Host Specificity Assessment of European Peristenus Parasitoids for Classical Biological Control of Native Lygus Species in North

Total Page:16

File Type:pdf, Size:1020Kb

Host Specificity Assessment of European Peristenus Parasitoids for Classical Biological Control of Native Lygus Species in North Proceedings: Host Specificity Testing of Exotic Arthropod Biological Control Agents: The Biological Basis for Improvement in Safety Host Specificity Assessment of European Peristenus Parasitoids for Classical Biological Control of Native Lygus species in North America: Use of Field Host Surveys to Predict Natural Enemy Habitat and Host Ranges U. Kuhlmann1, P.G. Mason2 and R.G. Foottit2 1CABI Bioscience Centre, Rue des Grillons 1, 2800 Delémont, Switzerland 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre Ottawa, Ontario, K1A 0C6, Canada Abstract The Lygus bug complex (Het., Miridae) at many sites in North America causes economic damage to a wide variety of agricultural crops and is the focus of numerous research projects. Lygus can be best suppressed using parasitoids in unsprayed non-cropping situations as well as in crops where pollination is important for maximizing yields. The European parasitoid Peristenus digoneutis Loan (Hym., Braconidae), which attacks several species in the genera Lygus and Adelphocoris in Europe, has been established in the eastern USA to control the native pest Lygus lineolatus (Palisot de Beauvois) in alfalfa. The success of this project has stimulated interest into the potential for the establishment of additional Euro- pean species for biological control of pest Lygus bugs in several regions of North America. The research of this ongoing case study concentrates on assessing strategies and methods for host specificity testing of these parasitoids in relation to Europe and North America. Predicting the impact of European parasitoids by using existing and new knowledge of the host range and habitats in the area of origin will aid in choosing Peristenus species for further release in other regions and will have important implications for the practice of classical biological control. Introduction environmental risks of arthropod biological control agents have usually seemed negligible, but recent Need to Estimate Host Ranges of concern about the impact of alien species on Entomophagous Biological Control Agents biodiversity and natural ecosystems has caused this Concerns about reliance on chemical pesticides in crop belief to be reconsidered. protection worldwide have led to the development of integrated pest management strategies, which depend on The potential risks of arthropod biological control to natural enemy manipulations as alternatives to exclusive native non-target arthropods are being examined for use of chemicals. Classical biological control, the some cases (i.e., Goldson and Phillips, 1990; Barratt et introduction of exotic biological control agents to al., 1998, 1999). While there are no recorded examples permanently suppress exotic pests, is one such approach. of monophagous or narrowly oligophagous agents It is practiced ever more widely as successes accumulate changing their host range to cause damage to non-target and pest invasions follow trade liberalization. insects (Waterhouse, 1991), the use of polyphagous insects as biological control agents may reduce A high level of host specificity in the introduced natural populations of non-target hosts or cause their extinction enemies is desirable and should be sought during foreign (Horn, 1991; Howarth, 1991; Samways, 1994). exploration (Nechols et al., 1992). Potential However very little quantitative information is available 84 Host Specificity Assessment of European Peristenus Parasitoids Proceedings: Host Specificity Testing of Exotic Arthropod Biological Control Agents: The Biological Basis for Improvement in Safety on the influence of these agents on the population will also ensure that actual alternate hosts, occasionally densities of these non-target populations. used, are reported. Regulatory agencies that oversee biological control The laboratory methods used to assess the host ranges of introductions are responding to concerns of potential herbivorous insects being introduced as weed biological non-target impacts by requiring more rigorous control agents are often suggested as a model for efforts testing and demonstration of a high degree of host to assess host specificity of entomophagous insects. specificity by candidate arthropod biological control However, several difficulties exist in applying this