fissile materials and technology were ever to become fully secure, then nuclear proliferation, especially to sub-national groups, would almost be a dead letter. There is no conflict here between the long and the short run. The infor- mation and recommendations presented in this report are therefore as immediately urgent as they are fundamental in the larger scheme of things. They are the guts of nuclear disarmament—a goal that this report represents with new clarity and brings closer to achievement. Jonathan Schell New York, September 2009 Global Fissile Material Report 2009 Overview The goal of complete elimination of nuclear weapons has returned to the center of international debate. It is a goal as old as the nuclear age. The first resolution of the United Nations General Assembly in 1946 called for plans “for the elimination from national armaments of atomic weapons and of all other major weapons adaptable to mass destruction.” It was already understood that central to the challenge would be the control of highly enriched uranium (HEU) and plutonium, the fissile materials that had been used respectively in the bombs that had destroyed the Japanese cities of Hiroshima and Nagasaki five months earlier.
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • The World Nuclear Industry Status Report 2009 with Particular Emphasis on Economic Issues
    The World Nuclear Industry Status Report 2009 With Particular Emphasis on Economic Issues By Mycle Schneider Independent Consultant, Mycle Schneider Consulting, Paris (France) Project Coordinator Steve Thomas Professor for Energy Policy, Greenwich University (UK) Antony Froggatt Independent Consultant, London (UK) Doug Koplow Director of Earth Track, Cambridge (USA) Modeling and Additional Graphic Design Julie Hazemann Director of EnerWebWatch, Paris (France) Paris, August 2009 Commissioned by German Federal Ministry of Environment, Nature Conservation and Reactor Safety (Contract n° UM0901290) About the Authors Mycle Schneider is an independent international consultant on energy and nuclear policy based in Paris. He founded the Energy Information Agency WISE-Paris in 1983 and directed it until 2003. Since 1997 he has provided information and consulting services to the Belgian Energy Minister, the French and German Environment Ministries, the International Atomic Energy Agency, Greenpeace, the International Physicians for the Prevention of Nuclear War, the Worldwide Fund for Nature, the European Commission, the European Parliament's Scientific and Technological Option Assessment Panel and its General Directorate for Research, the Oxford Research Group, and the French Institute for Radiation Protection and Nuclear Safety. Since 2004 he has been in charge of the Environment and Energy Strategies lecture series for the International MSc in Project Management for Environmental and Energy Engineering Program at the French Ecole des Mines in Nantes. In 1997, along with Japan's Jinzaburo Takagi, he received the Right Livelihood Award, also known as the ―Alternative Nobel Prize‖. Antony Froggatt works as independent European energy consultant based in London. Since 1997 Antony has worked as a freelance researcher and writer on energy and nuclear policy issues in the EU and neighboring states.
    [Show full text]
  • Combating Illicit Trafficking in Nuclear and Other Radioactive Material Radioactive Other Traffickingand Illicit Nuclear Combating in 6 No
    8.8 mm IAEA Nuclear Security Series No. 6 Technical Guidance Reference Manual IAEA Nuclear Security Series No. 6 in Combating Nuclear Illicit and Trafficking other Radioactive Material Combating Illicit Trafficking in Nuclear and other Radioactive Material This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. In addition, the manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material, and considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving such material. Jointly sponsored by the EUROPOL WCO INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–109807–8 ISSN 1816–9317 07-45231_P1309_CovI+IV.indd 1 2008-01-16 16:03:26 COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR SECURITY SERIES No. 6 TECHNICAL GUIDANCE COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL JOINTLY SPONSORED BY THE EUROPEAN POLICE OFFICE, INTERNATIONAL ATOMIC ENERGY AGENCY, INTERNATIONAL POLICE ORGANIZATION, AND WORLD CUSTOMS ORGANIZATION INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2007 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris).
