Reconstruction of the Mode and Tempo of the Evolution of Bats with Diverse Molecular Markers: Morphological Convergences in Adaptive Radiations

Total Page:16

File Type:pdf, Size:1020Kb

Reconstruction of the Mode and Tempo of the Evolution of Bats with Diverse Molecular Markers: Morphological Convergences in Adaptive Radiations Reconstruction of the mode and tempo of the evolution of bats with diverse molecular markers: Morphological convergences in adaptive radiations. Rekonstruktion der Art und der Geschwindigkeit der Evolution von Flederm¨ausen mit unterschiedlichen molekularen Markern: Morphologische Konvergenzen in Adaptiven Radiationen. Der Naturwissenschaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Thomas Datzmann aus Garmisch-Partenkirchen June 2011 Als Dissertation genehmigt von der Naturwissen- schaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg Tag der m¨undlichen Pr¨ufung: 04. Mai 2012 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatter/in: PD. Dr. Frieder Mayer Zweitberichterstatter/in: Prof. Dr. Ralph Tiedemann Acknowledgements First of all, I would like to thank Prof. Dr. Otto von Helversen und PD. Dr. Frieder Mayer for the friendly initiation in their work group. Thanks for your help, guidance, patience and friendship. Special thanks to Dr. Wolfram Schulze, Dr. Dirk Berger, Burkard Pfeiffer and the whole Zoo II team in Erlangen. It was a pleasure to work with you. Dr. Jana Ustinova, Dr. Heiko Stuckas, Dr. Thomas v. Rintelen, and Andrea Ross gave so much support in the lab. Many thanks for that. I am very obliged to Prof. Dr. Ralph Tiedemann and Dr. Clara Stefen for imparting their knowledge and especially to Dr. Clara Stefen for giving me space to write this thesis. Further, I have to thank Prof. Dr. Michael Stubbe, Dr. Dietrich Dolch, Dr. Ralph Simon and PD. Dr. Marco Tschapka for providing tissue samples and their enthusiasm for the project. I would like to thank Sebastian Lippold, Julien Hempel, Claudius Kerth, Dr. Andre Reimann, Dr. Michael Knapp and PD. Dr. Christian Voigt for their will- ingness to discuss diverse aspects of this work. I have to thank the University of Erlangen-N¨urnberg, the Museum f¨ur Naturkunde Berlin, and the Museum of Zoology Dresden for providing a lab, office space and financial support and special thanks to the Luise-Prell and Schmauser founda- tions of the University of Erlangen-N¨urnberg for funding. Finally, I have to thank Lisbeth and Helmut Datzmann for their all-encompassing support. Short Summary The aim of the study was to get a better understanding of the mode and tempo of the evo- lution of bats. Two different, very species-rich bat families were chosen as study objects. In the first chapter, bats of the family Phyllostomidae were analyzed. They show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioral adaptations. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of the nectarivorous subfamilies Lonchophyllinae and Glossophaginae. This is remarkable, since their morphological adaptations to nutrition closely resemble each other (e.g. elongated ros- trums and tongues, reduced teeth, hovering flight). Further, molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of all subfamilies within the Phyllostomidae. In the second chapter, genetic variation among Mongolian bats of the family Vespertilionidae was screened and compared with taxa of the Western Palaearctic region. This is the first comprehensive, molecular genetic analysis of a whole bat family in the Eastern Palaearctic region. A total of 16 distinct mitochondrial lineages were found within Mongolia. Thirteen lineages differed by at least five percent sequence divergence to West- ern Palaearctic species, what implies the occurrence of cryptic diversity. Only three lineages showed lower divergence values. The data demonstrate a clear separation between most West- ern and Eastern Palaearctic vespertilionid bats likely due to multiple refugia during Pleistocene glaciations and independent recolonizations in the West and East. Kurze Zusammenfassung Das Ziel der vorliegenden Arbeit war ein besseres Verst¨andnis der Art und der Geschwindig- keit der Evolution von Flederm¨ausen zu erlangen. Hierzu wurden zwei sehr artenreiche Fle- dermausfamilien untersucht. Das erste Kapitel widmet