Unraveling the Mineralogical Complexity of Sediment Iron Speciation Using Sequential Extractions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrothermal and Metamorphic Berthierine
n27 CanadianMineralogist Vol. 30,pp. 1127-1142 (1992) HYDROTHERMALAND METAMORPHICBERTHIERINE FROM THE KIDD CREEK VOLCANOGENICMASSTVE SULFIDE DEPOSIT. TIMMINS, ONTARIO JOHNF.SLACK U.S.Geological Survey, Nationnl Center, Mail Stop954, Reston, Virginia 22092, U.S.A. WEI-TEH JIANG ANDDONALD R. PEACOR Depamnent of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. PATRICKM. OKITA* U.S.Geological Survey, National Center,Mail Stop954, Reston,Virginia 22092,U.S.A. ABSTRACT Berthierine,a 7 A pe-Al memberof the serpentinegroup, occursin the footwall stringerzone of the ArcheanKidd Creek massivesulfide deposit, Ontario, associated with quartz,muscovite, chlorite, pyrite, sphalerite,chalcopyrite, and local tourmaline' cassiterite,and halloysite. Berthierine has been identified by the lack of 14A basalreflections on X-ray powderdiffractionpattems, by its composition (electron-microprobedata), and by transmissionelectron microscopy (TEM). Peoogaphic and scanning eiectronmicroscopic (SEM) studiesreveal different types of berthierineocculrences, including interlayerswithin and rims on deformedchlorite, intergrowthswith muscoviteand halloysite,and discretecoarse grains. TEM imagesshow thick packetsof berthierineand chlorite that are parallel or relatedby low-angle boundaries,and layer terminationsof chlorite by berthierine; mixedJayer chlorite-berthierinealso is observed,intergrown with Fe-rich chlorite and berthierine.End-member (Mg-free) berthierineis presentin small domainsin two samples.The Kidd Creekberthierine is chemicallysimilar -
Relationships Between Magnetic Parameters, Chemical Composition and Clay Minerals of Topsoils Near Coimbra, Central Portugal
Nat. Hazards Earth Syst. Sci., 12, 2545–2555, 2012 www.nat-hazards-earth-syst-sci.net/12/2545/2012/ Natural Hazards doi:10.5194/nhess-12-2545-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal A. M. Lourenc¸o1, F. Rocha2, and C. R. Gomes1 1Centre for Geophysics, Earth Sciences Dept., University of Coimbra, Largo Marquesˆ de Pombal, 3000-272 Coimbra, Portugal 2Geobiotec Centre, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal Correspondence to: A. M. Lourenc¸o ([email protected]) Received: 6 September 2011 – Revised: 27 February 2012 – Accepted: 28 February 2012 – Published: 14 August 2012 Abstract. Magnetic measurements, mineralogical and geo- al., 1980). This methodology is fast, economic and can be ap- chemical studies were carried out on surface soil samples plied in various research fields, such as environmental mon- in order to find possible relationships and to obtain envi- itoring, pedology, paleoclimatology, limnology, archeology ronmental implications. The samples were taken over a and stratigraphy. Recent studies have demonstrated the ad- square grid (500 × 500 m) near the city of Coimbra, in cen- vantages and the potential of the environmental magnetism tral Portugal. Mass specific magnetic susceptibility ranges methods as valuable aids in the detection and delimitation between 12.50 and 710.11 × 10−8 m3 kg−1 and isothermal of areas affected by pollution (e.g. Bityukova et al., 1999; magnetic remanence at 1 tesla values range between 253 Boyko et al., 2004; Blaha et al., 2008; Lu et al., 2009; and 18 174 × 10−3 Am−1. -
High-Temperature Thermomagnetic Properties of Vivianite Nodules
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Clim. Past, 9, 433–446, 2013 Climate www.clim-past.net/9/433/2013/ Climate doi:10.5194/cp-9-433-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions High-temperature thermomagnetic properties of Open Access Open Access vivianite nodules, Lake El’gygytgyn, Northeast RussiaGeoscientific Geoscientific Instrumentation Instrumentation P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 Methods and Methods and 1North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian AcademyData Systems of Sciences, Data Systems Magadan, Russia Discussions Open Access 2 Open Access Department of Geosciences, University of Massachusetts, Amherst, USA Geoscientific Geoscientific Correspondence to: P. S. Minyuk ([email protected]) Model Development Model Development Received: 7 September 2012 – Published in Clim. Past Discuss.: 9 October 2012 Discussions Revised: 15 January 2013 – Accepted: 15 January 2013 – Published: 19 February 2013 Open Access Open Access Hydrology and Hydrology and Abstract. Vivianite, a hydrated iron phosphate, is abun- 1 Introduction Earth System Earth System dant in sediments of Lake El’gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Rus- Sciences Sciences sia (67◦300 N, 172◦050 E). -
The Mineralogy and Crystallography of Pyrrhotite