    [Show full text]
  • EXTENSIONS of REMARKS 14019 EXTENSIONS of REMARKS MAGEE INDUSTRIAL ENTER- the Magee Carpet Co
    July 10, 1989 EXTENSIONS OF REMARKS 14019 EXTENSIONS OF REMARKS MAGEE INDUSTRIAL ENTER- The Magee Carpet Co. enjoyed years of As a result of their extensive study, stu­ PRISES CELEBRATES 100 growth and development. In the 1950's the dents became more aware of the need for ad­ YEARS OF EXEMPLARY SERV­ company expended its product line and began ditional sources of energy, and the environ­ ICE manufacturing commercial carpets. In 1967 mental effects and economic impact of energy the Magee Carpet Co. became Magee Indus­ production. trial Enterprises, Incorporated, a holding com­ HON. PAUL E. KANJORSKI 1 commend the students for their meticulous pany of the Magee family. OF PENNSYLVANIA research and interest in such an important Today, Magee Industrial Enterprises [MIE] IN THE HOUSE OF REPRESENTATIVES project incorporates a number of divisions including and I thank the teachers for their tre­ Monday, July 10, 1989 the Magee Carpet Co., the Hotel Magee, mendous dedication and encouragement. Mr. KANJORSKI. Mr. Speaker, I rise today Magee Glanz Distribution, Bloom Radio to pay tribute to Magee Industrial Enterprises, WHLM, MIE Hospitality, and a franchise of a family owned company located in Blooms­ Arthur Treacher's Fish & Chips. burg, PA. This year Magee Industrial Enter­ Magee Industrial Enterprises has experi­ prises is celebrating its 1OOth year as a vital enced many successes as well as many fail­ member of the business community. ures during its first 100 years. Because of a The greatness of this country is due in part great deal of perseverance and determination, THE TIANANMEN SQUARE to our strong belief in the principles of free en­ the company and the Magee family have sur­ FOUNDATION terprise and the spirit of entrepreneurship.
    [Show full text]
  • The Fukushima Nuclear Accident and Crisis Management
    e Fukushima Nuclearand Crisis Accident Management e Fukushima The Fukushima Nuclear Accident and Crisis Management — Lessons for Japan-U.S. Alliance Cooperation — — Lessons for Japan-U.S. Alliance Cooperation — — Lessons for Japan-U.S. September, 2012 e Sasakawa Peace Foundation Foreword This report is the culmination of a research project titled ”Assessment: Japan-US Response to the Fukushima Crisis,” which the Sasakawa Peace Foundation launched in July 2011. The accident at the Fukushima Daiichi Nuclear Power Plant that resulted from the Great East Japan Earthquake of March 11, 2011, involved the dispersion and spread of radioactive materials, and thus from both the political and economic perspectives, the accident became not only an issue for Japan itself but also an issue requiring international crisis management. Because nuclear plants can become the target of nuclear terrorism, problems related to such facilities are directly connected to security issues. However, the policymaking of the Japanese government and Japan-US coordination in response to the Fukushima crisis was not implemented smoothly. This research project was premised upon the belief that it is extremely important for the future of the Japan-US relationship to draw lessons from the recent crisis and use that to deepen bilateral cooperation. The objective of this project was thus to review and analyze the lessons that can be drawn from US and Japanese responses to the accident at the Fukushima Daiichi Nuclear Power Plant, and on the basis of these assessments, to contribute to enhancing the Japan-US alliance’s nuclear crisis management capabilities, including its ability to respond to nuclear terrorism.
    [Show full text]
  • Copyright by Paul Harold Rubinson 2008
    Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, J
    A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02].
    [Show full text]
  • A Fissile Material Cut-Off Treaty N I T E D Understanding the Critical Issues N A
    U N I D I R A F i s s i l e M a A mandate to negotiate a treaty banning the production of fissile material t e r i for nuclear weapons has been under discussion in the Conference of a l Disarmament (CD) in Geneva since 1994. On 29 May 2009 the Conference C u on Disarmament agreed a mandate to begin those negotiations. Shortly t - o afterwards, UNIDIR, with the support of the Government of Switzerland, f f T launched a project to support this process. r e a t This publication is a compilation of various products of the project, y : that hopefully will help to illuminate the critical issues that will need to U n be addressed in the negotiation of a treaty that stands to make a vital d e r contribution to the cause of nuclear disarmament and non-proliferation. s t a n d i n g t h e C r i t i c a l I s s u e s UNITED NATIONS INSTITUTE FOR DISARMAMENT RESEARCH U A Fissile Material Cut-off Treaty N I T E D Understanding the Critical Issues N A Designed and printed by the Publishing Service, United Nations, Geneva T I GE.10-00850 – April 2010 – 2,400 O N UNIDIR/2010/4 S UNIDIR/2010/4 A Fissile Material Cut-off Treaty Understanding the Critical Issues UNIDIR United Nations Institute for Disarmament Research Geneva, Switzerland New York and Geneva, 2010 Cover image courtesy of the Offi ce of Environmental Management, US Department of Energy.