sich den Blattnasenflederm¨ausen (Fa- milie: Phyllostomidae). Diese erlangten eine einmalige Vielfalt an Ern¨ahrungsspezialisationen. Einige Arten sind hoch spezialisiert und ern¨ahren sich von Insekten, Blut, kleinen Wirbeltieren, Fr¨uchten oder Nektar und Pollen. Mit dieser Ern¨ahrungsspezialisation gehen Anpassungen der Morphologie, Physiologie und des Verhaltens einher. Die Rekonstruktion der Stammes- geschichte, basierend auf mehr als 10.000 DNA Basenpaaren pro Art, ergab eine konvergente Evolution zahlreicher Ern¨ahrungsspezialisationen innerhalb der sich von Nektar ern¨ahrenden Unterfamilien Lonchophyllinae und Glossophaginae. Dies ist erstaunlich, da sich die mor- phologischen Anpassungen an die Ern¨ahrungsweise sehr ¨ahneln. Die Flederm¨ause besitzen verl¨angerte Schnauzen und Zungen, reduzierte Z¨ahne und k¨onnen im Schwirrflug ihre Bl¨uten ausbeuten. Die Analyse der Divergenzzeiten ergab einen relativ kurzen Zeitraum von zehn Millionen Jahren, indem alle Unterfamilien der Phyllostomidae entstanden. Im zweiten Kapi- tel wurde die genetische Variation mongolischer Flederm¨ause, aus der Familie der Glattnasen (Vespertilionidae), untersucht und mit Vertretern der Westpal¨aarktis verglichen. Diese Arbeit stellt die erste umfangreiche, molekulargenetische Studie einer gesamten Fledermausfamilie der Ostpal¨aarktis dar. Insgesamt konnten 16 unterschiedliche mitochondriale Linien f¨ur die Mongolei nachgewiesen werden. Dreizehn Linien zeigten mindestens f¨unf Prozent Sequenz- unterschied zu den westpal¨aarktischen Linien, was auf die Existenz kryptischer Artenvielfalt hinweist. Nur bei drei Arten wurde ein geringer Sequenzunterschied zwischen Tieren der Ost- und Westpal¨aarktis gefunden. Das beobachtete Muster l¨asst sich am besten mit der Existenz zahlreicher Refugien w¨ahrend der Vereisungen im Pleistoz¨an erkl¨aren. Contents Preface I 1 Diversification of New World leaf-nosed bats 1 1.1 Introduction ............................ 1 1.2 Materialsandmethods. 3 1.2.1 Taxonsampling ...................... 3 1.2.2 Geneticanalyses ...................... 3 1.2.3 Alignments and model selection . 4 1.2.4 Maximum-Parsimonyanalysis . 6 1.2.5 Maximum-Likelihoodanalysis . 6 1.2.6 Reconstruction of ancestral states . 6 1.2.7 Bayesiananalysis. 7 1.2.8 Calibrationofthemolecularclock . 7 1.2.9 Modelandpriordecision. 8 1.2.10 Estimation of divergence times . 8 1.3 Results............................... 9 1.3.1 PhylogenyofthePhyllostomidae . 9 1.3.2 Reconstruction of ancestral states . 15 1.4 Discussion ............................. 18 1.4.1 PhylogenyofthePhyllostomidae . 18 1.4.2 Dietarydiversification . 20 1.4.3 Timeframeofevolution . 22 1.5 Conclusions............................. 23 2 Cryptic speciation of vespertilionid bats 25 2.1 Introduction ............................ 25 2.2 Materialsandmethods. 27 2.2.1 Samplecollection . 27 2.2.2 Sequence and genetic analyses . 29 2.2.3 Phylogeneticanalyses . 29 2.3 Results............................... 30 2.3.1 Hypsugo .......................... 30 2.3.2 Eptesicus .......................... 32 2.3.3 Vespertilio ......................... 34 2.3.4 Myotis ........................... 34 2.3.5 Plecotus .......................... 38 2.3.6 Nyctalus .......................... 41 2.4 Discussion ............................. 41 2.4.1 Species with a whole Palaearctic distribution . 41 2.4.2 Distinct lineages in the West and East . 43 2.5 Conclusions............................. 47 Summary 49 Summary(English) ........................... 49 Summary(German) ........................... 51 Bibliography 54 Appendix XIX List of Figures 1.1 Comparisonofphylogenies. 10 1.2 Mitochondrialvs. nuclearloci . 11 1.3 Reconstruction of phyllostomid phylogeny . .. 13 1.4 Bayesiandating .......................... 16 2.1 SamplemapofMongolia . 28 2.2 Neighbor-joining (NJ) tree of the genus Hypsugo ......... 31 2.3 Neighbor-joining (NJ) tree of the genera Eptesicus and Vespertilio 33 2.4 Neighbor-joining (NJ) tree of the genus Myotis .......... 36 2.5 Neighbor-joining (NJ) tree of the genus Plecotus ......... 39 2.6 Neighbor-joining (NJ) tree of the genus Nyctalus ......... 42 List of Tables 1.1 Cladestabilitymeasures . 14 1.2 Modelcomparison ......................... 