Lecture 2 Kinematic Foundations

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 2 Kinematic Foundations Lecture 2 Kinematic Foundations Preview Definitions and basic concepts System, configuration, rigid body, displacement Lecture 2 Rotation, translation Configuration space, Kinematic Foundations degrees of freedom Metrics Group theory Groups, commutative groups Matthew T. Mason Displacements with composition as a group Noncommutativity of displacements Mechanics of Manipulation Lecture 2 Outline Kinematic Foundations Preview Preview Definitions and basic concepts System, configuration, rigid body, displacement Rotation, translation Definitions and basic concepts Configuration space, degrees of freedom System, configuration, rigid body, displacement Metrics Rotation, translation Group theory Groups, commutative Configuration space, degrees of freedom groups Displacements with composition as a group Metrics Noncommutativity of displacements Group theory Groups, commutative groups Displacements with composition as a group Noncommutativity of displacements Lecture 2 Preview Kinematic Foundations The agenda Preview Definitions and I Today: general concepts. basic concepts System, configuration, rigid 2 body, displacement I Next: rigid motions in the Euclidean plane (E ). Rotation, translation Configuration space, Then: rigid motions in Euclidean three space ( 3), degrees of freedom I E Metrics 2 and the sphere (S ). Group theory Groups, commutative groups Displacements with composition as a group Noncommutativity of Why? displacements I Why spend so much time on such fundamental concepts? Because robotics is so challenging. “Give me six hours to chop down a tree and I will spend the first four sharpening the axe.” (Abraham Lincoln) Lecture 2 Preview Kinematic Foundations The agenda Preview Definitions and I Today: general concepts. basic concepts System, configuration, rigid 2 body, displacement I Next: rigid motions in the Euclidean plane (E ). Rotation, translation Configuration space, Then: rigid motions in Euclidean three space ( 3), degrees of freedom I E Metrics 2 and the sphere (S ). Group theory Groups, commutative groups Displacements with composition as a group Noncommutativity of Why? displacements I Why spend so much time on such fundamental concepts? Because robotics is so challenging. “Give me six hours to chop down a tree and I will spend the first four sharpening the axe.” (Abraham Lincoln) Lecture 2 Ambient space, system, configuration Kinematic Foundations Definitions Preview Definition (Ambient Definitions and basic concepts space) System, configuration, rigid body, displacement Rotation, translation Let X be the ambient space, Configuration space, 2 3 2 degrees of freedom either E , E , or S . Metrics Group theory Groups, commutative A system in the Euclidean groups Definition (System) Displacements with plane composition as a group Noncommutativity of A set of points in the space displacements X. Definition (Configuration) The configuration of a system gives the location of Same system, different every point in the system. configuration Lecture 2 Rigid bodies, displacements Kinematic Foundations Definitions Preview Definitions and Definition (Displacement) basic concepts System, configuration, rigid body, displacement A displacement is a change of configuration that Rotation, translation Configuration space, preserves pairwise distance and orientation degrees of freedom (handedness) of a system. Metrics Group theory Groups, commutative groups Displacements with Definition (Rigid body) composition as a group Noncommutativity of displacements A rigid body is a system that is capable of displacements only. Rotation (rigid), dilation (not rigid), reflection (not rigid) Lecture 2 Question Kinematic Foundations Why focus on rigid bodies? Preview Definitions and basic concepts I Nothing is rigid. System, configuration, rigid body, displacement I Lots of stuff is articulated or way soft: tissue Rotation, translation Configuration space, (surgery), fluids, food, paper, books, :::. degrees of freedom Metrics Group theory Groups, commutative groups Lots of reasons Displacements with composition as a group Noncommutativity of displacements I A reasonable approximation for some objects. I Even non-rigid transformations can be factored into displacement + shape change. I Some things are invariant with respect to displacements. I Other? Lecture 2 Moving and fixed spaces Kinematic Foundations Basic convention Preview Definitions and Convention basic concepts System, configuration, rigid We will consider displacements to apply to every point in body, displacement Rotation, translation Configuration space, the ambient space. degrees of freedom Metrics Group theory Example Groups, commutative groups Displacements with For example, planar displacements are described as composition as a group Noncommutativity of motion of moving plane relative to fixed plane. displacements Fixed plane Moving plane Moving and fixed planes. Lecture 2 