    [Show full text]
  • CPC Outreach Journal #740
    USAF COUNTERPROLIFERATION CENTER CPC OUTREACH JOURNAL Maxwell AFB, Alabama Issue No. 740, 02 September 2009 Articles & Other Documents: U.S. Eyes 12 Giant "Bunker Buster" Bombs Pakistan Denies It Altered US-made Missiles U.S. Mulls Alternatives For Missile Shield NSA: India Doesn‘t Need Another Nuclear Test Iran is Continuing Nuclear Activity, says United Nations Pakistani Nuke Scientist says Restrictions Lifted Watchdog Iran Ducking Scrutiny of Alleged Nuclear-Weapon 'Pak Enhancing Its Nuclear Weapons Capabilities' Studies, IAEA Says Nuclear Agency Says Iran Has Bolstered Ability to Ministry Wants ¥176 Billion for Missile Shield Make Fuel but Slowed Its Output Iran, Syria have not Carried Out Sufficient Cooperation Would-Be Killer Linked to Al Qaeda, Saudis Say in Clarifying Nuke Issues: IAEA Cargo of North Korea Materiel is Seized En Route to Israel Has Iran in Its Sights Iran Watchdog Extends Probe into Alleged Secret Site Don't Get Scammed By Russia Again 'IAEA Hiding Incriminating Evidence' Israeli Nuclear Weapons and Western Hypocrisy Iran 'Ready' for Nuclear Talks Another Attempt to Malign Pak Nuke Program Russia: Building a Nuclear Deterrent for the Sake of Controversy Over Pokhran-II Needless: Manmohan Peace (60th Anniversary of the First Soviet Atomic Test) U.S. Says Pakistan Made Changes to Missiles Sold for Defense Welcome to the CPC Outreach Journal. As part of USAF Counterproliferation Center’s mission to counter weapons of mass destruction through education and research, we’re providing our government and civilian community a source for timely counterproliferation information. This information includes articles, papers and other documents addressing issues pertinent to US military response options for dealing with chemical, biological, radiological, and nuclear (CBRN) threats and countermeasures.
    [Show full text]
  • Article Thermonuclear Bomb 5 7 12
    1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons).
    [Show full text]
  • Jihadists and Nuclear Weapons
    VERSION: Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary Ackerman and Jeremy Tamsett, eds., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 193-238. c h a p t e r 8 Jihadists and Nuclear Weapons Charles P. Blair CONTENTS Introduction 193 Improvised Nuclear Devices (INDs) 195 Fissile Materials 198 Weapons-Grade Uranium and Plutonium 199 Likely IND Construction 203 External Procurement of Intact Nuclear Weapons 204 State Acquisition of an Intact Nuclear Weapon 204 Nuclear Black Market 212 Incidents of Jihadist Interest in Nuclear Weapons and Weapons-Grade Nuclear Materials 213 Al-Qa‘ida 213 Russia’s Chechen-Led Jihadists 214 Nuclear-Related Threats and Attacks in India and Pakistan 215 Overall Likelihood of Jihadists Obtaining Nuclear Capability 215 Notes 216 Appendix: Toward a Nuclear Weapon: Principles of Nuclear Energy 232 Discovery of Radioactive Materials 232 Divisibility of the Atom 232 Atomic Nucleus 233 Discovery of Neutrons: A Pathway to the Nucleus 233 Fission 234 Chain Reactions 235 Notes 236 INTRODUCTION On December 1, 2001, CIA Director George Tenet made a hastily planned, clandestine trip to Pakistan. Tenet arrived in Islamabad deeply shaken by the news that less than three months earlier—just weeks before the attacks of September 11, 2001—al-Qa‘ida and Taliban leaders had met with two former Pakistani nuclear weapon scientists in a joint quest to acquire nuclear weapons. Captured documents the scientists abandoned as 193 AU6964.indb 193 12/16/08 5:44:39 PM 194 Charles P. Blair they fled Kabul from advancing anti-Taliban forces were evidence, in the minds of top U.S.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]