17 2.1 ND1 inter- and intraspecific genetic distances of the Hypsugo lineages............................... 31 2.2 ND1 inter- and intraspecific genetic distances of the Eptesicus and Vespertilio lineages ...................... 32 2.3 ND1 inter- and intraspecific genetic distances of the Myotis lineages 37 2.4 ND1 inter- and intraspecific genetic distances of the Plecotus lineages............................... 40 2.5 ND1 inter- and intraspecific genetic distances of the Nyctalus lineages............................... 42 A1 Listofspecimens.......................... XX B1 List of specimens (Continued in 5 pp.) . XXI Preface Adaptive radiations are the most strikingly examples of the evolution of new species on our earth. An adaptive radiation goes along with an increase in ecolog- ical and phenotypic diversity within a rapidly multiplying lineage (Schluter, 2000). A single ancestor diversifies into a variety of species, which exploit at least par-
Recommended publications
  • Ectoparasites of Bats in Mongolia, Part 2 (Ischnopsyllidae, Nycteribiidae, Cimicidae and Acari) Ingo Scheffler University of Potsdam, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2012 Ectoparasites of Bats in Mongolia, Part 2 (Ischnopsyllidae, Nycteribiidae, Cimicidae and Acari) Ingo Scheffler University of Potsdam, [email protected] Dietrich Dolch Radensleben, Germany Jargalsaikhan Ariunbold Mongolian State University of Education Annegret Stubbe Martin-Luther Universität, [email protected] Andreas Abraham University of Potsdam FSeoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, Parasitology Commons, and the Zoology Commons Scheffler, Ingo; Dolch, Dietrich; Ariunbold, Jargalsaikhan; Stubbe, Annegret; Abraham, Andreas; and Thiele, Klaus, "Ectoparasites of Bats in Mongolia, Part 2 (Ischnopsyllidae, Nycteribiidae, Cimicidae and Acari)" (2012). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 16. http://digitalcommons.unl.edu/biolmongol/16 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ingo Scheffler, Dietrich Dolch, Jargalsaikhan Ariunbold, Annegret Stubbe, Andreas Abraham, and Klaus Thiele This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biolmongol/16 Copyright 2012, Martin-Luther-Universität Halle Wittenberg, Halle (Saale).
    [Show full text]
  • Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
    UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces .................................................................................................................................................................................................................................................
    [Show full text]
  • 7 Meeting of the Parties
    Inf.EUROBATS.MoP7.45 7th Meeting of the Parties Brussels, Belgium, 15 – 17 September 2014 Report on Autecological Studies for Priority Species Convenor: Stéphane Aulagnier In accordance with Resolution 4.12, the current work being carried out on autecological studies of the Priority List of species (Rhinolophus euryale, Myotis capaccinii and Miniopterus schreibersii) should be updated by the Advisory Committee and should be made public. References of papers and reports dealing with autecological studies Rhinolophus euryale Barataud M., Jemin J., Grugier Y. & Mazaud S., 2009. Étude sur les territoires de chasse du Rhinolophe euryale, Rhinolophus euryale, en Corrèze, site Natura 2000 des Abîmes de la Fage. Le Naturaliste. Vendéen, 9 : 43-55. The cave of la Fage (Noailles, Département of Corrèze) is a major site for the Mediterranean horseshoe bat, Rhinolophus euryale Blasius 1853. However, contrary to the tendency to increase noted over the last 20 years in various other birth sites in France, numbers at la Fage have shown no change. One of the suspected causes links this to the presence of the A20 motorway, less than a kilometre away, where corpses have been collected. This article presents the results of a radio-tracking study of the space occupied by the colony, during the summers of 2006 and 2007. Voigt C.C., Schuller B.M., Greif S. & Siemers B.M., 2010. Perch-hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight. Journal of Comparative Physiology Biochemical Systemic and Environmental Physiology, 180(7): 1079-1088 Foraging behaviour of bats is supposedly largely influenced by the high costs of flapping flight.
