Comprehensive Overview of Common E-Liquid Ingredients and How They Can Be Used to Predict an E-Liquid’S Flavor Category

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Overview of Common E-Liquid Ingredients and How They Can Be Used to Predict an E-Liquid’S Flavor Category Original research Tob Control: first published as 10.1136/tobaccocontrol-2019-055447 on 10 February 2020. Downloaded from Comprehensive overview of common e- liquid ingredients and how they can be used to predict an e- liquid’s flavour category Erna J Z Krüsemann ,1,2 Anne Havermans ,1 Jeroen L A Pennings,1 Kees de Graaf,2 Sanne Boesveldt,2 Reinskje Talhout1 10–14 ► Additional material is ABSTRact cigarette smoking. In line with this, the use and published online only. To view Objectives Flavours increase e- cigarette attractiveness marketing of e- liquid flavours that are appealing to please visit the journal online (http:// dx. doi. org/ 10. 1136/ and use and thereby exposure to potentially toxic smokers may contribute to public health benefits. tobaccocontrol- 2019- 055447). ingredients. An overview of e- liquid ingredients is needed However, flavours may also stimulate vaping among to select target ingredients for chemical analytical and non- users, in particular young people.15–17 This is 1 Centre for Health toxicological research and for regulatory approaches concerning, as e- cigarettes are not safe10 18 19 That Protection, Rijksinstituut voor aimed at reducing e- cigarette attractiveness. Using is, chemicals in e- cigarette emissions (eg, tobacco- Volksgezondheid en Milieu, Bilthoven, The Netherlands information from e- cigarette manufacturers, we aim to specific nitrosamines, metals, aldehydes and other 2Division of Human Nutrition identify the flavouring ingredients most frequently added flavourings) can be toxic and thus harmful to and Health, Wageningen to e- liquids on the Dutch market. Additionally, we used consumers’ health.20–22 In addition, e- cigarettes University, Wageningen, The flavouring compositions to automatically classify e-liquids may facilitate smoking initiation among never- Netherlands into flavour categories, thereby generating an overview smokers.23 As a consequence, e- liquid flavours are that can facilitate market surveillance. Correspondence to considered an important target in tobacco control Methods We used a dataset containing 16 839 Erna J Z Krüsemann, Centre for in order to decrease e-cigarette attractiveness and Bibliotheek. Protected by copyright. Health Protection, Rijksinstituut e- liquids that were manually classified into 16 flavour use and thereby exposure to potentially toxic voor Volksgezondheid en categories in our previous study. For the overall set and emissions. Milieu, Bilthoven 3721 MA, each flavour category, we identified flavourings present Netherlands; One way of regulating e-liquid flavours could be erna. krusemann@ rivm. nl in more than 10% of the products and their median restriction of flavour categories that are particularly quantities. Next, quantitative and qualitative ingredient appealing to non- users or youth. For example, the EJZK and AH contributed information was used to predict e- liquid flavour US Food and Drug Administration (FDA) recently equally. categories using a random forest algorithm. announced that e-cigarettes with a flavour other Results We identified 219 unique ingredients that were Received 10 October 2019 than tobacco will be removed from the market Revised 10 January 2020 added to more than 100 e- liquids, of which 213 were until they are evaluated under the FDA’s new Accepted 19 January 2020 flavourings. The mean number of flavourings per e- liquid product review authority.24 Such rules often rely on Published Online First was 10±15. The most frequently used flavourings were flavour-related marketing descriptions, which do 10 February 2020 vanillin (present in 35% of all liquids), ethyl maltol (32%) not necessarily reflect human perception and may and ethyl butyrate (28%). In addition, we identified 29 differ between e-liquid providers and therefore can category- specific flavourings. Moreover, e- liquids’ flavour be challenging to enforce. In addition, allowing or http://tobaccocontrol.bmj.com/ categories were predicted with an overall accuracy of banning a specific e- liquid flavour may be compli- 70%. cated as e- liquids regularly have multiple flavour Conclusions Information from manufacturers can be descriptors (eg, tobacco with caramel and vanilla).7 used to identify frequently used and category- specific Similarly, using sensory analysis to enforce e- liquid flavourings. Qualitative and quantitative ingredient flavour regulations may be challenging. Although information can be used to successfully predict an based on human perception, analysing sensory e- liquid’s flavour category, serving as an example for properties of all e- liquids in a particular country regulators that have similar datasets available. to determine whether they comply with current regulations is extremely time-consuming. However, sensory analysis could be used to determine attrac- on March 26, 2021 at Wageningen UR INTRODUCTION tiveness of particular e- liquid flavours or flavour Electronic cigarette (e-cigarette) use among various categories among vulnerable user groups (eg, user groups has increased considerably over the non- smoking adolescents) and in that way inform past years.1 2 One of the most important reasons policy makers on how to reduce e-liquid appeal. for e- cigarettes’ great popularity is the assortment Another option