Reconstruction of the mode and tempo of the evolution of bats with diverse molecular markers: Morphological convergences in adaptive radiations. Rekonstruktion der Art und der Geschwindigkeit der Evolution von Flederm¨ausen mit unterschiedlichen molekularen Markern: Morphologische Konvergenzen in Adaptiven Radiationen. Der Naturwissenschaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Thomas Datzmann aus Garmisch-Partenkirchen June 2011 Als Dissertation genehmigt von der Naturwissen- schaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg Tag der m¨undlichen Pr¨ufung: 04. Mai 2012 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatter/in: PD. Dr. Frieder Mayer Zweitberichterstatter/in: Prof. Dr. Ralph Tiedemann Acknowledgements First of all, I would like to thank Prof. Dr. Otto von Helversen und PD. Dr. Frieder Mayer for the friendly initiation in their work group. Thanks for your help, guidance, patience and friendship. Special thanks to Dr. Wolfram Schulze, Dr. Dirk Berger, Burkard Pfeiffer and the whole Zoo II team in Erlangen. It was a pleasure to work with you. Dr. Jana Ustinova, Dr. Heiko Stuckas, Dr. Thomas v. Rintelen, and Andrea Ross gave so much support in the lab. Many thanks for that. I am very obliged to Prof. Dr. Ralph Tiedemann and Dr. Clara Stefen for imparting their knowledge and especially to Dr. Clara Stefen for giving me space to write this thesis. Further, I have to thank Prof. Dr. Michael Stubbe, Dr. Dietrich Dolch, Dr. Ralph Simon and PD. Dr. Marco Tschapka for providing tissue samples and their enthusiasm for the project. I would like to thank Sebastian Lippold, Julien Hempel, Claudius Kerth, Dr. Andre Reimann, Dr. Michael Knapp and PD. Dr. Christian Voigt for their will- ingness to discuss diverse aspects of this work. I have to thank the University of Erlangen-N¨urnberg, the Museum f¨ur Naturkunde Berlin, and the Museum of Zoology Dresden for providing a lab, office space and financial support and special thanks to the Luise-Prell and Schmauser founda- tions of the University of Erlangen-N¨urnberg for funding. Finally, I have to thank Lisbeth and Helmut Datzmann for their all-encompassing support. Short Summary The aim of the study was to get a better understanding of the mode and tempo of the evo- lution of bats. Two different, very species-rich bat families were chosen as study objects. In the first chapter, bats of the family Phyllostomidae were analyzed. They show a unique diversity in feeding specializations. This taxon includes species that are highly specialized on insects, blood, small vertebrates, fruits or nectar, and pollen. Feeding specialization is accompanied by morphological, physiological and behavioral adaptations. Phylogenetic reconstructions, based on a concatenated nuclear-and mitochondrial data set, revealed a paraphyletic relationship of the nectarivorous subfamilies Lonchophyllinae and Glossophaginae. This is remarkable, since their morphological adaptations to nutrition closely resemble each other (e.g. elongated ros- trums and tongues, reduced teeth, hovering flight). Further, molecular clock analysis revealed a relatively short time frame of about ten million years for the divergence of all subfamilies within the Phyllostomidae. In the second chapter, genetic variation among Mongolian bats of the family Vespertilionidae was screened and compared with taxa of the Western Palaearctic region. This is the first comprehensive, molecular genetic analysis of a whole bat family in the Eastern Palaearctic region. A total of 16 distinct mitochondrial lineages were found within Mongolia. Thirteen lineages differed by at least five percent sequence divergence to West- ern Palaearctic species, what implies the occurrence of cryptic diversity. Only three lineages showed lower divergence values. The data demonstrate a clear separation between most West- ern and Eastern Palaearctic vespertilionid bats likely due to multiple refugia during Pleistocene glaciations and independent recolonizations in the West and East. Kurze Zusammenfassung Das Ziel der vorliegenden Arbeit war ein besseres Verst¨andnis der Art und der Geschwindig- keit der Evolution von Flederm¨ausen zu erlangen. Hierzu wurden zwei sehr artenreiche Fle- dermausfamilien untersucht. Das erste Kapitel widmet sich den Blattnasenflederm¨ausen (Fa- milie: Phyllostomidae). Diese erlangten eine einmalige Vielfalt an Ern¨ahrungsspezialisationen. Einige Arten sind hoch spezialisiert und ern¨ahren sich von Insekten, Blut, kleinen Wirbeltieren, Fr¨uchten oder Nektar und Pollen. Mit dieser Ern¨ahrungsspezialisation gehen Anpassungen der Morphologie, Physiologie und des Verhaltens einher. Die Rekonstruktion der Stammes- geschichte, basierend auf mehr als 10.000 DNA Basenpaaren pro Art, ergab eine konvergente