    [Show full text]
  • Status of Savis Pipistrelle Hypsugo Savii (Chiroptera)
    bs_bs_banner Mammal Review ISSN 0305-1838 REVIEW Status of Savi’s pipistrelle Hypsugo savii (Chiroptera) and range expansion in Central and south-eastern Europe: a review Marcel UHRIN* Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia and Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Praha 6, Czech Republic. E-mail: [email protected] Ulrich HÜTTMEIR Austrian Coordination Centre for Bat Conservation and Research, Fritz-Störk-Straße 13, 4060 Leonding, Austria. E-mail: ulrich.huettmeir@fledermausschutz.at Marina KIPSON Department of Zoology, Faculty of Science, Charles University in Prague, Vinicˇná 7, 128 44 Praha 2, Czech Republic. E-mail: [email protected] Péter ESTÓK Eszterházy Károly College, Eszterházy tér 1., 3300 Eger, Hungary. E-mail: [email protected] Konrad SACHANOWICZ Museum and Institute of Zoology, Wilcza 64, 00-679 Warsaw, Poland. E-mail: [email protected] Szilárd BÜCS Romanian Bat Protection Association, I. B. Deleanu 2, 440014 Satu Mare, Romania. E-mail: [email protected] Branko KARAPANDŽA Wildlife Conservation Society ‘Mustela’, Njegoševa 51, 11000 Belgrade, Serbia. E-mail: [email protected] Milan PAUNOVIC´ Department of Biological Collections, Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia. E-mail: [email protected] Primož PRESETNIK Centre for Cartography of Fauna and Flora, Ljubljana Office, Klunova 3, 1000 Ljubljana, Slovenia. E-mail: [email protected] Andriy-Taras BASHTA Institute of Ecology of the Carpathians, National Academy of Sciences of Ukraine, Kozelnytska st. 4, 79026 Lviv, Ukraine.
    [Show full text]
  • Genetic Diversity of Northeastern Palaearctic Bats As Revealed by DNA Barcodes
    Acta Chiropterologica, 14(1): 1–14, 2012 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811012X654222 Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes SERGEI V. K RUSKOP1, ALEX V. B ORISENKO2, NATALIA V. I VANOVA2, BURTON K. LIM3, and JUDITH L. EGER3 1Zoological Museum of Moscow University, Ul Bol’shata Nikitskaya, 6, Moscow, Russia, 125009 2Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6 4Corresponding author: E-mail: [email protected] Sequences of the DNA barcode region of the cytochrome oxidase subunit I gene were obtained from 38 species of northeastern Palaearctic bats to assess patterns of genetic diversity. These results confirmed earlier findings of deep phylogeographic splits in four pairs of vicariant species (Myotis daubentonii/petax, M. nattereri/bombinus, Plecotus auritus/ognevi and Miniopterus schreibersii/ fuliginosus) and suggested previously unreported splits within Eptesicus nilssoni and Myotis aurascens. DNA barcodes support all taxa raised to species rank in the past 25 years and suggest that an additional species — Myotis sibiricus — should be separated from Myotis brandtii. Major phylogeographic splits occur between European and Asian populations of Myotis aurascens, Rhinolophus ferrumequinum and Myotis frater; smaller scale splits are observed between insular and mainland populations in the Far East (M. frater, Myotis ikonnikovi and Murina ussuriensis) and also between southeastern Europe and Ciscaucasia (Myotis daubentonii, Plecotus auritus, and Pipistrellus pipistrellus). One confirmed case of sequence sharing was observed in our dataset — Eptesicus nilssoni/serotinus.