Chapter 1 INTRODUCTION ________________________________________________________ 1.1 Introduction Pyrrhotite Fe(1-x)S is one of the most commonly occurring metal sulfide minerals and is recognised in a variety of ore deposits including nickel-copper, lead-zinc, and platinum group element (PGE). Since the principal nickel ore mineral, pentlandite, almost ubiquitously occurs coexisting with pyrrhotite, the understanding of the behaviour of pyrrhotite during flotation is of fundamental interest. For many nickel processing operations, pyrrhotite is rejected to the tailings in order to control circuit throughput and concentrate grade and thereby reduce excess sulfur dioxide smelter emissions (e.g. Sudbury; Wells et al., 1997). However, for platinum group element processing operations, pyrrhotite recovery is targeted due to its association with the platinum group elements and minerals (e.g. Merensky Reef; Penberthy and Merkle, 1999; Ballhaus and Sylvester, 2000). Therefore, the ability to be able to manipulate pyrrhotite performance in flotation is of great importance. It can be best achieved if the mineralogical characteristics of the pyrrhotite being processed can be measured and the relationship between mineralogy and flotation performance is understood. The pyrrhotite mineral group is non-stoichiometric and has the generic formula of Fe(1-x)S where 0 ≤ x < 0.125. Pyrrhotite is based on the nickeline (NiAs) structure and is comprised of several superstructures owing to the presence and ordering of vacancies within its structure. Numerous pyrrhotite superstructures have been recognised in the literature, but only three of them are naturally occurring at ambient conditions (Posfai et al., 2000; Fleet, 2006). This includes the stoichiometric FeS known as troilite which is generally found in extraterrestrial localities, but on occasion, has also been recognised in some nickel deposits (e.g. -
Far-Infrared Spectra of Hydrous Silicates at Low Temperatures Providing Laboratory Data for Herschel and ALMA
A&A 492, 117–125 (2008) Astronomy DOI: 10.1051/0004-6361:200810312 & c ESO 2008 Astrophysics Far-infrared spectra of hydrous silicates at low temperatures Providing laboratory data for Herschel and ALMA H. Mutschke1,S.Zeidler1, Th. Posch2, F. Kerschbaum2, A. Baier2, and Th. Henning3 1 Astrophysikalisches Institut, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [mutschke;sz]@astro.uni-jena.de 2 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: [email protected] 3 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 2 June 2008 / Accepted 4 September 2008 ABSTRACT Context. Hydrous silicates occur in various cosmic environments, and are among the minerals with the most pronounced bands in the far infrared (FIR) spectral region. Given that Herschel and ALMA will open up new possibilities for astronomical FIR and sub-mm spectroscopy, data characterizing the dielectric properties of these materials at long wavelengths are desirable. Aims. We aimed at examining the FIR spectra of talc, picrolite, montmorillonite, and chamosite, which belong to four different groups of phyllosilicates. We tabulated positions and band widths of the FIR bands of these minerals depending on the dust temperature. Methods. By means of powder transmission spectroscopy, spectra of the examined materials were measured in the wavelength range 25−500 μm at temperatures of 300, 200, 100, and 10 K. Results. Room-temperature measurements yield the following results. For talc, a previously unknown band, centered at 98.5 μm, was found, in addition to bands at 56.5 and 59.5 μm. -
Using the High-Temperature Phase Transition of Iron Sulfide Minerals As
www.nature.com/scientificreports OPEN Using the high-temperature phase transition of iron sulfde minerals as an indicator of fault Received: 9 November 2018 Accepted: 15 May 2019 slip temperature Published: xx xx xxxx Yan-Hong Chen1, Yen-Hua Chen1, Wen-Dung Hsu2, Yin-Chia Chang2, Hwo-Shuenn Sheu3, Jey-Jau Lee3 & Shih-Kang Lin2 The transformation of pyrite into pyrrhotite above 500 °C was observed in the Chelungpu fault zone, which formed as a result of the 1999 Chi-Chi earthquake in Taiwan. Similarly, pyrite transformation to pyrrhotite at approximately 640 °C was observed during the Tohoku earthquake in Japan. In this study, we investigated the high-temperature phase-transition of iron sulfde minerals (greigite) under anaerobic conditions. We simulated mineral phase transformations during fault movement with the aim of determining the temperature of fault slip. The techniques used in this study included thermogravimetry and diferential thermal analysis (TG/DTA) and in situ X-ray difraction (XRD). We found diversifcation between 520 °C and 630 °C in the TG/DTA curves that signifes the transformation of pyrite into pyrrhotite. Furthermore, the in situ XRD results confrmed the sequence in which greigite underwent phase transitions to gradually transform into pyrite and pyrrhotite at approximately 320 °C. Greigite completely changed into pyrite and pyrrhotite at 450 °C. Finally, pyrite was completely transformed into pyrrhotite at 580 °C. Our results reveal the temperature and sequence in which the phase transitions of greigite occur, and indicate that this may be used to constrain the temperature of fault-slip. This conclusion is supported by feld observations made following the Tohoku and Chi-Chi earthquakes. -