Rotations and translations Kinematic Foundations Definitions Preview Definitions and Definition (Rotation) basic concepts System, configuration, rigid body, displacement A rotation is a displacement with at least one fixed point. Rotation, translation Configuration space, degrees of freedom Metrics Definition (Translation) Group theory Groups, commutative groups A translation is a displacement for which all points move Displacements with composition as a group equal distances along parallel lines. Noncommutativity of displacements O Rotation Rotation about a Rotation about a about O point on the body point not on the body Lecture 2 Configuration space, degrees of freedom Kinematic Foundations Definitions Preview Definitions and basic concepts System, configuration, rigid body, displacement Definition (Configuration space) Rotation, translation Configuration space, degrees of freedom Configuration space is the space comprising all Metrics configurations of a given system. Group theory Groups, commutative groups Displacements with composition as a group Noncommutativity of Definition (Degrees of freedom (DoFs)) displacements The Degrees of Freedom (DOFs) of a system is the dimension of the configuration space. (Less precisely: the number of reals required to specify a configuration.) Lecture 2 Systems, configuration spaces, DOFs Kinematic Foundations Examples System Configuration DOFs Preview Definitions and point in plane x, y 2 basic concepts System, configuration, rigid point in space x, y, z 3 body, displacement Rotation, translation rigid body in plane x, y, θ 3 Configuration space, degrees of freedom rigid body in space x, y, z, φ, θ, 6 Metrics rigid body in 4-space ??? ??? Group theory Groups, commutative groups Displacements with composition as a group Noncommutativity of r displacements (qu ") u /J*.,^btonl 6Pu<t' a^L|*J+, 5p*<*' 4 Lecture 2 Solution: DOFs of a rigid body in . Kinematic E Foundations I Most common answer: 4 translations and 4 rotations. I Why assume four rotational freedoms? Generalizing Preview from 3? Consider: Definitions and E basic concepts System, configuration, rigid body, displacement Space Translational DOFs Rotational DOFs Rotation, translation Configuration space, 0 degrees of freedom E (point) 0 0 Metrics 1 E (line) 1 0 Group theory 2 Groups, commutative E (plane) 2 1 groups 3 Displacements with 3 3 composition as a group E Noncommutativity of E4 4 6 displacements n I The correct generalization for E is n choose 2. Identify rotational freedoms not with a single axis, which works only in E3, but with a pair of axes. I The proof is simple, after we have covered rotation matrices. 4 I Rotations in E are useful. See the lecture on quaternions. Lecture 2 Configuration spaces Kinematic Foundations Metrics I We can define a metric, or a distance function, for Preview any configuration space. What is a metric? Definitions and basic concepts System, configuration, rigid body, displacement Definition Rotation, translation Configuration space, degrees of freedom A metric d on a space X is a function d : X × X 7! R Metrics satisfying: Group theory Groups, commutative groups I d(x; y) ≥ 0 (non-negativity); Displacements with composition as a group Noncommutativity of I d(x; y) = 0 if and only if x = y; displacements I d(x; y) = d(y; x) (symmetry); I d(x; z) ≤ d(x; y) + d(y; z) (triangle inequality). I Every space has a metric! But what would make a suitable metric for configuration space? How would you devise a suitable metric for configurations of S2? E2? E3? Lecture 2 Solution: metrics for Cspaces Kinematic Foundations I Possibilities: Preview 1. Let every pair of configurations have distance 1. Definitions and 2. For 2, the minimum angle to rotate one basic concepts S System, configuration, rigid configuration to the other. body, displacement n Rotation, translation 3. For decompose displacement into rotation and Configuration space, E degrees of freedom translation, and add the distance to the angle. Metrics 4. Same idea, but scale angle by a characteristic length. Group theory Groups, commutative 5. In general: pick some finite set of points, and take groups Displacements with the maximum distance travelled by the points. composition as a group Noncommutativity of displacements I (1): useless. (2–5): if two configurations are close, in the sense that corresponding points are close in the ambient space, then distance is small. (3): dimensionally inconsistent. I A desirable property: invariance with respect to displacements. (2) achieves this for S2. Unattainable for E2 and E3. Lecture 2 Digressing for group theory Kinematic Foundations Motivation Preview Definitions and basic concepts System, configuration, rigid body, displacement Rotation, translation Configuration
Recommended publications
  • The Unitary Representations of the Poincaré Group in Any Spacetime