    [Show full text]
  • First Record of Hypsugo Savii in Prague and Summary of Winter Records of Pipistrellus Nathusii from Prague and Close Surroundings (Czech Republic)
    Vespertilio 17: 95–101, 2014 ISSN 1213-6123 First record of Hypsugo savii in Prague and summary of winter records of Pipistrellus nathusii from Prague and close surroundings (Czech Republic) Helena Jahelková1, Jana NeckáŘová2, Anna Bláhová3, Markéta Sasínková3, Dit a Weinfurtová3, Zdena Hybnerová3, Veronika čermáková3 & Dagmar Zieglerová3 1 Department of Zoology, Charles University, Viničná 7, CZ–128 44 Praha 2, Czech Republic; [email protected] 2 Prague Rescue Station for Wild Living Animals, Mezi Rolemi, CZ–158 00 Praha 5, Czech Republic; [email protected] 3 ZO ČSOP Nyctalus, Jasmínová 29, CZ–106 00 Praha 4, Czech Republic; [email protected] Abstract. On 12 December 2013, a Savi’s pipistrelle (Hypsugo savii) was found inside a building close to the centre of Prague. The bat was released in the Stromovka (Královská obora) city park after hibernation. This park is close to urban areas and the river and its old trees provide many roosting opportunities for bats. During the winter seasons (December, January, February) of 2008–2014, altogether 30 Nathusius’ pipistrelles (Pipistrellus nathusii) were found hibernating in Prague and close surroundings. Besides single individuals, we found three hibernating groups: two of them were composed of five bats and were found in the Stromovka city park during tree cutting in 2012 and 2013. The third group, hibernating in a pile of wood, was composed of four bats and was found 6 km from the edge of Prague in Dobřichovice in 2014. This contribution also summarizes other records of Nathusius’ pipistrelles found during winter period, which partly covers the migration period as well.
    [Show full text]
  • Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East
    Acta Soc. Zool. Bohem. 72: 1–103, 2008 ISSN 1211-376X Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 6. Bats of Sinai (Egypt) with some taxonomic, ecological and echolocation data on that fauna Petr BENDA1,2,11), Christian DIETZ3,11), Michal ANDREAS4), Josef HOTOVÝ5), Radek K. LUČAN6), Alanna MALTBY7), Kathy MEAKIN8), Jeremy TRUSCOTT9) & Peter VALLO10) 1) Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ–115 79 Praha 1, Czech Republic 2) Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ–128 44 Praha 2, Czech Republic 3) Institute of Zoology, Tübingen University, Auf der Morgenstelle 28, D–72076 Tübingen, Germany 4) The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Květnové nám. 391, CZ–252 43 Průhonice, Czech Republic 5) Museum of Eastern Bohemia in Hradec Králové, Eliščino nábřeží 465, CZ–501 14 Hradec Králové, Czech Republic 6) Department of Zoology, University of South Bohemia, Branišovská 31, CZ–370 05 České Budějovice, Czech Republic 7) Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom 8) 3 School Road, Dursley, Gloucestershire, GL11 4PB, United Kingdom 9) JTecology, Calow, Chesterfield, Derbyshire, United Kingdom 10) Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, CZ–603 65 Brno, Czech Republic 11) corresponding authors: [email protected]; [email protected] Received June 30, 2008; accepted July 17, 2008 Published August 15, 2008 Abstract. A complete list of bat records from Sinai was compiled, composed mostly of new findings from the field (85%).
    [Show full text]
  • First Records of Hypsugo Cadornae (Chiroptera: Vespertilionidae) in China Harrison 1987)
    Mammalia 2021; 85(2): 189–192 Short note Huan-Wang Xie, Xingwen Peng, Chunlan Zhang, Jie Liang, Xiangyang He, Jian Wang, Junhua Wang, Yuzhi Zhang and Libiao Zhang* First records of Hypsugo cadornae (Chiroptera: Vespertilionidae) in China https://doi.org/10.1515/mammalia-2020-0029 Harrison 1987). In 2005, Bates et al. described Hypsugo Received March 25, 2020; accepted August 4, 2020; published online pulveratus as a species morphologically similar to H. cador- August 27, 2020 nae (Bates et al. 2005). Whereas H. pulveratus is widely distributed in China (IUCNredlist, Wilson and Reeder 2005), Abstract: Hypsugo cadornae bats have been found in In- H. cadornae was not found there yet. dia, Myanmar, Thailand, Vietnam, Laos, and Cambodia. In H. cadornae was first discovered in north-eastern India 2017 and 2018, 15 medium size Hypsugo bats were collected (Thomas 1916) and later found in India, Myanmar (Bates from Shaoguan, Guangzhou, and Huizhou in Guangdong, and Harrison 1997), Thailand (Hill and Thonglongya 1972), China. Molecular and morphological examinations iden- Vietnam (Kruskop and Shchinov 2010), Laos (Görföl et al. tified them as H. cadornae. This is the first record of 2014), and Cambodia (Furey et al. 2012). In 2017 and 2018, H. cadornae in China. Morphological and ultrasonic char- we captured 15 medium size Hypsugo bats from Shaoguan, acteristics of H. cadornae were compared with its close Guangzhou, and Huizhou in Guangdong, China. Three relative, Hypsugo pulveratus. individuals from the three different cities were carefully Keywords: echolocation calls; Hypsugo; morphology; examined. phylogeny. Nine body and 12 skull morphological features were measured using a vernier caliper (0.01 mm) according to Hypsugo cadornae was formerly classified as a subspecies of Bates and Harrison (1997); Furey et al.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Operation Wallacea Sinai, Egypt 2011 Bat Report by Eleni Foui