Thermomagnetic Properties of Vivianite Nodules, Lake El'gygytgyn
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 4989–5027, 2012 www.clim-past-discuss.net/8/4989/2012/ Climate doi:10.5194/cpd-8-4989-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Thermomagnetic properties of vivianite nodules, Lake El’gygytgyn, Northeast Russia P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 1North-East Interdisciplinary Scientific Research Institute of Far East Branch of Russian Academy Science, Magadan, Russia 2Department of Geosciences, University of Massachusetts, Amherst, USA Received: 7 September 2012 – Accepted: 20 September 2012 – Published: 9 October 2012 Correspondence to: P. S. Minyuk ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 4989 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Vivianite, a hydrated iron phosphate, is abundant in sediments of El’gygytgyn Lake, located in the Anadyr Mountains of Central Chukotka, Northeastern Russia (67◦300 N; 172◦050 E). Magnetic measurements, including weight low-field AC magnetic suscepti- 5 bility, field dependent magnetic susceptibility, hysteresis parameters, temperature de- pendence of the saturation magnetization, as well as susceptibility in different heating media provide ample information on vivianite. Electron-microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic min- erals. Vivianite nodules are abundant in both sediments of cold (anoxic) and warm −6 3 −1 10 (oxic) stages. Magnetic susceptibility of the nodules varies from 0.78 × 10 m kg to 1.72×10−6 m3 kg−1 (average = 1.05×10−6 m3 kg−1) and is higher than the susceptibility of sediments from the cold intervals. -
On the Relation of Chamosite and Daphnite to the Chlorite Group. 1 (With Plates XVIII and XIX.) by A
441 On the relation of chamosite and daphnite to the chlorite group. 1 (With Plates XVIII and XIX.) By A. F. HXLLIMOSD, M.A., Sc.D. Assistant Curator, Museum of Practical Geology, London. With chemical analyses by C. O. HARVEY, B.Sc., A.R.C.S. and X-ray measurements by F. A. BANNISTER, M.A. [Read June 9, 1938.] I. INTRODUCTION. HERE is a close optical and chemical resemblance between chamo- T site, the chloritic mineral of the bedded ironstones, and daphnite, a low-temperature vein-chlorite common in some of the Cornish tin mines. New material has made it possible to undertake a fresh com- parison of the two minerals: chemical analyses have been made by Mr. C. O. Harvey, chemist to H.M. Geological Survey, and a report on the X-ray measurements is contributed by Mr. F. A. Bannister, of the Mineral Department of the British Museum. The new analysis of chamosite agrees with the simple formula pre- viously assigned: X-ray examination of material from several localities has now established the distinctive crystalline nature of this fine-grained mineral, which differs structurally from ordinary chlorites such as clinochlore. Daphnite, on the other hand, has the ordinary chlorite structure, but the new analysis hilly confirms Tschermak's original opinion that it cannot be represented chemically as a mixture of serpen- tine and amesite. In attempting a comparison with chlorite analyses already published, great difficulty arises from the confused nomenclature. In order to ascertain the nearest chemically allied chlorites to those under dis- cussion, a representative number of selected chlorite analyses have been plotted on a diagram with co-ordinates proportional to R2Oa/SiO2 and RO/Si02. -
The Ore and Gangue Mineralogy of the Newly Discovered Federation Massive Sulfide Deposit, Central New South Wales, Australia †
Proceedings The Ore and Gangue Mineralogy of the Newly Discovered Federation Massive Sulfide Deposit, Central New South Wales, Australia † Khalid Schellen 1, Ian T. Graham 1,*, Adam McKinnon 2, Karen Privat 1,3 and Christian Dietz 4 1 School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; [email protected] (K.S); [email protected] (K.P.) 2 Aurelia Metals Limited, Level 17, 144 Edward Street, Brisbane, QLD 4000, Australia; [email protected] 3 Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia 4 Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-435-296-555 † Presented at the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021; Available online: https://iecms2021.sciforum.net/. Abstract: The newly discovered Federation deposit, with a resource estimate of 2.6 Mt @ 7.7% Pb, 13.5% Zn, 0.8 g/t Au, and 9 g/t Ag, lies 10 km south of the Hera deposit within the Cobar Basin of the Lachlan Orogen. Located just north of the Erimeran Granite contact and between the Lower Amphitheatre Group and underlying shallow marine Mouramba Group Roset Sandstone, the host siltstones and sandstones have been brecciated, intensely silicified, and chloritized close to miner- alization. Oriented in an overall east-northeast strike and with a steep south-southeast dip, the silt- stones mainly comprise quartz, clinochlore, biotite, and muscovite. Federation also has highly frag- mented zones with breccia and vein-fill of calcite. -