agents before granting permission for release. approach. A significant problem is the major difference However, because of an earlier lack of concern for in the status of systematic knowledge of plants and non-target arthropods, methodologies for host insects. Whereas the taxonomy and phylogenetic specificity screening of arthropod natural enemies are relationships of plant species are relatively well known, much less developed than for testing of herbivorous far less is known about these relationships for insects. insects imported for weed biological control. Recent The uncertainty of the relatedness of insects within papers discuss methods to evaluate the potential families and tribes makes the choice of species for impact of parasitoids of arthropod pests on non- testing uncertain. Secondly, the large number of species target hosts before and after release of parasitoids in some insect groups often easily exceeds the number (i.e., Sands, 1997, Sands and Van Driesche, 2000; of plants in similar level taxa by an order of magnitude. Van Driesche and Hoddle, 1997; Hopper, 1998). This often precludes testing of more than a tiny Two categories of data can help in estimating the host subsample of species in related groups. If for example, ranges of insects: (1) host-natural enemy associations the target insect’s family contains 5000 species (a as seen in the published literature or in specially common possibility), most of which have biologies and conducted surveys; and (2) laboratory testing in distributions that are poorly known, choosing a list of which candidate species are presented in cages to species for host range testing is extremely difficult. natural enemies, whose oviposition and immature Consequently, systematics is a critical part of host development are then observed. Because insect faunas specificity testing programs for projects of biological are often very large, study of host-natural enemy control targeting insect pests. Reconstructions of associations by field surveys are often important in phylogenies may be needed to guide the host testing and choosing species for testing in the laboratory. agent selection process. Finally, lack of information about the biology and rearing methods for many insects makes it impractical to assemble sets of target species for Approaches to Host Ranges laboratory testing in the conventional manner used to Estimation for Parasitoids: Field test herbivory on plants (which may be collected and Surveys vs. Laboratory Testing stored as seeds until needed in most cases). for Large Faunas Once a species test list has been defined, uncertainties Traditionally, host association records from the literature exist on how to conduct and interpret laboratory host provide the first estimate of the host range of an range tests for entomophagous species. Sands (1993) entomophagous biological control agent. Such records identified several difficulties in interpreting results of are especially useful for distinguishing candidates with such laboratory tests on the physiological obviously broad host ranges from those that might have (=fundamental, see Van Klinken, 2000) host ranges of suitably narrow ones. Misidentifications, especially in entomophagous insects. It is extremely difficult to the older literature, often cause spurious host records. reproduce accurately the cues and stimuli that influence However, some of the problems posed by such errors the host searching and assessment behavior of a may be avoided by considering the quality of data, parasitoid in a natural environment. In laboratory tests, taking into account such aspects as numbers of entomophagous insects often accept a broader range of individuals examined, percent parasitism observed, hosts than in nature, over-estimating field host range spatial and temporal extent of studies, and confirmation (Loan and Holdaway, 1961). In laboratory trials, of identity by a specialist. In this way, observations of patterns of oviposition, feeding, or development in attacks on non-hosts, especially those based on single or arthropod hosts are typically assessed in small few specimens and not properly identified are less likely containers. Sands and Papacek (1993) reported that to be incorrectly entered into the host record list. This restricted space often leads to an inaccurate assessment Host Specificity Assessment of European Peristenus Parasitoids 85 Proceedings: Host Specificity Testing of Exotic Arthropod Biological Control Agents: The Biological Basis for Improvement in Safety of host specificity by disrupting the processes governing have been the focus of numerous research projects. host recognition and acceptance. For example, Parasitoids are best able to suppress Lygus species in parasitoids in small cages may oviposit in hosts that unsprayed non-cropping situations and crops in which normally do not support development of the parasitoid, pollination is important for maximizing yields. or parasitoids may oviposit in hosts that normally are Nymphal parasitoids of the subfamily Euphorinae not accepted in the field. The physiological host range (Hymenoptera: Braconidae) belonging to the genera measured in the laboratory and the realized host range Leiophron Nees and Peristenus Foerster are known to