    The unitary representations of the Poincar´e group in any spacetime dimension Xavier Bekaert a and Nicolas Boulanger b a Institut Denis Poisson, Unit´emixte de Recherche 7013, Universit´ede Tours, Universit´ed’Orl´eans, CNRS, Parc de Grandmont, 37200 Tours (France) [email protected] b Service de Physique de l’Univers, Champs et Gravitation Universit´ede Mons – UMONS, Place du Parc 20, 7000 Mons (Belgium) [email protected] An extensive group-theoretical treatment of linear relativistic field equa- tions on Minkowski spacetime of arbitrary dimension D > 2 is presented in these lecture notes. To start with, the one-to-one correspondence be- tween linear relativistic field equations and unitary representations of the isometry group is reviewed. In turn, the method of induced representa- tions reduces the problem of classifying the representations of the Poincar´e group ISO(D 1, 1) to the classification of the representations of the sta- − bility subgroups only. Therefore, an exhaustive treatment of the two most important classes of unitary irreducible representations, corresponding to massive and massless particles (the latter class decomposing in turn into the “helicity” and the “infinite-spin” representations) may be performed via the well-known representation theory of the orthogonal groups O(n) (with D 4 <n<D ). Finally, covariant field equations are given for each − unitary irreducible representation of the Poincar´egroup with non-negative arXiv:hep-th/0611263v2 13 Jun 2021 mass-squared. Tachyonic representations are also examined. All these steps are covered in many details and with examples. The present notes also include a self-contained review of the representation theory of the general linear and (in)homogeneous orthogonal groups in terms of Young diagrams.
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • 1.2 Rules for Translations
    1.2. Rules for Translations www.ck12.org 1.2 Rules for Translations Here you will learn the different notation used for translations. The figure below shows a pattern of a floor tile. Write the mapping rule for the translation of the two blue floor tiles. Watch This First watch this video to learn about writing rules for translations. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsA Then watch this video to see some examples. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsB 18 www.ck12.org Chapter 1. Unit 1: Transformations, Congruence and Similarity Guidance In geometry, a transformation is an operation that moves, flips, or changes a shape (called the preimage) to create a new shape (called the image). A translation is a type of transformation that moves each point in a figure the same distance in the same direction. Translations are often referred to as slides. You can describe a translation using words like "moved up 3 and over 5 to the left" or with notation. There are two types of notation to know. T x y 1. One notation looks like (3, 5). This notation tells you to add 3 to the values and add 5 to the values. 2. The second notation is a mapping rule of the form (x,y) → (x−7,y+5). This notation tells you that the x and y coordinates are translated to x − 7 and y + 5. The mapping rule notation is the most common. Example A Sarah describes a translation as point P moving from P(−2,2) to P(1,−1).
    [Show full text]
  • Representations of the Euclidean Group and Its Applications to the Kinematics of Spatial Chains
    REPRESENTATIONS OF THE EUCLIDEAN GROUP AND ITS APPLICATIONS TO THE KINEMATICS OF SPATIAL CHAINS By JOSE MARIA RICO MARTINEZ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1988 LIBRARIES v ||miyBRSlTY_OF FLORIDA Copyright 1988 by Jose Maria Rico Martinez ACKNOWLEDGMENTS The author wishes to thank firstly his advisor Dr. Joseph Duffy for his guidance during the selection and development of the contents of this dissertation. Without his encouragement, in times when nothing fruitful seemed to evolve from the approaches followed, without his geometrical insight, and his quest for clarity, this dissertation would have plenty of errors. Nonetheless, the author is to blame for the remaining ones. Secondly, deep felt thanks go to the members of the supervisory committee for their invaluable criticism and for their teachings in the classroom. The faculty of the Mechanical Engineering Department, and in particular the faculty of the Center for Intelligent Machines and Robotics, must be thanked for the development of an atmosphere conductive to research. The contributions of the faculty of this center, including the visiting professors, can be found in many parts of this work. Special gratitude is owed to visiting professors Eric Primrose and Kenneth H. Hunt for their insightful comments. My thanks go also to my fellow students for their friendship and kindness. The economic support from the Mexican Ministry of Public Education and the Consejo Nacional de Ciencia y Tecnologia (CONACYT) is dutifully acknowledged. Finally, the author thanks his wife iii .
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • 2-D Drawing Geometry Homogeneous Coordinates
    2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane.