The Role of Ferrous Clays in the Interpretation of Wettability – a Case Study
SCA2018-019 1/12 THE ROLE OF FERROUS CLAYS IN THE INTERPRETATION OF WETTABILITY – A CASE STUDY Velazco M.A, Bruce A., Ferris M, Reed J., Kandasamy R. Lloyd’s Register Energy Consultancy, Rock Properties Group, Aberdeen, UK This paper was prepared for presentation at the International Symposium of the Society of Core Analysts held in Trondheim, Norway, 27-30 August 2018 ABSTRACT Clean sandstone, with minimal clay content, is expected to be strongly water wet once the rock has been through an effective cleaning process. Even samples containing significant clay minerals are usually expected to be water wet after appropriate cleaning. However, tests carried out on core samples from Fields in three different global locations show mixed indices, even for clean state samples where no aging with crude oil has taken place. A few hypotheses for this behaviour considered herein are: whether the cleaning method was adequate, whether wettability was altered by an external factor, or if wettability was due to mineral composition. This paper presents the results obtained from wettability studies on fresh, clean and restored state core plug samples from three different Fields. Wettability indices were obtained by using the combined Amott-USBM method. Petrography was performed on sample end-trims to investigate the possible presence of halite or barite in the clean state samples, thought to be from drilling fluid infiltration, which should have been removed by the methanol cleaning cycle. This showed no organic material or salt (halite), negating wetting change from inefficient cleaning. From a reactive clays [1] model perspective, these rock samples are considered clean-sand (i.e. -
Implications for Mining Seafloor Hotsprings AT
UNIVERSITY OF CALIFORNIA RIVERSIDE Kinetics of Pyrrhotite Oxidation in Seawater: Implications for Mining Seafloor Hotsprings A Thesis submitted in partial satisfaction of requirements for the degree of Masters of Science in Geological Sciences by Gina Yolanda Romano December 2012 Thesis Committee: Dr. Michael McKibben, Chairperson Dr. Timothy Lyons Dr. Gordon Love Copyright by Gina Yolanda Romano 2012 The Thesis of Gina Yolanda Romano is approved: __________________________________________________ __________________________________________________ __________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements I graciously acknowledge my committee members, especially Mike: thank you for always giving me more to think about, and for letting me be a part of this project, which I have become enormously passionate about. I am lucky to be able to directly apply this research to my exiting new career in industry. Thank you to Laura Bilenker for many helpful conversations and even more helpful laughs. It was a great honor to do this project with you. Thank you to the Lyons lab for the use of and assistance with the ICP-MS, especially Jeremy Owens. I am indebted to for your endless patience. Also thank you to Krassimir Bohzilov and CFAMM for the use of the SEM. To my family: thank you for your endless support. I owe all my successes to you. Most of all I want to thank my Mom. You always push me to go after my dreams, never to give up, and are cheering me on the whole way. I wouldn’t be where I am today without you. iv Table of Contents Abstract 1 1. Introduction 2 2. -
Magnetic Properties of Rocks and Minerals
MagneticProperties of Rocksand Minerals ChristopherP. Hunt, BruceM. Moskowitz,Subir K. Banerjee 1. INTRODUCTION composition-dependentmagnetic parameters of a varietyof iron-bearingminerals. This is an updatedcollation of magneticparameters of rocksand mineralsfor geologists,geochemists, and geo- 2. MAGNETIC SUSCEPTIBILITY physicists.Since the publication of theprevious edition of Handbookof PhysicalConstants [74], two othercollations Magnetic susceptibilityis a measureof the magnetic have appeared[16, 18]. In addition,selected magnetic responseof a materialto an externalmagnetic field. The parametershave alsobeen assembled[19, 22, 38, 41, 88]. volumesusceptibility k, measuredin dimensionlessunits, is Ratherthan produce a fully comprehensivecollection, we definedas the ratio of thematerial magnetization J (perunit have aimed for high-precisiondata obtainedfrom well- volume) to the weak externalmagnetic field H: characterizedsamples. Bothtables and figures have been used for presentingthe J=kH. (1) data,and best-fit equations have been provided for someof thedisplayed data so that interpolations can be made easily. Alternatively,the specificor masssusceptibility Z, mea- In an attemptto discouragethe useof the outdatedcgs suredin units of rn3kg4, isdefined as the ratio of the material system,all valuesare in theSI system(see Moskowitz, this magnetizationJ (per unit mass)to the weak externalmag- volume). Referenceshave been cited for the sourcesused netic field H: here. However,a morecomprehensive bibliography has alsobeen provided from which