Recommended publications
  • HYMENOPTERA: BRACONIDAE: EUPHORINAE)* by SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
    CORE Metadata, citation and similar papers at core.ac.uk Provided by MUCC (Crossref) A NEW MEXICAN GENUS AND SPECIES OF DINOCAMPINI WITH SERRATE ANTENNAE (HYMENOPTERA: BRACONIDAE: EUPHORINAE)* BY SCOTT RICHARD SHAW Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 The cosmopolitan braconid subfamily Euphorinae (sensu Shaw 1985, 1987, 1988) comprises 36 genera of koinobiont endoparasi- toids, which parasitize the adult stages of holometabolous insects or nymphs and adults of hemimetabolous insects (Muesebeck 1936, 1963; Shenefelt 1980; Loan 1983; Shaw 1985, 1988). Occasionally the parasitoids of holometabolous insects will oviposit into larvae as well as adults (Smith, 1960; David & Wilde, 1973; Semyanov, 1979), but this only occurs where larvae are ecologically coincident with adults, living and feeding on the same plants (Tobias, 1966). Obrycki et al. (1985) found that Dinocampus coccinellae (Schrank) will oviposit into all larval instars, and pupae, as well as adults; however, the highest percentage of successful parasitization occurred when adults were attacked. Only a few papers have discussed euphorines of Mexico in particular (Muesebeck 1955; Shaw 1987). The euphorine tribe Dinocampini was defined by Shaw (1985, 1987, 1988) to comprise three genera with ocular setae, antennal scape three times longer than wide, and labial palpus reduced to two segments. As far as is known, members of the tribe Dinocampini parasitize adult beetles; Dinocampus Foerster parasitizes Coccinel- lidae (Shenefelt 1980) and Ropalophorus Curtis parasitizes Scolyti- dae (Shenefelt 1960, Shaw 1988). The hosts of the third included genus, Centistina Enderlein, are not known. Because these genera are known only from females (Balduf 1926; Shenefelt 1960), it seems possible that females of the entire tribe are thelyotokous, reproduc- ing parthenogenetically and producing only female progeny.
    [Show full text]
  • Review of the Capsid Bugs of the Genus Lepidargyrus (Heteroptera: Miridae)
    © Zoological Institute, St.Petersburg, 1993 Review of the capsid bugs of the genus Lepidargyrus (Heteroptera: Miridae) I.S. Drapolyuk Drapolyuk, I.S. 1993. Review of the capsid bugs of the genus Lepidargyrus (Heteroptera: Miridae). Zoosystematica Rossica, 2(1): 107-119. A new species, L putshkovi, is described from Azerbaijan. Psallus seidenstueckeri Wagner, P. ibericus Wagner, P. ancorifer (Fieber), P. muminovi Josifov, P. syriacus Wagner, P. ancorifer lividus Reuter, P. a. pollinosus (Horv~th) and P. a. senguni Wagner (the last three upgraded to specific rank) are transferred to Lepidargyrus Muminov. A key to the species of Lepidargyrus is given. I.S. Drapolyuk, Voronezh PedagogicalInstitute, ul. Lenina 86, Voronezh 394651, Russia. Introduction rubbed) and silvery scales. Coloration varies from light green, pale yellow or pink to brown- Muminov (1962) described the genus Lepid- ish red, brown or black. argyrus for two species from Middle Asia and Head inclined, broader than long. Clypeus Iran: Maisrodactylus instabilis Reuter, 1878 distinctly prominent, its base lying below (type species) and L iranicus sp. n. Examina- middle of eye. Vertex distinctly broader than tion of species of the so called "Psallus ancori- one eye; its hind margin not or indistinctly fer group" shows that they do not belong to raised, usually light in dark-coloured speci- Psallus, as noticed already by Kerzhner mens. Eyes large, oblong oval, feebly granulat- (1962), and should be placed in Lepidargyrus. ed, almost touching the fore margin of pronot- Psallus muminovi Josifov from Middle Asia um. Antennae covered with fine black and and a new species from Azerbaijan, L putsh- brown hairs, inserted close to lower margin of kovi, described below, belong to the same ge- eyes.