would be to decrease e- liquid © Author(s) (or their of available e-liquid flavours3–6; for example, no attractiveness or toxicity by restricting the addition employer(s)) 2021. Re- use less than 245 unique flavours were available in the of particular flavouring ingredients. For example, permitted under CC BY- NC. No 7 commercial re- use. See rights Netherlands in 2017. Flavours increase product particular flavourings could be banned or their and permissions. Published attractiveness among all types of (potential) users, maximum concentration could be restricted. This by BMJ. that is, among youth and adults8 and among may diminish e- cigarette use and thereby exposure To cite: Krüsemann EJZ, current smokers, dual users, exclusive vapers, as to potentially toxic e- liquid constituents and thus 9 Havermans A, Pennings JLA, well as never- users. For smokers, switching to increase health benefits for non-users and youth. et al. Tob Control e- cigarettes may be beneficial, as e- cigarette use Research on e- liquid flavours and flavouring 2021;30:185–191. (ie, vaping) is considered less harmful than regular compositions can support regulators in developing Krüsemann EJZ, et al. Tob Control 2021;30:185–191. doi:10.1136/tobaccocontrol-2019-055447 185 Original research Tob Control: first published as 10.1136/tobaccocontrol-2019-055447 on 10 February 2020. Downloaded from policy measures. Accordingly, various chemical analytical studies Data analyses evaluated e-liquid flavouring ingredients and emissions.21 25–29 As most e- liquids were reported as being marketed in a package These studies typically focus on a list of a priori selected target unit of ‘1’ and containing 10 mL of fluid, deviating submissions flavourings for their analyses.21 25–29 These target lists are usually (more than one e- liquid per package or e- liquids with a volume selected based on previous studies, which creates a risk of selec- other than 10 mL) were excluded. This resulted in a final dataset tion bias by overlooking other or new e-liquid ingredients that of 16 839 products. For these products, ingredient- related infor- may have toxic properties. Therefore, there is a clear need for mation was extracted from the EU- CEG system and analysed a published overview of common flavourings and other ingredi- using R statistical software (version 3.5.1). Ingredients reported ents in e- liquids. This information may be used as a starting point by manufacturers as having the function ‘Flavour and/or Taste for future chemical analytical researchers in developing their Enhancer’ will be referred to as flavourings. Negative values for target lists, may provide targets for future toxicological studies ingredient amounts (resulting from EU- CEG artefacts) were set and may provide foci for regulation of e- liquid flavourings. at zero. For the overall dataset, as well as for individual flavour We previously generated an overview of all e- liquid flavour categories and the unclassifiable subset separately, the following descriptions reported to be marketed in the Netherlands in values were determined: the number of products, the mean 7 2017, by manually classifying almost 20 000 e- liquids into 16 number of total ingredients, the mean number of flavourings per 30 main flavour categories. Classification was based on e-liquids’ product, the mean total number of ingredients per product and flavour-related information reported by manufacturers. In the the mean quantities of all flavourings per product. European Union, manufacturers are also required to provide Ingredients present under multiple names in the EU- CEG information about their e-liquids’ chemical composition. Using system (eg, ethanol, etanolo, etanol, ethyl alcohol, ethyl alkohol, this information, the current study first aims to identify the most ethyl- alcohol, alcool ethylique and EtOH) were merged into one commonly used e-liquid flavourings in general and to determine ingredient name. First, unique ingredient names were identified potential flavourings that are specific to a single flavour category. (n=8352), including the number of products for which they were In our previous study, we used information from manufac- reported in the EU- CEG system. Next, starting with the most turers such as brand names to manually
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Chapter 21 the Chemistry of Carboxylic Acid Derivatives
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • N I W O 2011/152886
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date / n / i 8 December 2011 (08.12.2011) W O 2011/152886 A 2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61L 9/01 (2006.01) A61K 31/23 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 31/221 (2006.01) A61Q 15/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/22 (2006.01) A61Q 13/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, PCT/US201 1/022697 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (22) International Filing Date: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 27 January 201 1 (27.01 .201 1) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (30) Priority Data: ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/35 1,435 4 June 2010 (04.06.2010) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, ΓΓ 12/974,7 16 2 1 December 2010 (21 .12.2010) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, , LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicant (for all designated States except US): SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ROBERTET, INC.