    Operation Wallacea Sinai, Egypt 2011 Barbastella leucomelas, Sinai Barastelle (photo credit: Eleni Foui) Bat report By Eleni Foui Operation Wallacea, Sinai 2011 Eleni Foui Introduction Sinai peninsula is located between the Suez Canal and the Gulf of Aqaba. It is the eastern most part of Egypt and is bordering with Palestine and Israel by land and with Jordan and Saudi Arabia by sea. The main vegetation type of Sinai is a combination of Saharo-Arabian and Sudanian desert flora (Danin & Plitmann 1986). At the northern coast there are some elements of Mediterranean vegetation and at the southern mountains some areas of Irano-Turanian steppe flora (Danin & Plitmann 1986). In general, Sinai is dominated by three broad geological parts: sand dunes at the north, a limestone plateau at the central part and high altitude igneous rock mountains at the south (White, Dauphiné and Mohamed 2007). There are 22 species of bats documented in Egypt. Generally, bats are not well studied in this area. The first compilation of all bat data of Egypt was done by Qumsiyeh in 1985. Before this publication only scattered records of single bats can be found in the literature starting in 1757 (for more details see Benda et. al 2008). Operation Wallacea's work on bats of Sinai started in 2005 with Christian Dietz who later produced the "Illustrated identification key to the bats of Egypt”. Since 2005 Operation Wallacea's expeditions in the area have documented 15 species of bats at Sinai (and possibly two more from recordings) including rare and important species such as the Sinai Barbastelle (Barbastella leucomelas) which was rediscovered after its initial description in 1822-1826 (by Rüppell and Cretzschmar) and the lesser horseshoe bat (Rhinolophus hipposideros) which was initially found by Hoogstraal in 1953.
    [Show full text]
  • First Record of a Nathusius' Pipistrelle (Pipistrellus Nathusii)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.962563; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. First record of a Nathusius’ pipistrelle (Pipistrellus nathusii) overwintering at a latitude above 60°N Blomberg AS1*, Vasko V2, Salonen S1, Pētersons G3, Lilley TM2 1. Department of Biology, University of Turku, Turku, Finland 2. Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland 3. Latvian University of Life Sciences and Technologies, Jelgava, Latvia *Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.962563; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Highly mobile species are considered to be the first to respond to climate change by transforming their ranges of distribution. There is evidence suggesting that Pipistrellus nathusii, a long-distance migrant, is expanding both its reproduction and overwintering ranges to the North. We recorded the echolocation calls of bats at 16 sites in South- Western Finland on two consecutive winters, and detected calls of P. nathusii at one of the sites throughout the latter winter. To our knowledge, this is the northernmost observation of an overwintering P.
    [Show full text]
  • Sequence and Organisation of the Mitochondrial Genome of Japanese Grosbeak (Eophona Personata), and the Phylogenetic Relationships of Fringillidae
    ZooKeys 955: 67–80 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.955.34432 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae Guolei Sun1, Chao Zhao1, Tian Xia1, Qinguo Wei1, Xiufeng Yang1, Shi Feng1, Weilai Sha1, Honghai Zhang1 1 College of Life Science, Qufu Normal University, Qufu, Shandong province, China Corresponding author: Honghai Zhang ([email protected]) Academic editor: G. Sangster | Received 12 March 2019 | Accepted 7 October 2020 | Published 18 November 2020 http://zoobank.org/C3518FBE-06B2-4CAA-AFBF-13EB96B3E1E9 Citation: Sun G, Zhao C, Xia T, Wei Q, Yang X, Feng S, Sha W, Zhang H (2020) Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae. ZooKeys 955: 67–80. https://doi.org/10.3897/zookeys.955.34432 Abstract Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringil- lidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E.
    [Show full text]