    [Show full text]
  • (Heteroptera: Miridae) A
    251 CHROMOSOME NUMBERS OF SOME NORTH AMERICAN MIRIDS (HETEROPTERA: MIRIDAE) A. E. AKINGBOHUNGBE Department of Plant Science University of Ife lie-Ife, Nigeria Data are presented on the chromosome numbers (2n) of some eighty species of Miridae. The new information is combined with existing data on some Palearctic and Ethiopian species and discussed. From it, it is suggested that continued reference to 2n - 32A + X + Y as basic mirid karyotype should be avoided and that contrary to earlier suggestions, agmatoploidy rather than poly- ploidy is a more probable mechanism of numerical chromosomal change. Introduction Leston (1957) and Southwood and Leston (1959) gave an account of the available information on chromosome numbers in the Miridae. These works pro- vided the first indication that the subfamilies may show some modalities that might be useful in phylogenetic analysis in the family. Kumar (1971) also gave an ac- count of the karyotype in some six West African cocoa bryocorines. In the present paper, data will be provided on 80 North American mirids, raising to about 131, the number of mirids for which the chromosome numbers are known. Materials and Methods Adult males were collected during the summer of 1970-1972 in Wisconsin and dissected soon after in 0.6% saline solution. The dissected testes were preserved in 3 parts isopropanol: 1 part glacial acetic acid and stored in a referigerator until ready for squashing. Testis squashes were made using Belling's iron-acetocarmine tech- nique as reviewed by Smith (1943) and slides were ringed with either Bennett's zut or Sanford's rubber cement.
    [Show full text]
  • Hymenoptera: Braconidae: Euphorinae)1
    W˄ÛφIJɘ (J. Agric. Res. China) 53:39~62ȣĚη Syntretus (2004) D½ˣͧ 39 A Synopsis of the Syntretus Foerster Species of Taiwan (Hymenoptera: Braconidae: Euphorinae)1 Jenõ Papp2 ABSTRACT Papp J. 2004. A synopsis of the Syntretus Foerster species of Taiwan (Hymenoptera: Braconidae: Euphorinae). J. Agric. Res. China 53:39-62. The present synopsis is the first review of the Syntretus Foerster species distributed in Taiwan. Twelve species are revised of which seven proved to be new to science: S. choui sp. n., S. extensus sp. n., S. secutensus sp. n., S. subglaber sp. n., S. temporalis sp. n., S. transitus sp. n. and S. varus sp. n. The rear five species are new to the fauna of Taiwan. Detailed descriptions are presented for the new species; taxonomic remarks are added to the known species. A key is provided for the twelve Syntretus species recorded in Taiwan and completed with 84 original figures of diagnostic significance. A checklist was compiled for the Syntretus species of the East Palaearctic and Oriental Regions. Key words: Braconidae, Syntretus, New species, New record, Key to species, Taiwan, Checklist. Introduction The genus Syntretus Foerster, 1862 is a middle-sized taxon comprising 31 species in the Holarctic Region (28 species are listed in the Palaearctic Region, three species in the Nearctic Region) and three species in the Ethiopian Region (Shenefelt 1969; Tobias 1986; Belokobylskij 1993b, 1996; Chen & van Achterberg 1997). In the Oriental Region the first Syntretus species has been described by Belokobylskij (1993a). This paper is the second one reporting Syntretus species from the Oriental Region.