    [Show full text]
  • Eucalyptol (1,8 Cineole) from Eucalyptus As COVID-19 Mpro Inhibitor
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 March 2020 doi:10.20944/preprints202003.0455.v1 Eucalyptol (1,8 cineole) from eucalyptus as COVID-19 Mpro inhibitor. However, essential oil a potential inhibitor of further research is necessary to investigate COVID 19 corona virus infection by their potential medicinal use. Molecular docking studies Arun Dev Sharma* and Inderjeet Kaur Keywords: COVID-19, Essential oil, Eucalyptol, Molecular docking PG dept of Biotechnology, Lyallpur Khalsa College Jalandhar *Corresponding author, e mail: [email protected] Graphical abstract Abstract Background: COVID-19, a member of corona virus family is spreading its tentacles across the world due to lack of drugs at present. Associated with its infection are cough, fever and respiratory problems causes more than 15% mortality worldwide. It is caused by a positive, single stranded RNA virus from the enveloped coronaviruse family. However, the main viral proteinase (Mpro/3CLpro) has recently been regarded as a suitable target for drug design against SARS infection due to its vital role in polyproteins processing necessary for coronavirus reproduction. Objectives: The present in silico study was designed to evaluate the effect of Eucalyptol (1,8 cineole), a essential oil component from eucalyptus oil, on Mpro by docking study. Methods: In the present study, molecular docking studies were conducted by using 1- click dock and swiss dock tools. Protein interaction mode was calculated by Protein Interactions Calculator. Results: The calculated parameters such as RMSD, binding energy, and binding site similarity indicated effective binding of eucalyptol to COVID-19 proteinase. Active site prediction further validated the role of active site residues in ligand binding.
    [Show full text]
  • R Graphics Output
    Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 )
    [Show full text]
  • The Direct and Functional Interaction of Tubulin with Transient Receptor Potential Melastatin 2
    The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 by Colin Elliott Seepersad A thesis submitted in conformity with the requirements for the degree of Masters of Science Cell & Systems Biology University of Toronto © Copyright by Colin Elliott Seepersad 2011 The Direct and Functional Interaction of Tubulin With Transient Receptor Potential Melastatin 2 Colin Elliott Seepersad Masters of Science Cell & Systems Biology University of Toronto 2011 Abstract Transient Receptor Potential Melastatin 2 (TRPM2) is a widely expressed, non-selective cationic channel with implicated roles in cell death, chemokine production and oxidative stress. This study characterizes a novel interactor of TRPM2. Using fusion proteins comprised of the TRPM2 C-terminus we established that tubulin interacted directly with the predicted C-terminal coiled-coil domain of the channel. In vitro studies revealed increased interaction between tubulin and TRPM2 during LPS-induced macrophage activation and taxol-induced microtubule stabilization. We propose that the stabilization of microtubules in activated macrophages enhances the interaction of tubulin with TRPM2 resulting in the gating and/or localization of the channel resulting in a contribution to increased intracellular calcium and downstream production of chemokines. ii Acknowledgments I would like to thank my supervisor Dr. Michelle Aarts for providing me with the opportunity to pursuit a Master’s of Science Degree at the University of Toronto. Since my days as an undergraduate thesis student, Michelle has provided me with the knowledge, tools and environment to succeed. I am very grateful for the experience and will move forward a more rounded and mature student. Special thanks to my committee members, Dr.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC
    Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-06/105 September 2006 Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC By S. H. Hilal Ecosystems Research Division National Exposure Research Laboratory Athens, Georgia U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 NOTICE The information in this document has been funded by the United States Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and has been approved for publication. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. ii ABSTRACT SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external mechanistic perturbation components. The internal perturbations quantify the interactions of the appended perturber (P) with the reaction center (C). These internal perturbations are factored into SPARC’s mechanistic components of electrostatic and resonance effects. External perturbations quantify the solute-solvent interactions (solvation energy) and are factored into H-bonding, field stabilization and steric effects. These models have been tested using 1471 reliable measured base, acid and general base-catalyzed carboxylic acid ester hydrolysis rate constants in water and in mixed solvent systems at different temperatures.