    [Show full text]
  • Physics of the Lorentz Group
    Physics of the Lorentz Group Physics of the Lorentz Group Sibel Ba¸skal Department of Physics, Middle East Technical University, 06800 Ankara, Turkey e-mail: [email protected] Young S. Kim Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742, U.S.A. e-mail: [email protected] Marilyn E. Noz Department of Radiology, New York University, New York, NY 10016 U.S.A. e-mail: [email protected] Preface When Newton formulated his law of gravity, he wrote down his formula applicable to two point particles. It took him 20 years to prove that his formula works also for extended objects such as the sun and earth. When Einstein formulated his special relativity in 1905, he worked out the transfor- mation law for point particles. The question is what happens when those particles have space-time extensions. The hydrogen atom is a case in point. The hydrogen atom is small enough to be regarded as a particle obeying Einstein'sp law of Lorentz transformations in- cluding the energy-momentum relation E = p2 + m2. Yet, it is known to have a rich internal space-time structure, rich enough to provide the foundation of quantum mechanics. Indeed, Niels Bohr was interested in why the energy levels of the hydrogen atom are discrete. His interest led to the replacement of the orbit by a standing wave. Before and after 1927, Einstein and Bohr met occasionally to discuss physics. It is possible that they discussed how the hydrogen atom with an electron orbit or as a standing-wave looks to moving observers.
    [Show full text]
  • Translation and Reflection; Geometry
    Translation and Reflection Reporting Category Geometry Topic Translating and reflecting polygons on the coordinate plane Primary SOL 7.8 The student, given a polygon in the coordinate plane, will represent transformations (reflections, dilations, rotations, and translations) by graphing in the coordinate plane. Materials Graph paper or individual whiteboard with the coordinate plane Tracing paper or patty paper Translation Activity Sheet (attached) Reflection Activity Sheets (attached) Vocabulary polygon, vertical, horizontal, negative, positive, x-axis, y-axis, ordered pair, origin, coordinate plane (earlier grades) translation, reflection (7.8) Student/Teacher Actions (what students and teachers should be doing to facilitate learning) 1. Introduce the lesson by discussing moves on a checkerboard. Note that a move is made by sliding the game piece to a new position. Explain that the move does not affect the size or shape of the game piece. Use this to lead into a discussion on translations. Review horizontal and vertical moves. Review moving in a positive or negative direction on the coordinate plane. 2. Distribute copies of the Translation Activity Sheet, and have students graph the trapezoid. Guide students in completing the sheet. Emphasize the use of the prime notation for the translated figure. 3. Introduce reflection by discussing mirror images. 4. Distribute copies of the Reflection Activity Sheet, and have students graph the trapezoid. Guide students in completing the sheet. Emphasize the use of the prime notation for the translated figure. 5. Give students additional practice. Individual whiteboards could be used for this practice. Assessment Questions o How does translating a figure affect the size, shape, and position of that figure? o How does rotating a figure affect the size, shape, and position of that figure? o What are the differences between a translated polygon and a reflected polygon? Journal/Writing Prompts o Describe what a scalene triangle looks like after being reflected over the y-axis.
    [Show full text]
  • Quivers and the Euclidean Group
    Contemporary Mathematics Volume 478, 2009 Quivers and the Euclidean group Alistair Savage Abstract. We show that the category of representations of the Euclidean group of orientation-preserving isometries of two-dimensional Euclidean space is equivalent to the category of representations of the preprojective algebra of type A∞. We also consider the moduli space of representations of the Euclidean group along with a set of generators. We show that these moduli spaces are quiver varieties of the type considered by Nakajima. Using these identifications, we prove various results about the representation theory of the Euclidean group. In particular, we prove it is of wild representation type but that if we impose certain restrictions on weight decompositions, we obtain only a finite number of indecomposable representations. 1. Introduction The Euclidean group E(n)=Rn SO(n) is the group of orientation-preserving isometries of n-dimensional Euclidean space. The study of these objects, at least for n =2, 3, predates even the concept of a group. In this paper we will focus on the Euclidean group E(2). Even in this case, much is still unknown about the representation theory. Since E(2) is solvable, all its finite-dimensional irreducible representations are one-dimensional. The finite-dimensional unitary representations, which are of inter- est in quantum mechanics, are completely reducible and thus isomorphic to direct sums of such one-dimensional representations. The infinite-dimensional unitary ir- reducible representations have received considerable attention (see [1, 3, 4]). There also exist finite-dimensional nonunitary indecomposable representations (which are not irreducible) and much less is known about these.
    [Show full text]