    [Show full text]
  • Hymenoptera: Braconidae: Euphorinae) from India
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2012, 2 (4):1376-1381 ISSN: 2248 –9215 CODEN (USA): EJEBAU Description of a new species of Leiophron Nees (Hymenoptera: Braconidae: Euphorinae) from India Mohammad Shamim Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, U.P. India _____________________________________________________________________________________________ ABSTRACT A new species of the braconid genus, viz., Leiophron sharifi Shamim sp. nov. is described and illustrated from India. The new species unambiguously distinguished from Leiophron (Leiophron) achterbergi Shamim et al. [16] from India. However, it differs in having length of malar space 1.4 times basal width of mandible, propodeum reticulate- rugose, spiracles at behind middle of first metasomal tergite, length of pterostigma 3 times its width and length of vein 1 __ R1 0.28 times length of pterostigma. Keywords: Hymenoptera, Braconidae, Euphorinae, Leiophron, new species, India _____________________________________________________________________________________________ INTRODUCTION The braconid genus Leiophron Nees erect by von Esenbeck, 1818. It can be easily distinguished by having antennal segments 14 __ 20, apical segment without spine; maxillary palp with 5 segments; labial palp with 2 __ 3 segments; occipital carina usually widely interrupted dorsally, ventrally joining hypostomal carina; malar space about 0.25 __ 0.5 times height of eye; propodeum without postero-median depression; marginal cell of fore wing small; vein SRI ending far before wing apex; vein 1 __ SR+M of fore wing present, but sometimes absent; vein 2 __ M of fore wing present; vein M+CU1 of fore wing largely unsclerotized; vein 1 __ M usually thickened; vein 2 __ CU1 sclerotized or unsclerotized; hypopygium small, straight ventrally and setose; ovipositor hardly visible, usually shorter than 0.25 times first tergite; ovipositor slender and curved downwards.
    [Show full text]
  • "Isometopinae" FIEB : "Miridae", "Heteroptera" and Their Intrarelationships
    Title: Systematic position of "Isometopinae" FIEB : "Miridae", "Heteroptera" and their intrarelationships Author: Aleksander Herczek Citation style: Herczek Aleksander. (1993). Systematic position of "Isometopinae" FIEB : "Miridae", "Heteroptera" and their intrarelationships. Katowice : Uniwersytet Śląski Aleksander Herczek Systematic position of Isometopinae FIEB. (Miridae, Heteroptera) and their intrarelationships }/ f Uniwersytet Śląski • Katowice 1993 Systematic position of Isometopinae FIEB. (Miridae, Heteroptera) and their intrarelationships Prace Naukowe Uniwersytetu Śląskiego w Katowicach nr 1357 Aleksander Herczek ■ *1 Systematic position of Isometopinae FIEB. (Miridae, Heteroptera) and their intrarelationships Uniwersytet Śląski Katowice 1993 Editor of the Series: Biology LESŁAW BADURA Reviewers WOJCIECH GOSZCZYŃSKI, JAN KOTEJA Executive Editor GRAŻYNA WOJDAŁA Technical Editor ALICJA ZAJĄCZKOWSKA Proof-reader JERZY STENCEL Copyright © 1993 by Uniwersytet Śląski All rights reserved ISSN 0208-6336 ISBN 83-226-0515-3 Published by Uniwersytet Śląski ul. Bankowa 12B, 40-007 Katowice First impression. Edition: 220+ 50 copies. Printed sheets: 5,5. Publishing sheets: 7,5. Passed to the Printing Works in June, 1993. Signed for printing and printing finished in September, 1993. Order No. 326/93 Price: zl 25 000,— Printed by Drukarnia Uniwersytetu Śląskiego ul. 3 Maja 12, 40-096 Katowice Contents 1. Introduction.......................................................................................................... 7 2. Historical outline
    [Show full text]
  • Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris Lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae)
    Journal of Chemical Ecology (2021) 47:525–533 https://doi.org/10.1007/s10886-021-01273-y Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae) Sándor Koczor1 & József Vuts2 & John C. Caulfield2 & David M. Withall2 & André Sarria2,3 & John A. Pickett2,4 & Michael A. Birkett2 & Éva Bálintné Csonka1 & Miklós Tóth1 Received: 24 November 2020 /Revised: 2 March 2021 /Accepted: 7 April 2021 / Published online: 19 April 2021 # The Author(s) 2021 Abstract The sex pheromone composition of alfalfa plant bugs, Adelphocoris lineolatus (Goeze), from Central Europe was investigated to test the hypothesis that insect species across a wide geographical area can vary in pheromone composition. Potential interactions between the pheromone and a known attractant, (E)-cinnamaldehyde, were also assessed. Coupled gas chromatography- electroantennography (GC-EAG) using male antennae and volatile extracts collected from females, previously shown to attract males in field experiments, revealed the presence of three physiologically active compounds. These were identified by coupled GC/ mass spectrometry (GC/MS) and peak enhancement as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. A ternary blend of these compounds in a 5.4:9.0:1.0 ratio attracted male A. lineolatus in field trials in Hungary. Omission of either (E)-2- hexenyl-butyrate or (E)-4-oxo-2-hexenal from the ternary blend or substitution of (E)-4-oxo-2-hexenal by (E)-2-hexenal resulted in loss of activity. These results indicate that this Central European population is similar in pheromone composition to that previously reported for an East Asian population.