Evolution zahlreicher Ern¨ahrungsspezialisationen innerhalb der sich von Nektar ern¨ahrenden Unterfamilien Lonchophyllinae und Glossophaginae. Dies ist erstaunlich, da sich die mor- phologischen Anpassungen an die Ern¨ahrungsweise sehr ¨ahneln. Die Flederm¨ause besitzen verl¨angerte Schnauzen und Zungen, reduzierte Z¨ahne und k¨onnen im Schwirrflug ihre Bl¨uten ausbeuten. Die Analyse der Divergenzzeiten ergab einen relativ kurzen Zeitraum von zehn Millionen Jahren, indem alle Unterfamilien der Phyllostomidae entstanden. Im zweiten Kapi- tel wurde die genetische Variation mongolischer Flederm¨ause, aus der Familie der Glattnasen (Vespertilionidae), untersucht und mit Vertretern der Westpal¨aarktis verglichen. Diese Arbeit stellt die erste umfangreiche, molekulargenetische Studie einer gesamten Fledermausfamilie der Ostpal¨aarktis dar. Insgesamt konnten 16 unterschiedliche mitochondriale Linien f¨ur die Mongolei nachgewiesen werden. Dreizehn Linien zeigten mindestens f¨unf Prozent Sequenz- unterschied zu den westpal¨aarktischen Linien, was auf die Existenz kryptischer Artenvielfalt hinweist. Nur bei drei Arten wurde ein geringer Sequenzunterschied zwischen Tieren der Ost- und Westpal¨aarktis gefunden. Das beobachtete Muster l¨asst sich am besten mit der Existenz zahlreicher Refugien w¨ahrend der Vereisungen im Pleistoz¨an erkl¨aren. Contents Preface I 1 Diversification of New World leaf-nosed bats 1 1.1 Introduction ............................ 1 1.2 Materialsandmethods. 3 1.2.1 Taxonsampling ...................... 3 1.2.2 Geneticanalyses ...................... 3 1.2.3 Alignments and model selection . 4 1.2.4 Maximum-Parsimonyanalysis . 6 1.2.5 Maximum-Likelihoodanalysis . 6 1.2.6 Reconstruction of ancestral states . 6 1.2.7 Bayesiananalysis. 7 1.2.8 Calibrationofthemolecularclock . 7 1.2.9 Modelandpriordecision. 8 1.2.10 Estimation of divergence times . 8 1.3 Results............................... 9 1.3.1 PhylogenyofthePhyllostomidae . 9 1.3.2 Reconstruction of ancestral states . 15 1.4 Discussion ............................. 18 1.4.1 PhylogenyofthePhyllostomidae . 18 1.4.2 Dietarydiversification . 20 1.4.3 Timeframeofevolution . 22 1.5 Conclusions............................. 23 2 Cryptic speciation of vespertilionid bats 25 2.1 Introduction ............................ 25 2.2 Materialsandmethods. 27 2.2.1 Samplecollection . 27 2.2.2 Sequence and genetic analyses . 29 2.2.3 Phylogeneticanalyses . 29 2.3 Results............................... 30 2.3.1 Hypsugo .......................... 30 2.3.2 Eptesicus .......................... 32 2.3.3 Vespertilio ......................... 34 2.3.4 Myotis ........................... 34 2.3.5 Plecotus .......................... 38 2.3.6 Nyctalus .......................... 41 2.4 Discussion ............................. 41 2.4.1 Species with a whole Palaearctic distribution . 41 2.4.2 Distinct lineages in the West and East . 43 2.5 Conclusions............................. 47 Summary 49 Summary(English) ........................... 49 Summary(German) ........................... 51 Bibliography 54 Appendix XIX List of Figures 1.1 Comparisonofphylogenies. 10 1.2 Mitochondrialvs. nuclearloci . 11 1.3 Reconstruction of phyllostomid phylogeny . .. 13 1.4 Bayesiandating .......................... 16 2.1 SamplemapofMongolia . 28 2.2 Neighbor-joining (NJ) tree of the genus Hypsugo ......... 31 2.3 Neighbor-joining (NJ) tree of the genera Eptesicus and Vespertilio 33 2.4 Neighbor-joining (NJ) tree of the genus Myotis .......... 36 2.5 Neighbor-joining (NJ) tree of the genus Plecotus ......... 39 2.6 Neighbor-joining (NJ) tree of the genus Nyctalus ......... 42 List of Tables 1.1 Cladestabilitymeasures . 14 1.2 Modelcomparison ......................... 17 2.1 ND1 inter- and intraspecific genetic distances of the Hypsugo lineages............................... 31 2.2 ND1 inter- and intraspecific genetic distances of the Eptesicus and Vespertilio lineages ...................... 32 2.3 ND1 inter- and intraspecific genetic distances of the Myotis lineages 37 2.4 ND1 inter- and intraspecific genetic distances of the Plecotus lineages............................... 40 2.5 ND1 inter- and intraspecific genetic distances of the Nyctalus lineages............................... 42 A1 Listofspecimens.......................... XX B1 List of specimens (Continued in 5 pp.) . XXI Preface Adaptive radiations are the most strikingly examples of the evolution of new species on our earth. An adaptive radiation goes along with an increase in ecolog- ical and phenotypic diversity within a rapidly multiplying lineage (Schluter, 2000). A single ancestor diversifies into a variety of species, which exploit at least par-
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages114 Page
-
File Size-