    [Show full text]
  • Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
    ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste)
    [Show full text]
  • Untitled Spreadsheet
    Most of these ingredients are commonly used in foods and R.J. Reynolds List of Cigarette beverages, or permitted for use in foods by the U.S. Food and Ingredients 2019* Drug Administration (FDA), or have been given the status * Highlighted yellow = flavor/aroma (almost all the items in this “Generally Recognized as Safe in Foods” (GRAS) by FDA or ingredient list have to do with flavor or aroma. A few have been other recognized expert committee, organization or regulatory highlighted to give an example) body. Ingredient Description Ingredient Description Acetanisole is an aromatic chemical Immortelle (Absolute and Extract) aromatic - warm sweet compound with an aroma caramel hay fruity honey described as sweet, fruity, nutty, tobacco and similar to vanilla. Acetic Acid flavoring agent with a flavor profile of Invert Sugar sweetner Acid, Fruit, Pungent, Sour, Vinegar Acetoin is one of the compounds that Ionone, Beta- Odor Description: Floral, gives butter its characteristic Orris, Fruity, Berry, flavor. Woody. Acetophenone an ingredient in fragrances that Isoamyl Acetate flavoring agent described resemble almond, cherry, as tasting like banana honeysuckle, jasmine, and strawberry. Acetylpyrazine has a role as a flavouring agent. t Isoamyl Benzoate fruity odor has been identified as one of the volatile flavor constituents in popcorn, bread crust, vinegar, and potato snacks. Acetylpyridine, 2- flavoring agent with a flavor Isoamyl Butyrate flavoring agent used to profile of popcorn and roasted make fruit juice flavors nuts. Acetylpyridine,
    [Show full text]
  • What's in Your Beer? Part 2: GC/MS Static Head Space with a Highly
    Ken Lynam1, Vanessa Abercrombie2, Gustavo Serrano1, and Phil Stremple1 Pittcon 2018 What’s in Your Beer? POSTER # Part 2: GC/MS Static Head Space with a Highly Inert 624 Capillary GC Column 1 Agilent Technologies Inc. Wilmington, DE 19808, 2 Agilent Technologies Inc. Folsom, CA 95630 1040-4 Introduction Experimental Results Summer Style Beers Results and Discussion – Superior Organic Acid Response Some ingredients in beer can be challenging to Example Total Ion Chromatogram Superior Organic Acid Responses- Test Probe Mix Other Cyanopropyl phenyl columns absorb organic acids Total Ion Chromatogram Total Ion Chromatogram separate and chromatograph. Common beer flavor 2 ppm aldehydes, alcohols and esters in water Hefe-Wizen, summer style wheat beer pA components include; fusel oils, aldehydes, esters, and Lemon Shandi Acetic acid Butanoic acid Octanoic acid pA 18 butanoic acid Octanoic acid organic acids. The polarity of a 6 % cyano propyl Propionic acid 18 propionic acid phenyl stationary phase (624) has been a traditional 3 1 Carbon dioxide 16 16 20 22 23 24 27 28 30 33 1 acetyl aldehyde choice for this type of analysis and works well. 2 methanol 1 5 6 8 2 Acetyl aldehyde 1 Carbon dioxide 3 Ethanol 25 3 ethanol 14 14 3 However, peaks shapes and low level detection of 4 acetone 2 Acetyl aldehyde 4 1-propanol 5 isopropanol 9 8 22 5 Ethyl acetate 12 1 3 5 20 No detection on organic acids have been problematic for this phase. 6 tert butanol 3 Ethanol 6 Isobutyl alcohol 12 acetic acid Severe tailing 31 9 7 1-propanol Competitor’s Phase When inertness performance verified 624 columns are 300000 4 1-propanol 7 Acetic acid 10 8 butyraldehyde 16 8 Isoamyl alcohol (3-methyl 1-butanol) used, consistent organic acid performance is 9 2,3 butanedione 5 Ethyl acetate 10 15 9 Active amyl alcohol (2-methyl 1-butanol) 8 10 ethyl acetate all four acids observed achieved.
    [Show full text]