    [Show full text]
  • TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List Compiled By: Harsi Parker
    COMPLETE LIST OF TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Harsi Parker Number Species name Common name Notes Year Location Taxonomic Order 1 Gammaridae sp. scud 2016 J Amphipoda – Gammaridae 2 Hyalella sp. amphipod 2014, 2016 CH, J Amphipoda – Hyalellidae 3 Acari sp. #1 mite 2012, 2013, 2015, 2016 NP, SH, M, J Arachnida 4 Acari sp. #2 mite 2014 CH Arachnida 5 Opiliones sp. harvestman 2013, 2015 SH, M Arachnida 6 Callobius sp. hacklemesh weaver 2012 NP Arachnida – Amaurobiidae 7 Araneidae sp. orb weaver 2016 J Arachnida – Araneidae 8 Araneus diadematus Cross Orbweaver 2012, 2014 NP, CH Arachnida – Araneidae 9 Clubiona sp. leafcurling sac spider 2012 NP Arachnida – Clubionidae 10 Linyphiinae sp. sheetweb spider tentative ID 2012 NP Arachnida – Linyphiidae 11 Neriene sp. sheetweb spider tentative ID 2014 CH Arachnida – Linyphiidae 12 Pardosa sp. thinlegged wolf spider 2012 NP Arachnida – Lycosidae 13 Philodromus dispar running crab spider 2012 NP Arachnida – Philodromidae 14 Tibellus sp. slender crab spider tentative ID 2014 CH Arachnida – Philodromidae 15 Eris militaris Bronze Jumper tentative ID 2014 CH Arachnida – Salticidae 16 Metaphidippus manni jumping spider tentative ID 2014, 2016 CH, J Arachnida – Salticidae 17 Salticidae sp. #1 jumping spider 2014 CH Arachnida – Salticidae 18 Salticidae sp. #2 jumping spider 2015 M Arachnida – Salticidae 19 Salticus scenicus Zebra Jumper 2013, 2014, 2015 SH, CH, M Arachnida – Salticidae 20 Metellina sp. long-jawed orb weaver 2012 NP Arachnida – Tetragnathidae 21 Tetragnatha sp. long-jawed orb weaver 2013 SH Arachnida – Tetragnathidae 22 Theridiidae sp. cobweb spider 2012 NP Arachnida – Theridiidae 23 Misumena vatia Goldenrod Crab Spider 2013, 2016 SH, J Arachnida – Thomisidae 24 Thomisidae sp.
    [Show full text]
  • New Records of Heteroptera (Hemiptera) Species from Turkey, with Reconsideration of Several Previous Records
    Use the following type of citation: North-western Journal of Zoology 2021: e201203 Paper Submitted to The North-Western Journal of Zoology 1 *Handling editor: Dr. H. Lotfalizadeh 2 *Manuscript Domain: Entomology 3 *Manuscript code: nwjz-20-EN-HL-07 4 *Submission date: 21 September 2020 5 *Revised: 12 December 2020 6 *Accepted: 12 December 2020 7 *No. of words (without abstract, acknowledgement, references, tables, captions): 7431 8 (papers under 700 words are not accepted) 9 *Editors only: 10 11 Zoology 12 Title of the paper: New records of Heteroptera (Hemiptera)of species from Turkey, with 13 reconsideration of several previous records proofing 14 Journaluntil 15 Running head: New Records of Heteroptera from Turkey 16 paper 17 Authors (First LAST - without institution name!): Barış ÇERÇİ, Serdar TEZCAN 18 North-western 19 Accepted 20 Key Words (at least five keywords): New records, previous records, Nabidae, Reduviidae, Miridae, 21 Turkey 22 23 24 No. of Tables: 0 25 No. of Figures: 4 26 No. of Files (landscape tables should be in separate file): 0 Use the following type of citation: North-western Journal of Zoology 2021: e201203 nwjz-2 27 New records of Heteroptera (Hemiptera) species from Turkey, with reconsideration of 28 several previous records 29 Barış, ÇERÇİ1, Serdar, TEZCAN2 30 1. Faculty of Medicine, Hacettepe University, Ankara, Turkey 31 2. Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey 32 * Corresponding authors name and email address: Barış ÇERÇİ, 33 [email protected] 34 35 Abstract. In this study, Acrotelus abbaricus Linnavuori, Dicyphus (Dicyphus) josifovi Rieger, 36 Macrotylus (Macrotylus) soosi Josifov, Myrmecophyes (Myrmecophyes) variabilis Drapulyok Zoology 37 and Paravoruchia dentata Wagner are recorded from Turkey for the first time.
    [Show full text]
  • Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula.
    [Show full text]
  • Landscape-Scale Connections Between the Land Use, Habitat Quality and Ecosystem Goods and Services in the Mureş/Maros Valley
    TISCIA monograph series Landscape-scale connections between the land use, habitat quality and ecosystem goods and services in the Mureş/Maros valley Edited by László Körmöczi Szeged-Arad 2012 Two countries, one goal, joint success! Landscape-scale connections between the land use, habitat quality and ecosystem goods and services in the Mureş/Maros valley TISCIA monograph series 1. J. Hamar and A. Sárkány-Kiss (eds.): The Maros/Mureş River Valley. A Study of the Geography, Hydrobiology and Ecology of the River and its Environment, 1995. 2. A. Sárkány-Kiss and J. Hamar (eds.): The Criş/Körös Rivers’ Valleys. A Study of the Geography, Hydrobiology and Ecology of the River and its Environment, 1997. 3. A. Sárkány-Kiss and J. Hamar (eds.): The Someş/Szamos River Valleys. A Study of the Geography, Hydrobiology and Ecology of the River and its Environment, 1999. 4. J. Hamar and A. Sárkány-Kiss (eds.): The Upper Tisa Valley. Preparatory Proposal for Ramsar Site Designation and an Ecological Background, 1999. 5. L. Gallé and L. Körmöczi (eds.): Ecology of River Valleys, 2000. 6. Sárkány-Kiss and J. Hamar (eds.): Ecological Aspects of the Tisa River Basin, 2002. 7. L. Gallé (ed.): Vegetation and Fauna of Tisza River Basin, I. 2005. 8. L. Gallé (ed.): Vegetation and Fauna of Tisza River Basin, II. 2008. 9. L. Körmöczi (ed.): Ecological and socio-economic relations in the valleys of river Körös/Criş and river Maros/Mureş, 2011. 10. L. Körmöczi (ed.): Landscape-scale connections between the land use, habitat quality and ecosystem goods and services in the Mureş/Maros valley, 2012.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]